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Abstract

Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of
the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular
is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its
importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work
by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated
interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling
to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as
shown for urban foxes (Vulpes vulpes). For certain other species, however, home ranges reach a stable state. The present work
shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a
central place forager. That is, the animal’s movement has a random aspect but is also biased towards a fixed location, such as a
den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady
state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal’s
probability density function are derived. A programme is given for using these expressions to quantify both the strength of the
animal’s movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are
made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the
mechanisms behind allometric scaling laws of animal space use are also given.
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Introduction

Understanding the mechanisms behind animal territoriality is of

great importance to many areas of ecology [1], from conservation

biology [2] to epidemiology [3] to predator-prey dynamics [4]. A

species is called territorial if each animal, or group of animals,

constructs and defends a region of space from conspecific

neighbours or possible intruders. Maintaining a territory relies

on the animal’s ability to exclude conspecifics from the area it

occupies. Since the animal needs to spend time moving inside its

territory to carry out vital activities such as foraging, continuous

monitoring of territory boundaries is not possible. Therefore many

animals have evolved mechanisms whereby their territory is

identified by visual, auditory or olfactory signals [5], thereby

obviating the need for constant border patrolling.

In this paper we focus on a model where the signals are

olfactory (scent marks). It is based on an agent-based model of so-

called territorial random walkers, first introduced in [6], where animals

are modelled as lattice random walkers that deposit scent as they

move. The scent is only active for a finite amount of time, the so-

called active scent time, and if a lattice site contains active scent, no

other animal may move there. As a result, the terrain naturally

subdivides into territories demarcated by the absence of foreign

scent. Territories each have a boundary and if two boundaries are

juxtaposed, a border is formed. These borders never settle to a

stable state. Instead, they continually ebb and flow, albeit at a

much slower rate than the animals move. Specifically, the border

movement is subdiffusive (i.e. the variance of the border position’s

probability distribution increases sublinearly with time) since the

territories are undergoing an exclusion process [7,8], whereas the

animals move diffusively.

Here, we study a modified version of the territorial random walk

model where animals are random walkers with an attraction

towards a central place, such as a den or nest site where the

animals return occasionally [9], or a core area where animals tend

to spend most of their time [10]. Similar to the original territorial

random walk model, territories emerge whose borders are

continually fluctuating. However with central place attraction,

the mean square displacement (MSD), i.e. the variance of the

border position’s probability distribution, tends towards a finite

value, as confirmed by stochastic simulations. This causes stable

home range patterns to emerge from the territorial dynamics.

To understand better the precise nature of the emergent home

range patterns, we compare stochastic simulations of the many-

bodied non-Markovian central place attraction model with an

analytic approximation, following [11,12]. This exploits the time-
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scale disparity between the rate of animal movement and the

slower, subdiffusive territorial borders, to construct an adiabatic

approximation for the joint probability distribution of the animal

and territory border positions. The model is solved exactly in both

1D and 2D and the resulting marginal distribution for an animal’s

position allows the macroscopic properties of home range size and

overlap to be related to the microscopic details of the animals’

movement and interaction processes. In particular, our analytic

expressions can be used to infer the longevity of olfactory messages

purely by examining data on animal space use. Furthermore, since

various properties of space use are predicted to scale allometrically

[13], our theory can also be used to give insights into the

mechanisms behind these scaling laws. Our results are compared

with previous approaches to modelling conspecific avoidance with

reaction-diffusion formalisms [9].

Results

Agent-based simulations of territorial central place
foragers

Monte Carlo simulations of the territorial random walk system

were performed in both 1D and 2D where each animal has a bias

of moving towards a central place (CP) (see Methods for details).

The MSD of the territory border eventually reached a saturation

value that depended on both the strength of attraction towards the

CP and the dimensionless quantity Z1~TAS=TD1 in 1D or

Z2~TAS=TD2 in 2D, where TAS is the active scent time,

TD1~½Dr2�{1
(TD2~½Dr�{1

) is the diffusive time in 1D (2D)

representing the time it takes for an animal to move around its

territory, D is the animal diffusion constant and r the animal

population density. The parameter a~vL=D was used to measure

the dimensionless strength of CP attraction, where v is the drift

velocity towards the CP and L the distance between CPs of two

adjacent territories.

For a fixed a, the amount of border movement arises from the

ratio of the active scent time to the diffusive time, which is Z1 in

1D or Z2 in 2D (figure 1). Increasing a has the effect of reducing

the animal’s tendency to move into interstitial regions and claim

extra territory. This causes the borders to move less on average as

each animal keeps to a small core area well within its territory

most of the time. Consequently, when plotting the MSD saturation

value against Z1 or Z2, we see that the curves for higher values of

a lie below those for lower values (figure 1).

Dynamics of a central place forager within its territory: a
reduced analytic model

By taking into account the fact that the border movement is

much slower than that of the animal, we employed an adiabatic

approximation to calculate the probability distribution of an

animal inside its fluctuating territory borders (see Methods). The

simulated animals are identical, so it is sufficient just to model one

animal. Since the MSD of each territority border saturates at long

times, the animal probability distribution reaches a steady state.

Movement in 1D. By fixing the CP at the origin for

simplicity, we calculated the steady state 1D dimensionless joint

probability density function �PP1D(�xx,�LL1,�LL2) of the left (right) border

being at dimensionless positions �LL1~L1=L (�LL2~L2=L) and the

animal being at position �xx~x=L at long times, where L1, L2 and

x are dimensional parameters and L is the distance between CPs

of adjacent territories (see figure 2 for an illustration and table 1 for

details of notation). This is (see Methods for derivations, here and

elsewhere)

�PP1D(�xx,�LL1,�LL2)&½H(�LL1z1){H(�LL1)�½H(�LL2){H(�LL2{1)�

½H(�xx{�LL1){H(�xx{�LL2)�|�gg1(�LL1)�gg2(�LL2)�hh1D(�xxj�LL1,�LL2),
ð1Þ

where H(z) is the Heaviside step function (H(z)~0 if zv0,

H(z)~1 if z§0), �gg1(�LL1) (resp. �gg2(�LL2)) is the probability

Figure 1. Simulation output for systems of territorial central place foragers. The dependence of the saturation mean square displace-
ment (saturation MSD) Dx2

b~S(xb{SxbT)2T (resp. Dx2
b~S(xb{SxbT)2T) of the dimensionless territory border position xb (xb) on the dimensionless

parameters a~vL=D and Z1~TAS=TD2 (Z2~TAS=TD2) from stochastic simulation output. The notation S . . . T denotes an ensemble average
over stochastic simulations. The border movement is non-dimensionalised by dividing by L, the average distance between central places of adja-
cent territories. Panel (a) shows output from 1D simulations and panel (b) from 2D simulations. The best-fit lines for the 2D plots are
Log10(Dx2

b)~0:22{0:071Z2 for a~0:08, Log10(Dx2
b)~0:33{0:14Z2 for a~0:4, Log10(Dx2

b)~0:28{0:18Z2 for a~0:8, Log10(Dx2
b)~0:08{0:19Z2

for a~1:6, Log10(Dx2
b)~{0:54{0:20Z2 for a~2:4, and Log10(Dx2

b)~{0:93{0:19Z2 for a~4.
doi:10.1371/journal.pone.0034033.g001
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Figure 2. Diagram of the reduced analytic 1D model of territorial dynamics. The CPs are fixed at positions A, B and C (left to right). The
territory borders are intrinsically subdiffusive and have positions L1 and L2 . Each animal moves diffusively with a constant drift towards the CP and
constrained to move between the two territory borders to its immediate right and left. The position of the animal studied in the main text is denoted
by x. The animals at xA and xC are drawn purely for illustrative purposes. In the Results section, B is assumed to be at 0 and B{A~C{B~L.
doi:10.1371/journal.pone.0034033.g002

Table 1. Notation glossary.

Symbol Model Dimension Explanation

TAS S1,S2 T Active scent time: time for which a scent mark is avoided by

conspecifics.

D S1,S2,A1,A2 S2T{1 Animal diffusion constant.

r S1,S2 S{d Animal population density in dimension d .

v S1,S2,A1,A2 ST{1 Drift velocity of the animal towards its central place (CP).

L S1,S2,A1,A2 S Distance between central places of adjacent territories.

L1 , L2 A1 S Positions of the left and right borders.

K S1,S2,A1,A2 S2T{1 Territory border generalised diffusion constant.

c A1,A2 T{1 Rate at which territory sizes tend return to the mean size.

x A1 S Position of the animal in 1D.

(r,h) A2 (S,none ) Position of the animal in 2D polar coordinates.

s A2 S Radius of the territory.

a S1,S2 S Lattice spacing.

F S1,S2 T{1 Rate of jumping to the nearest neighbour.

p S1,S2 none Probability of an animal moving towards its CP next jump.

TD1 S1 T TD1~½Dr2�{1 is the 1D diffusive time.

TD2 S2 T TD2~½Dr�{1 is the 2D diffusive time.

Z1 S1 none Normalised TAS for 1D simulations, Z1~TAS=TD1 .

Z2 S2 none Normalised TAS for 2D simulations, Z2~TAS=TD2 .

a S1,S2,A1,A2 none Normalised drift velocity a~vL=D.

k A1,A2 none Normalised territory border MSD, k~K=(cL2).

�LL1 , �LL2 A1 none Dimensionless positions of the left and right boundaries,

�LL1~L1=L and �LL2~L2=L:

�xx A1 none Dimensionless position of the animal in 1D, �xx~x=L.

�rr A2 none Dimensionless radial component of the animal position in

2D, �rr~r=L.

�ss A2 none Dimensionless radius of the territory, �ss~s=L.

Glossary of the various symbols used throught the text. The second column details whether the symbol is used in the 1D simulation model (S1), the 2D simulation
model (S2), the 1D analytic model (A1) or the 2D analytic model (A2). The third column gives the dimensions of the parameter, or ‘none’ if it is dimensionless, where S

stands for space and T for time.
doi:10.1371/journal.pone.0034033.t001
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distribution of the left (right) border and �hh1D(�xxD�LL1,�LL2) is the

probability distribution of an animal being at position �xx, given that

the borders are at �LL1 and �LL2. The border probability distributions

are given by the following expressions

�gg1(�LL1)~1z2
X?
n~1

({1)ne{4p2n2k cos½2pn(�LL1{1)�, {1ƒ�LL1ƒ0 ð2Þ

�gg2(�LL2)~1z2
X?
n~1

({1)ne{4p2n2k cos½2pn�LL2�, 0ƒ�LL2ƒ1 ð3Þ

where k~K=(cL2), K is the border generalised diffusion

constant, representing the amount the borders tend to move (see

methods), and c is the rate at which the territory size tends to

return to the expected average value. To visualise these

distributions, notice that when k is relatively large, the nw1

terms are negligible, so that �gg1(�LL1)&1{2e{4p2k cos½2p(�LL1{1)�
and �gg2(�LL2)&1{2e{4p2k cos½2p�LL2�.

The probability distribution of an animal being at position �xx,

given that the borders are at �LL1 and �LL2, is the following

normalised version of a Laplacian distribution with average

displacement 1=a

�hh1D(�xxD�LL1,�LL2)~
a exp {aD�xxDð Þ

2{exp(a�LL1){exp({a�LL2)
: ð4Þ

Movement in 2D. In 2D we assumed that the territory is

circular, the CP is at the centre of the circle and the border

movement is modelled by fluctuations in the territory radius. The

steady state dimensionless joint probability density function
�PP2D(�rr,h,�ss) for the territory and the animal at long times is

�PP2D(�rr,h,�ss)&½H(�ss){H(�ss{1)�½H(�rr){H(�rr{�ss)��gg(�ss)�hh2D(�rr,hD�ss), ð5Þ

where �ss~s=L is the dimensionless radius, (�rr,h)~(r=L,h) are the

dimensionless polar coordinates of the animal, s is the radius and r
is the radial component of the animal’s coordinates. Here,

�gg(�ss)~1z2
X?
n~1

({1)ne{4p2n2k cos½2pn(�ss)�, ð6Þ

is the probability distribution of the territory radius and

�hh2D(�rr,hD�ss)~
a2 E 1(a�rr)

p½1{2a�ssE 2(a�ss){2E 3(a�ss)� , ð7Þ

is the probability distribution of the animal being at position (�rr,h)
inside a territory of radius �ss, where E n(z) is the special function

defined by E n(z)~
Ð?

1
ds½exp({zs)�=sn. The limit as z?0 of

E n(z) is infinite for n~1 and finite for nw1. For large z,

E n(z)*e{z=z so the limit as z?? is 0 for every n.

The marginal distribution of the animal
Equations (4) and (7) enabled us to calculate the marginal

probability distribution of the animal in both 1D and 2D

scenarios, where the territory can be anywhere else, by integrating

over all possible positions for the territory border. In 1D the

dimensionless marginal distribution of the walker at long times is

M1D(�xx)~

ðminf�xx,0g

{1

d�LL1

ð1

maxf�xx,0g
d�LL2 �gg1(�LL1)�gg2(�LL2)�hh1D(�xxD�LL1,�LL2), ð8Þ

and in 2D, this is

M2D(�rr,h)~

ð1

�rr

d�ss�gg(�ss)�hh2D(�rr,hD�ss): ð9Þ

The effects that the two parameters a and k have on the

marginal distribution (figure 3) can be characterised by observing

that a tends to govern the shape of the density function towards

the centre of the territory, whereas k governs the degree to which

the distribution tails off sharply (high k) or with a shallow gradient

(low k).

Expressions (8) and (9) are directly compared with those

measured from territorial central place forager simulations. It

turns out that the 1D case gives an excellent agreement for all

parameter values we tested (figures 3(a–d)). In 2D, a qualitatively

close fit is attained only when k and a are sufficiently low. For

higher k or a the borders are moving too fast for the adiabatic

approximation to be accurate (e.g. figure 3h). However for lower k
and a, the terrain contains very little interstitial area at any point

in time, so the territories are forced to tesselate the plane.

Therefore they each form more of a hexagonal than a circular

shape (e.g. figure 3e).

Obtaining active scent time from animal position data
To make use of the present theory, data must be gathered over a

sufficiently long period for the animal MSD to saturate. For

certain species, the saturation value fails to be reached during the

maximal biologically relevant time-window. Male red foxes (Vulpes

vulpes), for example, may spend parts of the autumn and winter

moving outside their territories to cuckold or disperse [14], so

territorial dynamics can only be measured reliably from the animal

positions during spring and summer when the males tend to stay

within their territories. During those two seasons, the tendency to

return to the CP is so weak that the animal MSD continues to

increase slowly, never settling [6]. In such cases, it is necessary to

use methods developed in [6] to analyse the animal territorial

system.

However, if the animal MSD does saturate then the marginal

distribution (9) can be fitted to the non-dimensionalised distribu-

tion of position locations from the data in order to obtain the

parameters a and k. From the theory, the saturation MSD

D�ss2(k)~S(�ss{S�ssT)2T of the territory radius can then be derived

from the equation

D�ss2(k)~

ð1

0

d�ss(�ss{
1

2
)2�gg(�ss)~

1

12
z
X?
n~1

({1)n exp({4p2n2k)

p2n2
, ð10Þ

which allows the MSD of the territory radius �ss to be computed

from k. The MSD of �ss is the analogue, in the analytic model, of

the dimensionless territory border MSD Dx2
b~S(xb{SxbT)2T

from the simulation model, so we equate Dx2
b and D�ss2(k). By

using the appropriate curve from the simulation output (figure 1b)

related to the value of a calculated from the data, a value for

Z2~TASDr is obtained, from which TAS can be derived.

In summary, the active scent time may be obtained from data

on animal locations by using the following programme.

Territorial Dynamics for Central Place Foragers
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1. Fit equation (9) to the data in order to obtain values of a and k.

2. Use this value of k to find the theoretically expected saturation

value of the MSD D�ss2(k) via equation (10).

3. Note that D�ss2(k) from the analytic model is equal to Dx2
b from

the simulation model.

4. Identify the best-fit line from figure 1b for the value of a found

in step 1.

5. Use this line, together with the value of Dx2
b from step 3, to

determine the Z2-value from figure 1b for the data being

studied.

6. Assuming the user also has values for D and r from the data,

TAS can then be derived from Z2~TASDr.

Home range patterns and relations to allometry
Since the animal probability distribution reaches a steady state,

it is possible to calculate both the size of the resulting home ranges

and the degree to which they overlap. By using the 95% MCP

method [15], the dimensionless radius of the home range, after

dividing by the mean distance between CPs, is given by R95%,

implicitly defined by the following equation

2p

ðR95%

0

d�rr�rrM2D(�rr,h)~0:95: ð11Þ

This allowed us to plot R95% as various functions of k, one for

each a (figure 4a). Each of these can be approximated by a

sigmoidal function of K~Log 10(k). Specifically, R95%&
Qzn=f1zexp({f½K{g�)g, where Q&0:495{0:010a,

n&0:278{0:048a, f&3:18 and g&3:139{0:025a (figure 4a).

For certain values of k and a, the value of R95% is less than 0:5,

meaning that gaps arise between adjacent territories. These so-

called buffer zones have been observed between wolf (Canis lupus)

territories [4] as a safe place for wolf prey, such as white-tailed

deer (Odocoileus virginianus), to occupy.

The allometric predictions of [13] show that the fraction of

exclusively used area E is approximately proportional to M{j

where j&1=4 and M is the mass of a single animal. In our model

E~(1{R95%)2=R2
95% so allometric studies predict

(1{R95%)=R95%!M{j=2. By using the values of j fitted from

the large data sets in [13], the value of R95% can be estimated for

an animal of given mass. Using the trend lines from the simulation

plots in figure 1b and equation (10) allows k and a to be related to

Z2, thus estimating how Z2 scales with M, as shown in figure 4b.

In [13] the tendency for larger animals to have a lower

proportion of exclusive area in their home ranges was explained

intuitively, by noticing that they are less efficient than smaller

animals in patrolling their territory to deter conspecifics. That is,

the time it takes for a larger animal to get around its territory is

greater than that of a smaller animal. In our model, this means the

diffusive time, TD2, increases with mass. Our results show that this

ability to deter conspecifics is also driven by an additional factor:

the active scent time. The ability to maintain exclusive area in fact

arises from the ratio of TAS to TD2. Figure 4b shows that a smaller

animal’s ability to maintain a higher proportion of exclusive space

use arises from maintaining a higher ratio of TAS to TD2, not just a

lower diffusive time.

Comparison with previous approaches
Territoriality in animals with central place attraction has been

studied previously in [4] using a reaction-diffusion formalism,

which was developed further in [9]. Although both that model and

the one presented here use conspecific avoidance mediated by

scent marking as the mechanism of territory formation, the present

Figure 3. Comparison of the many-bodied simulation system and the reduced analytic model. Saturation marginal probability
distributions from simulations of systems of territorial central place foragers are overlaid on the same distributions (equations 8 and 9) from the
reduced analytic models. Panels (a–d) compare the two distributions for the 1D system. Dashed lines denote the simulation output and solid lines the
analytic approximation. The animal’s central place (CP) is at position 0, whereas CPs of conspecifics exist at positions 21 and 1. The distribution
decays to 0 at the conspecific CPs, where the animal cannot tread. The values used were (a) k~0:0017, a~4:0, (b) k~0:0014, a~0:80 (c) k~0:00033,
a~4:0 and (d) k~0:0040, a~0:80. Panels (e–g) compare the two distributions for the 2D system. The black contours show the deciles (i.e. 10%, 20%,
30% etc.) of the height of the probability distribution for the simulation system. The red contours show the same quantities for the analytic
approximation. The values used were (e) k~0:011, a~0:80, (f) k~0:0014, a~4:0, (g) k~0:022, a~0:80 and (h) k~0:016, a~4:0. As we increase k or
a, the effect of the adiabatic approximation becomes more apparent, since each red contour is further away from the respective black contour. This is
due to the fluctuations of the territory border being more pronounced for higher k or a.
doi:10.1371/journal.pone.0034033.g003
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model is built from the individual-level interaction processes,

whereas the reaction-diffusion model relies on a mean-field

approximation for the scent mark response. Despite the very

different natures of their construction and the resulting expres-

sions, we compare the two models by examining the conditions

under which they are numerically similar.

In the reaction-diffusion model, u(�xx,t) and w(�xx,t) are the

dimensionless probability density functions for the left and right

animals respectively. In addition, p(�xx,t) and q(�xx,t) denote the

dimensionless densities of the scent of the left and right animals

respectively. The dimensionless diffusion constant of each animal

is given by d and the dimensionless advection coefficient

controlling the strength of motion away from conspecific scent

and towards the CP is c. The model also contains a parameter

controlling the over-marking response rate: that is, the tendency

for animals to scent-mark more having encountered foreign scent.

However, since the animals in the model described in the present

paper are counter-markers rather than over-markers [16], that is

they mark next to conspecific scent but they do not increase

marking rate as a response to scent, this parameter is set to 0. With

these conditions, the reaction-diffusion system described in [9] has

the following dimensionless steady state solution

du(�xx)

d�xx
~{bu(�xx)½2{u(�xx)�, dw(�xx)

d�xx
~bw(�xx)½2{w(�xx)�, ð12Þ

where 0ƒ�xxƒ1, together with the probability conservation

conditions

ð1

0

d�xxu(�xx)~

ð1

0

d�xxw(�xx)~1: ð13Þ

Equation (12) is equation (6.11) in [9]. The dimensionless

parameter b is a function of 5 dimensional parameters,

b~c’l=(mLD), where L and D are the same values as used

elsewhere in the present study, l is the scent marking rate for the

individual or pack, m is the rate of scent-mark decay and c’ is the

strength of attraction towards the CP. The parameter c’ is not the

same as the drift velocity v from our model since it has units of

space3=time rather than space=time. Indeed, the drift velocity at

any point �xx in the reaction-diffusion model is proportional to the

strength of foreign scent at �xx (see equations (4.5) and (4.6) in [9]),

whereas in the model studied in the present paper the magnitude

of the drift velocity is constant throughout space.

The way the rate of scent deposition is modelled also differs

between the two approaches. In the reaction-diffusion model, the

rate is independent of the magnitude of the animal’s diffusion

constant. The biological implication being that as the animal’s

speed increases, consecutive scent marks will be deposited further

apart. In our model, the scent marks are deposited every time the

animal has moved a distance a (the lattice spacing), regardless of its

speed. The reason for our choice is that it is advantageous for

animals to ensure that they deposit territorial messages at regularly

spaced intervals so that they leave no gaps in the territory

boundaries, which might allow conspecifics to intrude.

Scent decay is also modelled in different ways in the two models.

In the reaction-diffusion model the scent decays exponentially,

whereas we assume scent is ignored after a fixed period of time

(TAS ). Whilst exponential decay of scent makes sense regarding the

decay of the chemicals that produce the odour, a conspecific may

ignore a scent mark it can still smell, if the odour suggests that the

mark is old and the territory is no longer being defended. For

example, such behaviour has been reported for brown hyaenas

(Hyaena brunnea), whose scent marks may still be detectable by

conspecifics over a month later, but who tend to ignore scent that

is more than about four days old [17].

Making numerical comparisons of our model with the reaction-

diffusion model required a further reduction of our 1D analytic

model, since the 1D reaction-diffusion model only represents

animal movement in the right-hand (left-hand) half of the left-hand

(right-hand) territory. Focussing on the left-hand territory, this

Figure 4. Home ranges and allometry. Panel (a) shows how the radius R95% of the normalised (by dividing by the mean distance between CPs)
95% minimum convex polygon home range depends on k and a in the 2D analytic model. The various shapes (circles, squares, crosses etc.) show the
exact values and the solid lines show the least-squares best-fit sigmoidal curves. Notice that whenever R95%v0:5, a buffer zone appears between
adjacent territories. The proportion of exclusive area E~(1{R95%)2=R2

95% scales with mass [13] so this value is plotted in panel (b) against the
dimensionless parameter Z2~TASDr for various a. Again, solid lines are derived from the best-fit sigmoidal curves whilst the points denoted by
various shapes show exact values.
doi:10.1371/journal.pone.0034033.g004
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required us to simplify our model by fixing �gg1(�LL1)~d(�LL1) where

d(z) is the Dirac delta function. The resulting marginal

distribution for the position of the animal in dimensionless

coordinates is

MR(�xx)~H(�xx)

ð1

�xx

d�LL2�gg2(�LL2)�hh1D(�xxD�LL1~0,�LL2): ð14Þ

This expression is compared with the distribution u(�xx) from the

reaction-diffusion model, whereas w(�xx) is compared with

MR(1{�xx). To find the best fit, the square of the difference

between the curves of ln½u(�xx)� and ln½MR(1{�xx)� is minimised

(figure 5).

Though the two models are qualitatively very different, if a and

k are both very small, it is possible to find a value of b that fits

closely (figure 5a). However, if either a or k are increased, even the

best fit value of b gives a qualitatively different curve. Conversely,

for lower values of b, the best fit curve to the model studied here

becomes increasingly different to the curve from the reaction-

diffusion model (figure 5b).

To explain the similarities in these parameter regimes, the limit

case where the scent marks never decay is examined, so that

TAS?? and k?0. If in addition a?0, the marginal distribution

MR(�xx) tends towards a step function MR(�xx)~2 if �xxƒ1=2 and

MR(�xx)~0 if �xxw1=2. The analogous limit in the reaction-diffusion

model is m?0 so that b??. In this limit case, u(�xx) and w(�xx) are

step functions. By taking the limit numerically as b??, one

observes that u(�xx)~2 if �xxƒ1=2 and u(�xx)~0 if �xxw1=2 so that

u(�xx) and MR(�xx) coincide. Similarly, w(�xx) and MR(1{�xx) coincide

in this limit.

Whilst our model has two parameters, as opposed to one in the

reaction-diffusion model, it is possible to collapse our model to one

parameter by formally taking the limit a?0 in equation (14),

giving the following expression

MR(�xx)~½H(�xx){H(�xx{1)�

2
X?
n~1

({1)ne{4p2n2k2 ½Ci (2pn){Ci (2�xxpn)�{ln(�xx)

( )
,

ð15Þ

where Ci (z)~{
Ð?

0
dt cos(t)=t is the cosine integral. This is

precisely the limit where the reaction-diffusion model tends to

agree best with ours. Plots of equation (15) can be found in the

insets (solid lines) of figure (5) for those cases where a~0.

Discussion

A central place foraging model with scent-mediated conspecific

avoidance has been constructed where the mechanisms of both the

animal movement and the interactions are defined at the level of the

individual. Territories naturally arise with slowly fluctuating borders

whose probability distribution tends towards a steady state. Stable

home range patterns emerge, easily enabling us to quantify the

home range size and overlap as a function of the underlying

individual-level movement and interaction mechanisms. Whilst this

is not the first mathematical model of territoriality in central place

foragers, nor is it the first where the movements are built

mechanistically from individual-level processes, [9] it is the first

where the conspecific avoidance mechanism is built from interactions

between individual agents. Though certain predictive inferences

have been made using previous approaches, for example regarding

what happens when a territory dissolves [18], ours is the first where

predictive inferences can be made about the mechanisms of

territorial interaction events, in particular the active scent time,

from the patterns of animal space-use.

Figure 5. Comparison with a previous model of territory formation. The parameter b from the reaction-diffusion model introduced in [9]
(see also main text) is compared with the parameters a and k from the 1D analytic model introduced here. Panel (a) shows the b-value that gives the
best-fit animal marginal distribution curve for each given value of a and k. The insets compare the probability distributions for particular values of a
and k, where the solid lines represent our model and the dashed lines the reaction-diffusion model. The values used are (i) k~0:0007, a~0:0001, (ii)
k~0:0007, a~1, (iii) k~0:04, a~0:0001, (iv) k~0:04, a~1. Panel (b) shows the best fit k-value for a given b. The b-values used for the insets are (i)
b~3, (ii) b~10, (iii) b~35. Low values of a always give a better fit to a given marginal distribution from the reaction-diffusion model than higher
values and do not affect the value of k that gives the best fit. Therefore we set a~0 when performing the fitting for panel (b). Low values of a and k
together with high values of b tend to give rise to good fits, but outside this range the two models show quite different results.
doi:10.1371/journal.pone.0034033.g005
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Although deterministic reaction-diffusion equations are in

general viable approximations to represent spatio-temporal

stochastic processes, they are not well suited to model systems in

which the individual components are present in low concentra-

tions (e.g. [19,20]). This is precisely the situation of decaying scent

marks in our model, which are ignored by conspecifics beyond the

time TAS. When that happens, the probability density associated

with that scent location is identically zero. In other words, in a

scent-mediated interaction process the extinction probability for

the scent is non-negligible. The system is intrinsically stochastic,

and deterministic approximations, where the occupation proba-

bility is coupled to a scent mark profile, may not cope with the

discrete nature of the interaction events. A reaction-diffusion

formalism may thus provide results that are in complete

disagreement with the stochastic description (see e.g. [21,22] in

the spatial ecology literature). The particular reaction-diffusion

model studied in [9] has been shown here to give very different

results to our model, away from the limiting case where scent

marks never decay. The similarity in this limit does not come as a

surprise, since in this case the scent is never present in low

concentrations.

Away from this limit, the choice of model that is most

appropriate for a particular data set would depend on both the

species involved and the questions to be answered. If one is

interested in quantifying both scent marking mechanisms and

animal movement processes, a drawback of the reaction-diffusion

model is that the dimensionless parameter b governing the animal

space use distribution is a product of 5 (dimensional) parameters,

including both the strength of central place attraction and details

of the scent marking process. This makes it very difficult, if not

impossible, to quantify the scent marking mechanism purely by

fitting data to the animal probability density function. On the

other hand, the present study gives a clear programme for

inferring both the strength of the central place attraction and the

active scent time by fitting data on animal space use.

This programme for inferring TAS from animal location data

was not developed in previous agent-based studies, since the

probability distribution of the animal positions never reaches a

steady state [6]. In such systems, it is necessary to pick a

biologically meaningful time-window over which to measure the

extent of home range overlap and thus infer the nature of the

border movement and, in turn, the active scent time. This

procedure is required for analysing certain animal populations,

such as urban red foxes, whose territories, in certain circumstanc-

es, may not reach a steady state. However, if a steady state is

reached, as shown by a saturating animal MSD, then some aspect

of the underlying movement process must be keeping the animal

from continually spreading out across the terrain. Such stable

home ranges have been reported in a number of species (see e.g.

[23]) from wolves (Canis lupus) and coyotes (Canis latrans) [9] to

hispid cotton rats (Sigmodon hispidus) [24], cane mice (Zygodontomys

brevicauda) [26] and Baird’s tapirs (Tapirus bairdii) [25]. One possible

mechanism for ensuring this stability is central place attraction,

studied here. It may also be possible that some form of memory

mechanism keeps the animal in familiar environments and thus

causes the probability distribution to saturate [27,28].

Our study also gives insights into the mechanisms behind the

allometric scaling of exclusive space use. Previous studies had

interpreted the observed scaling laws as a consequence of a greater

ability for smaller animals to cover their territory regularly,

compared to larger animals. However, by quantifying how the

scaling arises from the ratio between the active scent time and the

territory coverage time, we have shown that the longevity of

territorial messages is also a fundamental quantity. Future studies

on allometric scaling of space use should also take into account this

mechanism of interaction.

Methods

The stochastic simulation model
The 1D simulations consisted of 2 animals on a finite lattice with

periodic boundary conditions. The central places (CPs) for each

animal were uniformly distributed at a distance L~aN apart,

where a is the lattice spacing and N a positive integer. In 2D, 30

animals in a rectangular terrain with periodic boundary conditions

were simulated. The CPs were placed at the centroids of a

hexagonal lattice, modelling the fact that animal territories tend to

be roughly hexagonal in shape [29]. Adjacent CPs were separated

by a distance of L. The simulated animals deposited scent at every

lattice site they visit, which remained for a time TAS, the active scent

time. Animals were unable to visit sites that contained scent of

another animal. Besides that constraint, at each step an animal

moved to an adjacent site at random but its movement was biased

towards the CP. In 1D, this meant that there was a probability of

pw1=2 of moving towards the CP and 1{p of moving away. In

2D, the movement probabilities were as follows

Left :
1

4
1z(1{2p)

m{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{mc)2z(n{nc)2

q
2
64

3
75,

Right :
1

4
1{(1{2p)

m{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{mc)2z(n{nc)2

q
2
64

3
75,

Up :
1

4
1{(1{2p)

n{ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{mc)2z(n{nc)2

q
2
64

3
75,

Down :
1

4
1z(1{2p)

n{ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{mc)2z(n{nc)2

q
2
64

3
75,

ð16Þ

where (m,n) is the position of the animal and (mc,nc) the position of

the CP. These probabilities were chosen so that in the continuum

limit, they reduce to the form that gives the correct localising

tendency in the Holgate-Okubo model (see the section ‘Reduced

analytic model in 2D’). In particular, they are independent of the

distance the animal is away from the den site. This can be shown by

replacing m{mc by C(m{mc) and n{nc by C(n{nc) in

equations (16), for some non-zero constant C, and noticing that

all the C-values cancel.

Simulations were run until the MSD of the border had reached a

saturation value. Each 1D simulation result was an average of 1,000

simulation runs. In 2D, it was only necessary to average over 100

runs owing to the fact that 15 times as many animals were simulated

per run. The simulations were coded in C and compiled on

Windows XP OS. To obtain a single saturation MSD value for the

2D simulations took an average of 4 hours 40 minutes CPU time

using a 3.0 GHz processor in a 2.96 GB RAM desktop computer.

The reduced analytical model in 1D
To understand the nature of the animal’s movement within its

territory borders, we considered a simplified analytic model that

uses an adiabatic approximation similar to [11] because the animal

moves at a much faster rate than the borders. This meant that the

joint probability distribution of the animal and the borders could be
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decomposed as P1D(x,L1,L2,t)&Q(L1,L2,t)W (x,tDL1,L2) where

Q(L1,L2,t) is the probability distribution of the borders to be at

positions L1 and L2 at time t, and W (x,tDL1,L2) is the probability

distribution of an animal to be at position x at time t when

constrained to move between the borders at L1 and L2.

Following [11], the borders were modelled using a Fokker-Planck

formalism, with time-dependent diffusion constant modelling the

subdiffusive nature of the border movement, and quadratic

potentials modelling the spring forces (figure 2). Since the CP at B
separates L1 from L2, we write Q(L1,L2,t)~Q1(L1,t)Q2(L2,t)
where Q1(L1,t) and Q2(L2,t) are the probability distributions of L1

and L2 respectively. These are governed by the following equations

LQ1(L1,t)

Lt
~

Q(t) K
L2Q1(L1,t)

LL2
1

z
L

LL1
c L1{

AzB

2

� �
Q1(L1,t)

� �( )
,

LQ1(L1,t)

LL1
jL1~A~

LQ1(L1,t)

LL1
jL1~B~0,

ð17Þ

LQ2(L2,t)

Lt
~

Q(t) K
L2Q2(L2,t)

LL2
2

z
L

LL2

c L2{
BzC

2

� �
Q2(L2,t)

� �( )
,

LQ2(L2,t)

LL2
jL2~B~

LQ2(L2,t)

LL2
jL2~C~0,

ð18Þ

where A is the position of the CP to the left of L1, B is the position of

the CP between L1 and L2, C is the position of the CP to the right of

L2, KQ(t) is the time-dependent diffusion constant and

cq(t)½L1{(AzB)=2�2=4 (resp. cQ(t)½L2{(BzC)=2�2=4) is the

quadratic potential for each spring connected to L1 (L2). It ensures

that the border L1 (L2) fluctuates around an average position of

½AzB�=2 (½BzC�=2). Notice that there are two springs connected

to L1 (L2), so that the total resulting potential is

cQ(t)½L1{(AzB)=2�2=2 (resp. cQ(t)½L2{(BzC)=2�2=2). As usual

for Fokker-Planck equations (see e.g. [31]), this potential appears in

equation (17) (resp. 18) after having been differentiated with respect

to L1 (L2), to give cQ(t)½L1{(AzB)=2� (resp.

cQ(t)½L2{(BzC)=2�). The boundary conditions in equations (17)

and (18) ensure that the borders cannot cross over the CPs, since

each CP must remain in its territory.

K and c can be measured directly from the simulation model (see

e.g. [11]). However, in the steady state solutions (equations 2 and 3),

K and c collapse to a single parameter k~K=(cL2). The k
parameter can be derived by first measuring the boundary’s

saturation MSD from the simulations, and then using equation (10).

Equations (17) and (18) can be solved using the method of

characteristics [30]. The general solution to (17) is

Q1(L1,t)~

exp
(L1{L1)2

b(t)

� �
ffiffiffiffiffiffiffiffiffiffi
pb(t)

p , ð19Þ

where L1(t)~(AzB)=2zexp({G(t)½L1,0{(AzB)=2�), b(t)~

(4K=c)f1{exp½{2c
Ð t

0
dsQ(s)�g, G(t) is defined so that

G’(t)~cQ(t) and L1,0 is the initial value for L1 at time t~0. By

using the method of images [32] to take account of the boundary

condition and assuming, for simplicity, that L1,0~(AzB)=2, we

arrive at the following solution

Q1(L1,t)~½H(L1{A){H(L1{B)�g1(L1,t)

g1(L1,t)~
X?

n~{?

exp {
½L1z2n(B{A){(AzB)=2�2

b(t)

 !
zexpð{ ½L1{2Az2n(B{A)z(AzB)=2�2

b(t)

!
ffiffiffiffiffiffiffiffiffiffi
pb(t)

p :

ð20Þ

Similarly,

Q2(L2,t)~½H(L2{B){H(L2{C)�g2(L2,t)

g2(L2,t)~
X?

n~{?

exp {
½L2z2n(C{B){(BzC)=2�2

b(t)

 !
zexp {

½L2{2Bz2n(C{B)z(BzC)=2�2

b(t)

 !
ffiffiffiffiffiffiffiffiffiffi
pb(t)

p :

ð21Þ

By making use of the Poisson summation formula [32],

equations (20) and (21) can be re-written as follows

g1(L1,t)~
1

B{A

f1z
X?
n~1

exp {
p2n2b(t)

4(B{A)2

� �
½cos

pn(2L1zA{B)

2(B{A)

� �
z

cos
pn(2L1z3AzB)

2(B{A)

� �
�g,

ð22Þ

g2(L2,t)~
1

C{B

f1z
X?
n~1

exp {
p2n2b(t)

4(C{B)2

� �
½cos

pn(2L2zB{C)

2(C{B)

� �
z

cos
pn(2L2z3BzC)

2(C{B)

� �
�g:

ð23Þ

Since the territories move as tagged objects in a single file

diffusion process [6], we have
Ð t

0
dsQ(s)*t1=2 in the 1D system [8].
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Therefore the limit as t?? of b(t) is b(t~?)~4K=c. Taking

this limit in equations (20) and (21) gives steady state solutions.

Furthermore, by setting B~0, B{A~C{A~L, and using

dimensionless variables �LLk~Lk=L, �xx~x=L, �QQk(�LLk)~
LQk(Lk,t~?), �ggk(�LLk)~Lgk(Lk,t~?) for k~1,2 and

k~K=(cL2), we obtained expressions (2) and (3), displayed earlier

in the Results section.

To calculate the animal probability distribution W (x,tDL1,L2),
we began by finding the continuous-space limit of the simulation

model in the case where the animals and their CPs are infinitely

far apart so that they never interact. This corresponds to

W (x,tDL1~?,L2~?), written as W?(x,t) to ease notation.

The master equation for an animal in this limiting case is

LU(n,t)

Lt
~2Fp½U(nz1,t){U(n,t)�{

2F (1{p)sgn(n{nc)½U(n,t){U(n{1,t)�,
ð24Þ

where U(n,t) is the probability of the animal being at position n at

time t, nc is the position of the CP, F is the jump rate between

adjacent lattice sites, and sgn(z)~1 (sgn(z)~0, sgn(z)~{1) if

zw0 (z~0, zv0). This can be written as

LU(n,t)

Lt
~Fa2 1

a

U(nz1,t){U(n,t)

a
{

U(n,t){U(n{1,t)

a

� �� �
z

sgn(n{nc)aF(2p{1)
U(n,t){U(n{1,t)

a
z

sgn (n{nc)aF(2p{1)
U(nz1,t){U(n,t)

a
:

ð25Þ

The continuum limit of (25) can be found by taking the limits as

a?0, F??, n??, nc?? and p? 1
2

such that D~a2F , x~an,

xc~anc and v~2aF(2p{1) [33,34]. Physically, D is the diffusion

constant of the animal, v the drift velocity towards the CP, x the

position of the animal and xc the position of the CP. This procedure

leads to the 1D Holgate-Okubo localising tendency model [35,36]

LW?(x,t)

Lt
~D

L2

Lx2
W?(x,t){v

L
Lx
½x̂xW?(x,t)�, ð26Þ

where x̂x~{1, 0 or 1 if xwxc, x~xc or xvxc respectively. This

has a non-trivial steady state solution [9], proportional to

exp({vDx{xcD=D). Since the animal is constrained to move

between the borders at L1 and L2, the probability distribution must

be zero for xvL1 and xwL2. As the solution is a steady state, the

flux across L1 and L2 is automatically zero so it suffices to ensure

that the integral of the probability distribution between L1 and L2 is

equal to 1. This leads to the steady state solution W (x,t~?DL1,L2)
for the Holgate-Okubo localising tendency model within fixed

borders

W (x,t~?DL1,L2)~½H(x{L1){H(x{L2)�h(x,?DL1,L2),

h(x,t~?DL1,L2)~

v exp {
vDx{xcD

D

� �

D 2{e
v(L1{xc)

D {e{
v(L2{xc)

D

� � : ð27Þ

Using dimensionless variables a~vL=D, �xx~x=L, �LL1~L1=L,
�LL2~L2=L, �WW (�xx)~LW (x,t~?), �hh(�xx)~Lh(x,t~?) and setting

xc~0 for simplicity, we obtain equation (4) from the results

section.

The reduced analytical model in 2D
In 2D we modelled each territory as a circle with fluctuating

radius and the CP at the centre of the circle, assumed to be at the

origin for simplicity. As in the 1D scenario, we used an adiabatic

approximation so that P2D(r,h,s,t)&Q(s,t)W (r,h,tDs), where

P2D(r,h,s,t) is the joint probability distribution of the animal to

be at position (r,h) in polar coordinates at time t and the territory

radius to be s. Q(s,t) is the probability of the territory radius to be

s at time t and W (r,h,tDs) is the probability of the animal to be at

position (r,h) at time t in a territory of fixed radius s.

Similar to the 1D scenario, Q(s,t) was modelled using a Fokker-

Planck formalism with the radius fluctuating around an average

value of L=2, where L is the distance between adjacent CPs. As

such, it can be calculated using the methods of the previous

subsection to be

Q(s,t)~½H(s){H(s{L)�g(s,t)

g(s,t)~
1

L
f1z

X?
n~1

exp {
p2n2b(t)

4L2

� �

½cos
pn(2s{L)

2L

� �
zcos

pn(2szL)

2L

� �
�g:

ð28Þ

As the territories are tagged particles in a 2D exclusion process

[6], we have
Ð t

0
dsQ(s)*t= ln (t) [7]. Taking the limit t?? in

equation (28) gives a steady state solution. This gives rise to the

expression (6) from the main section by using dimensionless

variables �ss~s=L, �QQ(�ss)~LQ(s,t~?), �gg(�ss)~Lg(s,t~?).

Following our methods in 1D, we calculated W (x,tDL1,L2) by

first taking the continuum limit of the master equation governing

the movement of an animal unconstrained by other territories (i.e.

L1~L2~?). This master equation is

LUm,n(t)

Lt
~

Ff½Umz1,n{Um,n� 1z(2p{1)
m{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q

2
64

3
75z

½Um{1,n{Um,n� 1{(2p{1)
m{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q

2
64

3
75z

½Um,nz1{Um,n� 1z(2p{1)
n{ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q

2
64

3
75z

½Um,n{1{Um,n� 1{(2p{1)
n{ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q

2
64

3
75g,

ð29Þ

where Um,n(t) is the probability of the animal being at position

(m,n) at time t and (mc,nc) is the position of the CP. To find the

continuum limit, this is re-written as follows
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LUm,n(t)

Lt
~a2F

1

a

Umz1,n{Um,n

a

� �
{

Um,n{Um{1,n

a

� �� �
z

aF (2p{1)
m{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q Umz1,n{Um,n

a

� �
z

Um,n{Um{1,n

a

� �
za2F

1

a

Um,nz1{Um,n

a

� �
{

Um,n{Um,n{1

a

� �� �
z

aF (2p{1)
n{ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m{mc)2z(n{nc)2
q Um,nz1{Um,n

a

� �
z

Um,n{Um,n{1

a

� �
,

ð30Þ

and then the limit as a?0, F??, m??, mc??, n??,

nc?? and p? 1
2

such that D~a2F , x~ma, xc~mca, y~na,

yc~nca and v~2aF (2p{1) is found. This procedure gives the

2D Holgate-Okubo localising tendency model

LW?(r,h,t)

Lt
~D+2W?(r,h,t){v+½x̂xW?(r,h,t)� ð31Þ

where x̂x is the unit vector pointing from the animal at (x,y)
towards the CP at (xc,yc), or the zero vector if (x,y)~(xc,yc), and

W?(r,h,t) is the probability distribution W (r,h,tDL1,L2) in the

limit as L1,L2?? where there is no interaction with other

animals. As in 1D, (31) has a non-trivial steady state solution [9],

which is proportional to E 1(vr=D). The boundary condition

ensuring that rƒs, so that the animal is within its territory, is

imposed by normalising the steady state solution so that the

integral over the circle, of radius r centred at 0, is equal to 1. This

leads to the following steady state solution W (r,h,t~?Ds) for

W (r,h,tDs)

W (r,h,t~?Ds)~½H(r){H(r{L)�h(r,h,?Ds),

h(r,h,t~?Ds)~
v2 E 1(vr=D)

pD2½1{2(vL=D)E 2(vL=D){2E 3(vL=D)� :
ð32Þ

By using dimensionless variables a~vL=D, �rr~r=L,
�hh(�rr,hD�ss)~L2h(r,h,t~?Ds), we obtained equation (7) from the

results section.
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