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Abstract

Most problems faced by modern human society have two characteristics in common - they are tragedy-of-the-commons
type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly
shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global
resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human
problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the
spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a
general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can
maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the
commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The
latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons
can be managed.
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Introduction

Many of the most pressing problems of human society are global

problems: environmental pollution, overpopulation, nuclear pro-

liferation, global warming, etc. At their core, most of these

problems present a tragedy-of-the-commons-like situation [1–5],

where the maintenance of a common good requires an effort by

everyone, but can easily be exploited by free-riders who benefit

from the common good without paying for the effort. For

example, clean natural resources in highly populated areas require

some forms of waste control - the associated costs are generally

shared by everyone in the area, but the benefits of the clean

resources are also shared by everyone in the area. The problem

arises when individuals start reaping the benefits of the resource

without sharing the costs. Because such free-riding behavior is

beneficial to the individual, the resource cannot be maintained in

the long run, hence the tragedy of the commons [6–9].

In order to prevent the tragedy of the commons caused by free-

riding behavior, a number of strategies have been proposed. In

particular, punishment of free-riding has received considerable

attention. In its simplest form, punishment emerges from

individuals who are willing to punish exploiters at a personal cost

to themselves. If the threat and cost of being punished are greater

than the potential gain from exploiting, such a simple sanctioning

system can temporarily maintain the commons [10–14]. However,

because the act of punishment is costly to the punisher,

punishment itself is susceptible to free-riding: individuals are best

off if they can benefit from the punisher’s efforts without having to

pay the cost of punishment themselves. This so-called ‘‘second-

order free rider problem’’ can in principle be addressed with the

punishment of non-punishers, but this will ultimately lead to an

‘‘nth-order free rider problem’’ which cannot be solved by such a

simple sanctioning system [15,16] .

A more complex sanctioning system, where individuals

contribute to a punishment pool, rather than paying the cost of

punishment themselves, has shown to be a potential solution to this

dilemma. In such a ‘‘pool punishment’’ system, exploiters are

punished by an institution paid for by pool punishers [17,18].

Notably, the cost of paying into this punishment pool must be paid

even in the absence of exploiters (and thus in the absence of

punishment). This is in stark contrast to the ‘‘peer punishment’’

system described above, where costs in the absence of exploiters

are trivial. Another notable aspect about pool punishment is that it

is easy to identify those who do not contribute to the punishment

pool, and are thus second-order free riders. This allows pool

punishment to escape the ‘‘nth-order free rider problem’’ and

maintain the commons despite the apparent inefficiency caused by

the continuous costs that accrue even in the absence of exploiters

[19,20]. Indeed, institutionalized punishment of exploiters has

been implemented on various levels of societal organization,

ranging from so-called committees of vigilance in the American

Old West to modern international criminal tribunals [21–23].

As the commons of the 21st century have become increasingly

global (e.g. global climate change, global health, international

terrorism), a problem of scale has emerged [24]. While

exploitation of the commons now has far-reaching consequences

across international borders, the reach of institutions sanctioning

exploiters has not always kept pace. For example, local emission of

greenhouse gases can have far-reaching consequences for the

global climate, but international consensus on emission standards -

and on the sanctioning of violations thereof - has been largely
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lacking [25]. At present, how the problem of scale affects the

ability of sanctioning systems to govern the commons is not well

understood. Building on earlier work using spatial evolutionary

game theory, [26–28] we show that the type of sanctioning system

that can be stably maintained depends strongly on the reach of the

sanctioning system relative to the reach of the commons. Most

importantly, we observe phase transitions between the dominant

strategies such that small changes in the reach of the sanctioning

systems can have profound impacts on how the commons are (or

are not) protected against exploitation.

Results

To investigate the effect of sanctioning systems with limited

reach, we consider a spatial environment with a total of M players

on a square lattice with M cells (implemented as a torus), where

each player occupies a cell. We assume that the players do not

move between games. Players can participate in a game if they are

no more than an interaction distance pi away from a focal player.

To play a game, players can contribute and receive from the

commons as described above. Punishers can only punish other

participants that are no more than a punishment distance pp away

from the punishing player. Since the game is non-compulsory,

players are given the option to stay out of the game and instead

receive a payoff s. The probability that two randomly chosen

players of a game are able to punish each other is parameterized as

a coverage coefficient Cc, which can be calculated as

CC~
1

dj j

� �
1

dj j{1

� �X
i~d

X
j~d

i=j

a(i,j), ð1Þ

where d is a set of players within the interaction range of the

initiating player, and a(i,j) is one if and only if the distance between

players i and j is less than or equal to pp and zero otherwise. From

this we can calculate the effective values of b, b, g and c such that

b9 = b CC, b9 = b, g9 = g CC, and c9 = c CC. Note that the cost paid

by pool punishers is unmodified because they contribute to the

punishing pool even when there are no defectors within their

punishment range.

From this, we can now determine under what circumstances the

commons can be maintained by punishment (without punishers,

cooperators would always be invaded by defectors). In a non-

compulsory game, defectors will always be invaded by non-

participants [29]. In the case of first-order punishment, both peer

punishers and pool punishers can invade non-participants.

However, since we assume b.0, pool punishers have a lower

payoff than the other cooperating strategies and thus can be

invaded by cooperators or peer punishers. Then, defectors can

invade a population of peer punishers if

CCv

(czc)=(M{Nz1)zr

(N{1)g
: ð2Þ

Under this condition, the benefit from not contributing to the

commons is greater than the cost of being punished. Thus, every

strategy can be invaded by another strategy, and cooperation

cannot be maintained (Figure 1A, zone 1, and Figure 2A). If the

condition is not met, however, the commons can be maintained by

peer punishment (Figure 1A, zone 2, and Figure 2B).

In the case of second-order punishment, peer punishment is

ineffective as long as (2) holds. Pool punishers have to pay b even if

they are not currently punishing any players, and thus they can be

invaded as long as

CCv

c=(M{Nz1)zrzb

(N{1)b
: ð3Þ

In this case, pool punishers are unable to maintain the commons

(Figure 1B, zone 3 and 4, and Figure 2C). If the condition is not

met, however, the commons can be maintained by pool

punishment (Figure 1B, zone 5, and Figure 2E). It then follows

that peer punishers can maintain the commons for intermediate

values of CC when

(czc)=(M{Nz1)zr

(N{1)g
vCCv

c=(M{Nz1)zrzb

(N{1)b
ð4Þ

If we assume that punishment costs are identical in both

punishment systems (i.e. g = b), the range of CC for which (4) can

be met will be non-zero (Figure 1B, zone 4, and Figure 2D). Thus,

under some circumstances, peer punishment can maintain the

commons even if second order punishment by pool punishers is

permitted.

Discussion

We’ve presented here a simple model of a spatial public goods

game to address the problem of scale that has emerged as many of

the most pressing issues facing modern societies have become

global. While the simplicity of the model cannot capture every

detail of the real world complexities inherent to governing the

commons, it allows us to formalize the effects of some key

parameters that are common to all sanctioning institutions, such as

the costs associated with punishment. In particular, as can be seen

from Eq. (4), in order for pool punishment to emerge under even

small values of CC, b should be small whereas b should be large.

That is, in order to protect the global commons with non-global

sanctioning systems, the contribution cost to a sanctioning

institution should be minimized while the costs imposed on non-

cooperators should be maximized [9]. Thus, the model can

replicate our intuition about the incentive structure of sanctioning

systems. However, through the addition of spatial constraints,

unexpected threshold phenomena emerge such that small changes

in the system can lead to the fundamental changes. For example,

inequalities (2)–(4) demonstrate how small changes in CC can have

profound effects on whether the commons can be maintained, and

if so, by which type of sanctioning system. Furthermore, while

previous work has argued that peer punishment is outcompeted by

pool punishment when second order punishment is permitted

[19], our results indicate that peer punishment wins when the

reach of the sanctioning system is intermediate relative to the size

of the commons, a situation that is likely to be relevant in many

applications. Future work may extend this model to include the

effect of rewards on cooperation [30].

As we’ve shown above, in order to protect the global commons

from exploitation, the reach of sanctioning institutions must be

sufficiently long. This observation also holds for commons that are

limited in size (i.e. where pi,‘) (Figure 3). Overall, the commons

always benefits from sanctioning institutions with long reach.

Materials and Methods

We developed a simple model implementing a spatial public

goods game that reflects the fundamental dilemma of the tragedy

of the commons. A public goods game models individuals’

contributions to the common good. Specifically, each player is
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given the choice to donate to the common good or not. These

contributions are then multiplied by a constant and evenly divided

amongst the other players. Because a player receives the same

amount regardless of its own donation, a rational player would not

contribute to the commons. More formally: in each game, an

initial focal player is selected randomly. Then a set of N-1 other

players that are no more than an interaction distance pi away from

the focal player partake in a game with the focal player. In this

model, a player cooperates by donating an amount c to a

commons. This donation is then multiplied in value by a factor r

and evenly distributed to the rest of the participants [7]. A

defecting (non-cooperating) player does not contribute to the

commons, but still receives the same benefit as all the other

players. Thus, in a compulsory game, without any form of

punishment, cooperation would quickly deteriorate. In a non-

compulsory game, a rock-paper-scissors–like cycle of non-partic-

ipants, cooperators, and defectors emerges, where phases of

cooperation are short-lived [29,31,32]. We allow punishment to

take two forms, peer or pool punishment [19]. Peer punishers

devote resources to directly punish defectors themselves [33],

whereas pool punishers devote resources to a punishment pool that

pays for institutionalized punishment upfront [17].

Playing the Game
We begin by defining a very basic public good game where all of

the N players cooperate by contributing c which is then multiplied

by a constant r and equally divided among the other players. In

this case, all players will receive a payoff of

(n{1)cr

n{1
{c ð5Þ

We allow for the possibility of players not contributing to the pool,

and thus being defectors. Each defector receives the same amount

from the resource pool as a cooperator does, but without paying to

donate to the pool. Thus in a game with X

Figure 1. The Effects of CC on Strategy Frequency. Results of the mathematical model show that there are phase transitions between different
zones of strategy distributions when CC is varied in games with only first order punishment (A) and in games with second order punishment (B).
Punishment is ineffective in zones 1 and 3. Peer punishment is effective in zones 2 and 4, and pool punishment is only effective in zone 5.
doi:10.1371/journal.pone.0034051.g001

Governing the Global Commons

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e34051



Xcr

XzY{1
ð6Þ

cooperators and Y defectors, a defector will receive a payoff of ,

and a cooperator will receive a payoff of ,

(X{1)cr

XzY{1
{c, ð7Þ

Furthermore, we allow for a player to not participate in the game

at all and to receive a payoff of s instead of the part of the resource

pool that a player would otherwise receive [6]. We will assume that

a participant will be forced to be a non-participant if there are no

other participants within the group that it is attempting to play

with. Given a world with X cooperators, Y defectors, and Z

nonparticipants, the probability that a participant will not be able

to play with any other players is

Z

N{1

� �

XzYzZ{1

N{1

� � : ð8Þ

Note that if X+Y.1, there is a non-zero probability of a game

taking place, and it is assumed that a game will take place given a

sufficient number of attempted games.

Peer Punishment
We will now allow for the possibility of peer punishment. A peer

punisher is a cooperator that fines every defector that it plays with

a penalty g. To engage in this punishment, a peer punisher must

pay c per defector punished. In a game with X cooperators, Y

defectors, and W peer punishers, a cooperator will receive a payoff

of

(WzX{1)cr

WzXzY{1
{c, ð9Þ

a defector will receive a payoff of

(WzX )cr

WzXzY{1
{gW , ð10Þ

and a peer punisher will receive a payoff of

(WzX{1)cr

WzXzY{1
{c{cY : ð11Þ

Figure 2. Examples of the Population Dynamics. Computational simulations of populations with parameters representative of zones 1 through
5 in Figure 1. In (A) and (C), the reach of the sanctioning systems is not far enough to have any effect, and the population can cycle through all of the
strategies. In panel (B) and (D), peer punishment is able to stop an invasion of defectors, but does not stop non-punishing cooperation from drifting
in. Once there are sufficiently few peer punishers, defectors can invade. Second order pool punishment is able to stop the invasion of non-punishing
cooperation, hence pool punishment becomes locked in panel (E). Color code as in Figure 1.
doi:10.1371/journal.pone.0034051.g002
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It is in principle possible that peer punishers would punish

cooperators, because regular cooperators do not contribute to the

second order common good of punishing defectors. However, we

assumed that at most two strategies exist at any time. In a world of

non-punishing cooperators and peer punishers, there will not be

any defectors, so the behavior of a non-punishing cooperator will

be the same as a peer punisher. Thus, peer punishers would be

unable to differentiate between other peer punishers and non-

punishing cooperators making second order peer punishment

impracticable [19].

Pool Punishment
We can also allow for pool punishment. A pool punisher

contributes b each round to maintain a punishment pool. This

punishment pool then fines every defector by amount b for every

pool punisher the defector cheats. If a game is played with V pool

punishers, W peer punishers, X cooperators, and Y defectors, a

pool punisher will receive a payoff of

(VzWzX{1)cr

VzWzXzY{1
{c{b, ð12Þ

a peer punisher will receive a payoff of

(VzWzX{1)cr

VzWzXzY{1
{c{cY , ð13Þ

a cooperator will receive a payoff of

(VzWzX{1)cr

VzWzXzY{1
{c, ð14Þ

and a defector will receive a payoff of

(VzWzX )cr

VzWzXzY{1
{gW{bV : ð15Þ

Unlike peer punishment, there is a noticeable difference between

pool punishers and other cooperators even in the absence of

defectors. This allows for pool punishers to engage in second order

punishment. We can account for second order punishment by

simply subtracting bV from (13) and (14). Since peer punishers can

differentiate between pool punishers and themselves, it is possible

that peer punishers can engage in second order punishment of

pool punishers also. However, this does not effect the dynamics.

Population Dynamics
Consider two players i and j with payoffs Pi and Pj. We can use a

simple social learning function

1

1ze
{s(Pj{PI )

ð16Þ

to define the probability that player i will imitate player j. We will

assume that each player will randomly choose another player to

consider updating. Note that if sR‘, player i will always imitate

player j when Pj.Pi, and player i will imitate player j with a 50%

probability when Pj = Pi. Otherwise, player i will not imitate player

j. Furthermore, a player may randomly switch to a new strategy

with a probability m. We will assume that m is small enough that

mutation is rare and likely to occur only when the population’s

strategies are uniform [34,35].

Now consider a world with M players where M – 1 players have

the same strategy, and one player has a new strategy. As before,

the players divide into groups of N players to play a game. After

these games have been played, a player is chosen to update using

(16). We can model the frequency of the new strategy using a birth

and death process [36]. Clearly, the states where there are either

zero or M players with the new strategy are absorbing states. The

Figure 3. Strategy Frequencies for Non-Global Games. Results from the mathematical model (semi-transparent) and computational
simulations (non-transparent) for non-global games with only first order punishment (A) and with second order punishment allowed (B). Note the
similar phase transitions in non-global games. Color code as in Figure 1.
doi:10.1371/journal.pone.0034051.g003
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probability that the new strategy successfully invades the

population is the probability that the random walk reaches the

latter state. We define this probability as PiRj.

For a new strategy to invade a world with M players that have

the same strategy, one of the players must first mutate into the new

strategy, then that strategy must replace the other M–1 players’

strategies as shown above. In our model, there are a total of 5

strategies, so the probability that a mutation will result in a specific

strategy is 1/4. From this, we can build a 5 state Markov chain

where each state represents a uniform

Pi,j~

1
4

Pi?j i=j

1{
P5

k~1

k=i

Pi?k i~j

8>>>><
>>>>:

ð17Þ

population of a specific strategy, and the transition probabilities

are defined as

We can then take the limiting distribution of the chain to find

the long term average frequency of each of the strategies [20].

The Coverage Coefficient
Given a location and a play distance, we can find a set d of

players in that area. The N players that will play together are

randomly chosen from this set. However, some of these players

may not be within the punishment distance PP of each other, so

their ability to punish will be lowered. The probability CC that two

players randomly chosen from the set are able to punish each

other is

1

dj j

� �
1

dj j{1

� �X
i[d

X
j[d

j=i

a(i,j), ð18Þ

Where a(i, j) is one if the euclidian distance between players i and j

is less than PP and zero otherwise. Since the two players are not

always able to punish each other, their effective values of b, b, g

and c are

b
0
~CCb

b
0
~CCb

g
0
~CCg

c
0
~CCc:

ð19Þ

Note that the amount pool punishers pay to maintain the

punishment pool is unchanged because they must donate every

round even if they do not punish any players. Thus pool

punishment becomes less efficient as CC decreases.

Phase Transitions
Regardless of whether second order punishment is allowed, we

see a sharp transition from a fairly even spread of strategies to peer

punishers being the dominant strategy. This transition occurs

because peer punishment is unable to prevent the invasion of

defectors when CC is below the a certain point. Let us begin with a

single defector trying to invade a population of peer punishers. If

we assume that M is much larger than N, it is unlikely that the

defector will try to imitate one of the players it cheated, but instead

a peer punisher who’s payoff was not lowered because of being

cheated or having to pay to punish. The cheated peer punishers

are also more likely to consider imitating someone other than the

defector. If there is more than one defector, the probability of

imitating a player that is not a defector or has not been cheated

goes down, and defectors have an easier time spreading. Thus, the

ability of peer punishers to sufficiently punish the initial defector

determines which side of the phase transition the game is on. By

combining (10) and (11) and using the effective parameters defined

in (19), we can show that this transition occurs at

CC~
(czc)=(M{Nz1)zr

(N{1)g
: ð20Þ

When second order punishment is permitted, another phase

transition is observed. This transition is at a higher level of CC and

separates the values of CC where pool punishers are able to stop

defectors from invading and where they are not. The reason that

this transition happens at a higher value of CC than the one for

peer punishers is because all pool punishers contribute to

punishment, whereas only peer punishers that are actively

punishing have their payoffs lowered. As with (20), we can use

(12), (15) and (19) to show that this transition occurs at

CC

c=(M{Nz1)zrzb

(N{1)b
: ð21Þ

We observe that peer punishers dominate the second order game

for medium values of CC.
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