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Abstract

Hsc70 is a conserved ATP-dependent molecular chaperone, which utilizes the energy of ATP hydrolysis to alter the folding
state of its client proteins. In contrast to the Hsc70 systems of bacteria, yeast and humans, the Hsc70 system of C. elegans
(CeHsc70) has not been studied to date. We find that CeHsc70 is characterized by a high ATP turnover rate and limited by
post-hydrolysis nucleotide exchange. This rate-limiting step is defined by the helical lid domain at the C-terminus. A certain
truncation in this domain (CeHsc70-D545) reduces the turnover rate and renders the hydrolysis step rate-limiting. The
helical lid domain also affects cofactor affinities as the lidless mutant CeHsc70-D512 binds more strongly to DNJ-13, forming
large protein complexes in the presence of ATP. Despite preserving the ability to hydrolyze ATP and interact with its
cofactors DNJ-13 and BAG-1, the truncation of the helical lid domain leads to the loss of all protein folding activity,
highlighting the requirement of this domain for the functionality of the nematode’s Hsc70 protein.
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Introduction

Hsc70 and its heat-shock inducible homolog Hsp70 are ATP-

dependent molecular chaperones which bind unfolded proteins

[1]. They participate in various cellular processes as diverse as

protein de novo folding, protein translocation across organelle

membranes and uncoating of clathrin-coated vesicles [2–8]. In

eukaryotes, several cytosolic variants of Hsp70-like proteins with

distinct features are encoded. Some, like the yeast proteins Ssb1,

Ssb2 and Ssz1, reside at the ribosome as part of the ribosome-

associated complex (RAC), while others, such as Hsc70s and the

heat-inducible Hsp70s are assumed to be diffusible factors in the

cytosol. Two Hsc70-homologs (Ssa1 and Ssa2) are expressed in

budding yeast at normal growth conditions and two Hsp70s (Ssa3

and Ssa4) are expressed only in response to stress. The

simultaneous knockout of SSA1 and SSA2 is lethal at elevated

temperatures [9], but the general redundancy of Hsp70/Hsc70-

proteins complicates analysis in vivo. While the mammalian system

is even more complex [10], in C. elegans only one Hsc70-like

protein, HSP-1, exists (termed CeHsc70 here) and its three Hsp70-

proteins (HSP-70, F44E5.4, F44E5.5) are only expressed in

response to heat-shock [11,12]. The RNAi-mediated knockdown

of CeHsc70 has dramatic consequences, leading to increased

protein aggregation [13] and arrested development at early larval

stages [14,15], confirming that essential and non-redundant

cellular functions are performed by this homolog of Hsc70.

Hsc70 chaperones generally are arranged in three domains: an

N-terminal nucleotide binding domain (NBD), a substrate binding

middle domain (SBD), and a C-terminal helical domain, which

covers the substrate binding groove of the SBD [16,17]. While the

helical lid domain diverges strongly between eukaryotic and

prokaryotic species, the NBD and SBD are highly conserved.

Biochemical studies of the bacterial Hsp70-protein DnaK

described many aspects of the ATP-hydrolysis mechanism and

defined a hydrolysis cycle, which is coupled to the substrate

processing activity: An ATP-bound state of Hsp70 binds substrates

weakly. After ATP hydrolysis, the substrate is efficiently bound by

ADP-Hsp70. This complex is resolved slowly by the release of

ADP and substrate (reviewed in [3,4]). All Hsp70 domains are

supposedly participating in and communicating during this

process [18–20]. While it was shown that the helical lid domain

covers the substrate binding groove of the SBD [21] and is

important for efficient protein folding [22] the mechanistic

features of its involvement are not fully understood yet.

Two distinct types of cofactors influence the ATPase cycle in all

species (reviewed in [23,24]). J-domain containing proteins, like

mammalian Hsp40s or bacterial DnaJ, accelerate the hydrolysis

reaction of Hsp70s [25]. Nucleotide exchange factors (NEFs), like

bacterial GrpE or human Bag1, specifically facilitate the release of

the nucleotide after hydrolysis [26–28]. The combined action of

these proteins strongly accelerates ATP turnover of Hsp70
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proteins [27,29]. This acceleration has been observed for both, the

bacterial system, composed of DnaK, DnaJ and GrpE [27,28,30–

32] as well as the eukaryotic system, consisting of Hsp70, Hsp40

and Bag1 [29]. For bacteria, the full system of DnaK, DnaJ and

GrpE is required to efficiently refold substrate proteins [30,33,34].

Contrarily, in eukaryotes the participation of Bag1 and other

NEFs in the folding process has been reported to be paradoxically

both: unfavorable [35,36] or supportive [37,38].

Despite its importance as a model of genetics and developmen-

tal biology, the Hsc70 system of Caenorhabditis elegans has not been

analyzed in vitro to date. Using bioinformatics, the encoded Hsp70-

like proteins can be assigned to the various compartments they

work in [39]: One mitochondrial Hsp70-protein (HSP-6), two ER-

based homologs (HSP-3 and HSP-4) and one ribosomally attached

Hsp70-protein (F11F1.1) exist in addition to the cytosolic Hsc70/

Hsp70 proteins mentioned before. For the sole and essential

CeHsc70 protein only few studies provide biochemical and

structural data [14,40]. With BAG-1, the CeHsc70 system features

a shortened, distantly related, non-essential homologue of human

Bag1 [41,42]. One Sis1 (or DNAJB) homolog can be found in C.

elegans: DNJ-13. It appears to be essential [42]. In this study, we

address the biochemical characteristics of nematodal Hsc70 and its

cofactors DNJ-13 and BAG-1. In this context, we also investigate

the contribution of the helical lid to the regulation of the high

turnover rate and the rate-limiting step of the CeHsc70 ATPase,

the protein’s affinity towards cofactors, and its ability to refold

proteins.

Results

The high ATPase activity of CeHsc70 is limited by
nucleotide release

We purified recombinant His6-CeHsc70 (referred to as

CeHsc70 throughout the manuscript) and studied the ATPase

cycle by a combination of steady-state and single-turnover

experiments. Using an ATP-regenerating system we determined

a kcat of 0.18 min21 for the steady-state hydrolysis rate at 25uC
(Table 1). This is higher than values reported for the bacterial,

yeast and mammalian proteins, which hydrolyze ATP at turnover

rates of 0.05 min21, 0.01 min21 and 0.1 min21, respectively, at

30uC (Table 1 and [4,37,43–46]). This temperature is well above

the optimal growth temperature of C. elegans and already in a

range, where Hsp70 induction is strong as a part of the general

heat-shock response in this organism (Figure 1A). In fact, the

nematodal Hsc70 starts to unfold at 34uC (Figure S1). To study the

above mentioned divergence in activity between the C. elegans and

human protein (HsHsc70) more closely, we assessed the temper-

ature dependence of the ATPase activity. Surprisingly, the

Figure 1. Characterization of CeHsc70. (A) The induction of the heat-shock response (black squares, left ordinate) was analyzed by exposing a
hsp-70::GFP containing C. elegans strain to different temperatures for two hours and scoring after a recovery time of twelve hours. For this experiment
nematodes at YA stage were used. The worms were grown at 20uC before shifting them to the respective heat-shock temperature. The percentage of
mortality in percent of deceased animals (blue squares, right ordinate) was determined from these samples as well. The values presented are an
average of three independent experiments and the error bars represent the standard deviation. (B) The dependence of the ATPase rate of CeHsc70
(red squares) and HsHsc70 (black circles) was determined under steady-state conditions as described in the Materials and Methods section. The
values represent the mean of three replicates with the corresponding standard deviation given as errors. (C) Determination of the KM-value of
CeHsc70 (N) for ATP in standard buffer at 25uC. Steady-state ATPase activities were determined for CeHsc70 at different ATP concentrations. The data
were analyzed as described in the Materials and Methods section. (D) Single-turnover measurement of 20 mM CeHsc70 (N) in the presence of 4 mM
ATP in standard buffer at 25uC. Data were analyzed as described in the Materials and Methods section.
doi:10.1371/journal.pone.0033980.g001

The Hsc70 system of Caenorhabditis elegans
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optimum of the ATPase rate of both proteins coincides with

temperatures, considered lethal for both organisms (Figure 1B).

Furthermore, both Hsc70 orthologs are - in a nucleotide-bound

state - still stably folded at these temperatures (Figure S1). We

determined the KM-value of CeHsc70 to be ,3 mM (Figure 1C).

In order to determine the rate-limiting step of the ATPase reaction

catalyzed by CeHsc70, we performed single-turnover experiments.

In these experiments we used substoichiometric concentrations of

ATP to determine the rate of the first hydrolysis step. Under

single-turnover conditions CeHsc70 hydrolyzed ATP at a rate of

1.29 min2160.18 min21 (Table 1, Figure 1D). This rate is ,8-

fold higher than the steady-state hydrolysis rate, which implies that

the hydrolysis cycle of the nematodal Hsc70 protein is limited by

the release of the ADP-molecule after the hydrolysis reaction. It

also shows that the nematode’s protein differs from many other

Hsp70 chaperones analyzed before, which are mostly limited by

ATP hydrolysis (Table 1 and [4]), suggesting a certain diversity in

the enzymatic mechanism of Hsp70 proteins, despite the high level

of sequence conservation.

Truncations in the lid domain alter the rate-limiting step
of the hydrolysis cycle

In order to understand which domains of CeHsc70 are

responsible for the enzymatic activity, we generated C-terminal

deletion fragments. As removal of the His6-tag from our protein

only had minor impact on the ATPase rate (Figure S2), we

designed the fragments accordingly and continued to work with

the His6-tagged versions. While the overall amino acid sequence of

CeHsc70 is strongly conserved, a high diversity can be found in

the helical lid domain at the C-terminus (Figure 2A) [47]. Very

little similarity is detectable between bacterial and metazoan

Hsc70 proteins in this stretch of 130 amino acids. We generated

fragments, which lack the whole substrate binding domain

(CeHsc70-D384) or the C-terminal lid structure (CeHsc70-

D512). Additionally, a fragment was created, lacking the very C-

terminal helix bundle of the lid domain (CeHsc70-D545) retaining

only helix A and half of helix B (Figure 2A and 2B) to avoid the

generation of artificial hydrophobic interaction surfaces. We

purified these fragments and confirmed that their tertiary structure

was uncompromised by limited proteolytic digestion and thermal

denaturation detected by circular dichroism (CD) and differential

scanning fluorimetry (DSF). CD thermal transitions indicated the

unfolding midpoint of secondary structure elements for all

fragments to be in the range of 37–41uC (Figure S3A, Table 1).

Limited proteolysis also confirmed that the overall stability of the

core protein was unaltered by the truncations (Figure S3B). DSF

further stressed that the fragments are not destabilized compared

to the full-length protein, all having a transition midpoint at 38uC
(Figure S3C and S3D, Table 1). We also aimed at understanding

the influence of nucleotides on the stability of the full-length

protein and the fragments. We thus recorded DSF transitions in

the presence of ADP and observed a shift of about 10uC in the

transition midpoint of nematode and human Hsc70 (Figure S2).

The same shift also was observable when using the truncation

fragments D545, D512 (Figure S3C) and D384 (Figure S3D),

implying that neither the stability of the fragments nor the ability

to bind nucleotides is compromised by the C-terminal truncations,

which is also implied the very tight binding observed in steady-

state assays (Table 1). We further determined the ATPase activities

of the truncation fragments. The steady-state turnover rates were

only slightly affected: The isolated ATPase domain hydrolyzed

ATP with a kcat of 0.21 min21. CeHsc70-D512 and CeHsc70-

D545 exhibited reduced ATPase activities of 0.14 min21 and

0.09 min21, respectively (Table 1).

In order to determine the rate-limiting step of these variants,

single-turnover experiments were performed. Here, the isolated

ATPase domain, CeHsc70-D384, exhibited a single-turnover

hydrolysis rate of 0.32 min21 (Figure 2C, Table 1). The similarity

of steady-state and single-turnover rates suggests that the

hydrolysis of the ATP molecule has become rate-limiting for this

truncation variant. In contrast, a faster single-turnover hydrolysis

rate of 1.03 min21 was detected for CeHsc70-D512, suggesting

that sequences C-terminal of the ATPase domain accelerate the

hydrolysis reaction and shift the rate-limiting step towards

nucleotide release (Figure 2C, Table 1). Surprisingly, the presence

of half the lid domain in CeHsc70-D545 resulted in a protein with

dramatically slower single-turnover kinetics (0.08 min21,

Figure 2C, Table 1). This reaction is much slower than the

single-turnover rate of the full-length protein and matches the

steady-state turnover rate for this mutant. The concurrence of

steady-state and single-turnover rates demonstrates that for

CeHsc70-D545 the rate-limiting step is prior to or during the

hydrolysis reaction. Based on these results, the helical lid domain

of CeHsc70 has the potential to influence the rate-limiting step of

the ATPase cycle and shift it between hydrolysis steps and

nucleotide release.

The NEF-function of nematodal BAG-1 is conserved for all
truncation fragments

As truncations in the lid domain lead to alterations to the rate-

limiting step of the CeHsc70 ATPase cycle, it is also interesting to

learn how these alterations influence cofactor interactions. The

dominant NEF for CeHsc70, BAG-1, is weakly conserved in C.

elegans (Figure 3A), with the human protein being only 43%

homologous within the BAG-domain and the N-terminal domain

being absent. The BAG-domain binds to the NBD of Hsc70 and

induces a conformation unable to bind nucleotide [48]. A previous

structural study of the isolated nematodal BAG-domain revealed

that this protein is potentially dimeric and that the binding site for

CeHsc70 is structurally altered compared to human Bag1 [41].

We purified full-length BAG-1 and tested its interaction with

CeHsc70 and fragments of CeHsc70 by employing analytical

ultracentrifugation (AUC). To this aim, we labeled BAG-1 at its

internal cysteine residue Cys7 (*BAG-1) and performed sedimen-

tation experiments in the absence and presence of CeHsc70.

*BAG-1 sedimented with a sedimentation coefficient of 2.1 S and

characteristics of a monomeric protein (s20,w = 2.160.4 S;

D20,w = 7.36*102761.5*1027 m2 s21; MW,23.5 kDa). While

Table 1. Biophysical and enzymatic characterization of lid
domain mutants.

TM DSF TM CD KM kcat khyd

CeHsc70 39uC 38uC tight 0.1860.04 min21 1.2960.18 min21

CeHsc70-D384 39uC 38uC tight 0.2160.04 min21 0.3260.05 min21

CeHsc70-D512 39uC 41uC tight 0.1460.02 min21 1.0360.41 min21

CeHsc70-D545 39uC 37uC tight 0.0960.02 min21 0.0860.02 min21

ATPase activities were determined in standard buffer as described in the
Materials and Methods section. The KM-determination was carried out at 2 mM
protein concentration and curves showed very tight binding and full saturation
at stoichiometric concentrations, implying that the KM value is smaller than or
around 2 mM. Consequently, Michaelis-Menten conditions are not maintained
and a determination of an apparent KD value is not permitted by this
experimental setup (indicated by ‘‘tight’’). KD denotes the apparent affinity. The
errors represent standard deviations of three independent experiments.
doi:10.1371/journal.pone.0033980.t001

The Hsc70 system of Caenorhabditis elegans
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this does not support the dimeric structure, which was proposed

based on the crystal contact interfaces [41], the monomeric nature

matches earlier studies on mammalian Bag1 [49]. Binding to

CeHsc70 was strong and resulted in a protein complex at 4.8 S

(Figure 3B). This value is somewhat larger than the s20,w-value of

monomeric CeHsc70, which is 4.3 S (own data and [50] for

human Hsc70). Binding to *BAG-1 was also observed for the other

variants of CeHsc70 (Figure 3B).

We further utilized this AUC assay to determine the influence of

nucleotides on the binding between *BAG-1 and CeHsc70. In the

presence of 4 mM ATP, the *BAG-1NCeHsc70 interaction was

strongly suppressed. Only 22% of *BAG-1 bound to CeHsc70

compared to the nucleotide free set-up, where .85% of *BAG-1

were part of CeHsc70-containing complexes (Figure 3C). ADP,

AMP-PNP and ATPcS also suppressed the binding of *BAG-1 to

CeHsc70. This disruptive effect of nucleotides on BAG-1 binding

implies that the function of BAG-1 as a nucleotide exchange factor

for Hsc70 is conserved in the nematode system.

Figure 2. CeHsc70 truncation mutants show an altered ATP
turnover. (A) Domain organization and amino acid identity (Id) and
homology (Hom) of CeHsc70 towards bacterial, yeast and human
homologs. The truncation mutants generated in this work are indicated
by black arrows. (B) Structure of DnaK based on the PDB file 2KHO [93].
The truncations are colored in red (CeHsc70-D384), red and blue
(CeHsc70-D512) and red, blue and yellow (CeHsc70-D545). The lid
region, which is missing in the CeHsc70-D545 mutant, is highlighted in
orange. (C) The single-turnover experiments using 20 mM CeHsc70
variants were performed as outlined in the Material and Methods
section in standard buffer at 25uC. Data for CeHsc70-D384 (.),
CeHsc70-D512 (m), CeHsc70-D545 (N) and CeHsc70 (&) were fit to
single exponential functions. The inset shows the initial phase of the
hydrolysis reaction within the first 200 s.
doi:10.1371/journal.pone.0033980.g002

Figure 3. The function of the NEF BAG-1 is conserved in
context with CeHsc70. (A) Domain organization of BAG-1 homologs
from C. elegans, H. sapiens and S. cerevisiae. Percentages relate to
identical (Id) and homolog (Hom) residues in respect to the nematode
protein (Ubl: ubiquitin-like domain, Bag: BAG-domain, NLS: nuclear
localization signal, TRSEEX: region containing multiple repetitions of the
pentapeptide TRSEEX. (B) dc/dt plots were generated from sedimen-
tation velocity experiments of 300 nM *BAG-1 in the absence (black) or
presence of 3 mM CeHsc70 (blue) or 3 mM of the isolated ATPase
domain CeHsc70-D384 (red), the full lid-deletion CeHsc70-D512 (green)
and the half-lid deletion construct CeHsc70-D545 (pink). (C) dc/dt plots
were generated from sedimentation velocity experiments of 300 nM
*BAG-1 alone (black) or in the presence of 3 mM CeHsc70 (blue). The
influence of nucleotides was analyzed by addition of 4 mM ATP (green)
to 300 nM *BAG-1 and 3 mM CeHsc70. Data were analyzed as described
in the Materials and Methods section.
doi:10.1371/journal.pone.0033980.g003

The Hsc70 system of Caenorhabditis elegans
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We tested the effect of BAG-1 on the hydrolysis activity of

CeHsc70 and its truncation fragments. As shown for other

eukaryotic systems [29,38], addition of BAG-1 slightly stimulated

the steady-state turnover rate of CeHsc70 (Table 2), but it

dramatically reduced the rate in single-turnover assays (Table 2).

Reduced single-turnover rates were obtained for all CeHsc70

truncation fragments, implying that the single-turnover condition

of full nucleotide binding is not satisfied any more in the presence

of BAG-1, likely due to a strongly reduced affinity for nucleotides

(Table 2). In steady-state assays instead, the strongest stimulation

was observed for CeHsc70-D512, while no stimulation was

observed for CeHsc70-D545 (Table 2). Based on the known

function of human Bag1 as NEF, it would be intuitive to find that

the ATPase stimulatory effect on CeHsc70-D545 is the weakest.

Likely, a CeHsc70-fragment, whose enzymatic turnover is not

limited by nucleotide-release, may gain very little from the

function of BAG-1.

DNJ-13 forms large ATP-dependent complexes with
CeHsc70

The Hsp40-like protein DNJ-13 is the closest relative to yeast

Sis1 and human DNAJB5 to be found in C. elegans (Figure 4A). We

subcloned and purified recombinant DNJ-13. Steady-state ATPase

measurements revealed that a twofold increase of the ATP

turnover of CeHsc70 in the presence of DNJ-13 can be obtained.

Also the lid domain truncations are stimulated by DNJ-13

(Figure 4B, Table 2), but not CeHsc70-D384. It is interesting to

note, that CeHsc70-D545 shows the lowest apparent affinity

(KD,app,4 mM), while the interaction with CeHsc70-D512 is very

strong, implying that the helical lid domain is not required for the

interaction of the J-domain protein with CeHsc70.

In single-turnover experiments only a small increase in the

hydrolysis rate of CeHsc70 and CeHsc70-D512 can be observed

(Figure 4C, Table 2), despite the high affinity interaction (see

Figure 4B, Table 2). Again, no stimulation is observed for

CeHsc70-D384. Interestingly, CeHsc70-D545 which interacts

most weakly with DNJ-13 is stimulated the most. This may be

due to the shift of the rate-limiting step fully towards nucleotide-

release in the presence DNJ-13 (Figure 4C, Table 2). Other

variants in turn, which are limited by nucleotide-release interact

strongly, but are barely stimulated.

In order to gain a deeper understanding of the mechanisms of

cofactor regulation, we addressed the complex formation between

DNJ-13 and CeHsc70 directly. We labeled DNJ-13 and subjected it

to AUC. *DNJ-13 sedimented with a sedimentation coefficient of 4.0

S (Figure 4D) and the sedimentation and diffusion properties of a

dimeric protein (s20,w = 4.0 S60.6 S; D20,w = 5.67*102761.13*

1027 m2 s21; MW,62 kDa), which is in agreement with DNJ-13

homologs from yeast [51] and bacteria [52]. The addition of

CeHsc70 to *DNJ-13 did not change the sedimentation properties

(Figure 4D) suggesting that no binding happens under these

conditions. Also, addition of ADP or the non-hydrolysable ATP

analogs AMP-PNP and ATPcS did not result in detectable

interaction with CeHsc70. However, in the presence of ATP,

CeHsc70 and *DNJ-13 formed a protein complex at 12 S

(Figure 4D). It is important to note, that the molecular weight of a

12 S complex theoretically cannot be less than 210 kDa, but likely is

larger. Thus, it can be assumed that in the presence of ATP,

CeHsc70 binds to the *DNJ-13 dimer and forms a protein complex,

which might be heterotetrameric consisting of two CeHsc70 and two

DNJ-13 molecules (222 kDa). As the formation of the *DNJ-

13NCeHsc70 complex was strictly dependent on the presence of

ATP, DNJ-13 apparently specifically interacts with ATP-dependent

conformations of CeHsc70, while other states are not recognized

under these conditions. Analyzing the fragments of CeHsc70, we

found CeHsc70-D384 to exhibit complex formation, whereas

CeHsc70-D512 behaved similarly to CeHsc70. However, the

binding of CeHsc70-D545 is weaker and potentially more dynamic

as evident from the smaller s20,w value of the protein complex at 7.5

S. Thus, these results support the ATPase assays, where CeHsc70-

D545 also had shown a reduced apparent affinity for DNJ-13 (see

Table 2).

DNJ-13 and BAG-1 compete with each other’s binding
during the ATPase cycle

It has been described for other Hsp70 systems that the interaction

of Hsp40-like proteins and nucleotide exchange factors is compet-

itive and results in strong stimulation of the ATPase activity

[29,30,53,54]. Indeed, upon addition of BAG-1 the large

CeHsc70N*DNJ-13NATP complex was not detectable anymore and

only small species corresponding to mostly unbound *DNJ-13 could

be seen (Figure 5A). Thus, BAG-1 has the ability to disrupt *DNJ-

13NCeHsc70 complexes that are formed in the presence of ATP.

We also analyzed the ATPase activity of the CeHsc70-variants

in the presence of both cofactors. We added DNJ-13 to CeHsc70

in the presence of 2 mM BAG-1 and observed a remarkable

stimulation of ATP hydrolysis (Figure 5B). Nevertheless, in

contrast to the stimulation in absence of BAG-1, now the apparent

affinity is weak (KD,app = 6.8 mM63.2 mM), highlighting the

competitive interaction between the two cochaperones. The

interaction with CeHsc70-D545 appears even weaker exhibiting

an almost linear increase during titration up to 25 mM DNJ-13

Table 2. Enzymatic parameters of cofactor interactions with lid domain mutants.

Single-turnover Steady-state

khyd khyd, BAG-1 khyd, DNJ-13 kcat kcat, BAG-1 KD BAG-1 kcat, DNJ-13 KD, DNJ-13

(min21) (min21) (min21) (min21) (min21) (mM) (min21) (mM)

CeHsc70 1.3760.18 0.2160.08 3.9460.34 0.1860.04 0.2760.03 tight 0.4360.06 tight

CeHsc70-D384 0.3260.05 0.0360.01 0.4160.04 0.2160.04 0.2260.04 n.d.* 0.2360.04 n.d.*

CeHsc70-D512 1.0160.39 0.1660.10 3.3460.27 0.1460.02 0.4560.10 6.563.2 0.4460.05 tight

CeHsc70-D545 0.0860.03 0.0260.03 14.3862.06 0.0960.02 0.1460.03 n.d.* 0.5860.10 4.262.2

ATPase activities were determined in standard buffer as described in the Materials and Methods section. DNJ-13 stimulation or BAG-1 inhibition were not observed in
some experiments (denoted by ‘‘n.d.’’). Consequently an apparent KD cannot be deduced. The semi-quantitative value ‘‘tight’’ points to the fact that in the respective
experiment, quantitative binding appeared substoichiometric. Consequently, no reasonable data fitting can be performed, using the normal absorption isotherm. KD

denotes the apparent affinity. The errors represent standard deviations of three independent experiments.
doi:10.1371/journal.pone.0033980.t002

The Hsc70 system of Caenorhabditis elegans
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(Figure 5B). Only for CeHsc70-D512NBAG-1 complexes, a

saturation curve could be observed (KD,app = 1.2 mM60.4 mM),

confirming the high apparent affinity of this truncation variant for

DNJ-13. Thus, also in these assays the truncation mutants

CeHsc70-D545 and CeHsc70-D512 behaved differently and in

analogy to the analysis of the binary complexes (see Figure 4B and

4D), DNJ-13 binds more strongly to CeHsc70-D512 compared to

CeHsc70-D545.

Substrate refolding by CeHsc70 requires optimal
concentrations of BAG-1 and DNJ-13

It is not fully understood, how the two cochaperones contribute

to the folding activity of Hsc70 in the eukaryotic system. In

particular, nucleotide exchange factors had been found to have

both supportive and inhibitory functions in eukaryotes [35–38,55].

We analyzed the refolding activity of CeHsc70 on denatured

luciferase in the absence and presence of DNJ-13 and BAG-1.

CeHsc70 alone was not able to refold luciferase, while addition of

DNJ-13 resulted in refolding activity (Figure 6A). Addition of

substoichiometric amounts of BAG-1 increased the refolding

efficiency further (Figure 6A and 6B), but higher concentrations of

BAG-1 reduced it to baseline levels (Figure 6B) revealing a clear

optimum of NEF concentrations similar to the prokaryotic system

[56]. We were interested, whether ATP hydrolysis followed the

same trend. The efficiency of luciferase refolding does not

correspond to ATPase activities measured under identical

Figure 4. DNJ-13 interacts with CeHsc70 in presence of ATP and is released by BAG-1. (A) Domain organization of DNJ-13 homologs from
C. elegans, E. coli, S. cerevisiae and H. sapiens. Percentages relate to identical (Id) and homolog (Hom) residues in respect to the nematode protein. (B)
Steady-state ATPase activities were measured in the presence of increasing amounts of DNJ-13 for either CeHsc70 (N), CeHsc70-D512 (#) or
CeHsc70-D545 (.). Data were analyzed as described in the Materials and Methods section. (C) Single-turnover measurements of 10 mM CeHsc70-
D384 (=), CeHsc70-D512 (#), CeHsc70-D545 (.) and CeHsc70 (N) in the presence of 15 mM DNJ-13. All data points were fit to single exponential
functions. (D) dc/dt plots were generated from sedimentation velocity experiments of 300 nM *DNJ-13 in the absence (black) or in the presence of
3 mM CeHsc70 (pink). The influence of nucleotides was analyzed by addition of 4 mM of either ADP (gold), AMP-PNP (red), ATPcS (turqoise) or ATP
(blue) to 300 nM *DNJ-13 and 3 mM CeHsc70. (E) dc/dt profiles of sedimentation velocity experiments of 300 nM *DNJ-13 in the presence of either
3 mM CeHsc70 (blue), CeHsc70-D384 (red), CeHsc70-D512 (black) or CeHsc70-D545 (green) in the presence of ATP.
doi:10.1371/journal.pone.0033980.g004
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conditions, implying that these two processes – optimal folding

activity and maximal ATP hydrolysis – are independent and do

not share the same cochaperone requirements (Figure 6B).

Interestingly though, the positive influence of BAG-1 on the

hydrolysis rate vanishes at high concentrations, suggesting that in

ATPase assays also a competitive inhibition of the system may

become observable.

Having shown that the truncations in the lid domain do not

prevent ATP hydrolysis and interaction with CeHsc70 cofactors, we

aimed at elucidating the influence of these deletions on the protein

folding activity. Under neither concentration of cofactors, we were

able to regain luciferase activity above the baseline level (Figure 6C),

implying that in similarity to the human system [22,57] the presence

of the lid domain, while not essential for hydrolysis and cofactor

interactions, is required for the functional activity of the Hsc70

chaperone machinery from Caenorhabditis elegans.

Discussion

Regulation of the CeHsc70 ATPase cycle by the helical lid
domain

We analyzed the Hsc70 system of C. elegans by utilizing

truncation mutants in the C-terminal lid domain. It is evident

Figure 5. The ternary interaction of CeHsc70 with BAG-1 and
DNJ-13 is affected by the lid domain truncations. (A) dc/dt plots
were generated from sedimentation velocity experiments of 300 nM
*DNJ-13 in the absence (black) or in the presence of 3 mM CeHsc70 and
4 mM ATP (blue). The influence of BAG-1 on complex formation was
analyzed by addition of 15 mM BAG-1 to *DNJ-13-CeHsc70-ATP (green).
(B) The ATPase activity of 1 mM CeHsc70 (N), CeHsc70-D512 (#) or
CeHsc70-D545 (.) was measured with increasing amounts of DNJ-13 in
the presence of 2 mM BAG-1 in standard buffer at 25uC. Data analysis
was performed as described in Materials and Methods.
doi:10.1371/journal.pone.0033980.g005

Figure 6. Lid domain truncations reduce the refolding ability of
CeHsc70. (A) Kinetics of firefly luciferase refolding in the presence of
different chaperone combinations: CeHsc70/DNJ-13/BAG-1 (=),
CeHsc70/DNJ-13 (&), CeHsc70/BAG-1 (¤), CeHsc70 (#), BAG-1 (%)
and DNJ-13 (.). Additionally the luminescence of a sample without
chaperones and cofactors was analyzed (m). Protein concentrations
were 3.2 mM CeHsc70, 0.8 mM DNJ-13 and 0.4 mM BAG-1. Luciferase
refolding assays were carried out as described in Material and Methods.
(B) Steady-state ATPase activities (black squares, left ordinate) and
luciferase refolding efficiency (blue circles, right ordinate) were
determined for 3.2 mM CeHsc70 and 0.8 mM DNJ-13 at different BAG-
1 concentrations under standard conditions. (C) The luciferase refolding
activity of either CeHsc70 (&), CeHsc70-D545 (.), CeHsc70-D512 (#) or
CeHsc70-D384 (D) was determined in the presence of DNJ-13 and BAG-
1. Additionally a control without chaperones and cofactors (e) was
recorded.
doi:10.1371/journal.pone.0033980.g006
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from our data that all domains participate during the hydrolysis

reaction: The isolated ATPase domain (CeHsc70-D384) can

hydrolyze ATP, but more C-terminal regions stimulate the

intrinsic hydrolysis reaction. As studies on other model organisms

suggest, conformational changes in CeHsc70 lead to a hydrolysis-

competent state. The initial segment of the lid-domain can

apparently inhibit this process by slowing down these pre-

hydrolysis conformational changes (Figure 7). Structures at the

C-terminus of the lid domain (amino acid 545 to 640) obviously

reduce this inhibitory effect, giving the helical lid inhibitory as well

as reactivating parts. Previous studies reported that ATP binding

induces conformational changes in the lid leading to its

displacement away from the peptide binding site [58,59]. Based

on our data, we can establish a model (Figure 7), in which lid

truncation mutants can shift the conformational equilibrium either

towards the hydrolysis competent state (CeHsc70-D512) or

towards the pre-hydrolysis state (CeHsc70-D545). CeHsc70

apparently more closely resembles CeHsc70-D512, as its turnover

also is limited by nucleotide release. While it cannot be excluded

that parts of the truncated lid domain imitate a bound substrate

protein in CeHsc70-D545 [60,61], the reduced hydrolysis rate,

however, renders this scenario unlikely. Usually Hsp70 hydrolysis

is stimulated in the presence of client proteins [62,63]. Interest-

ingly, intermediate lid-truncations in DnaK, corresponding to

CeHsc70-D545, showed a 2–8 fold activation of steady-state

hydrolysis, suggesting that in this case the lid indeed may have

served as an internal substrate [64], while the almost lid-free

truncation only showed slight effects [65].

Association of the cofactors DNJ-13 and BAG-1 with
CeHsc70

It is interesting to see, that also the binding of the Hsc70

cofactors BAG-1 and DNJ-13 is influenced by lid deletions.

Clearly, in CeHsc70 the lid domain is not required to bind DNJ-

13 or BAG-1. As observed for the bacterial system [66,67],

CeHsc70-D512 can be stimulated by its J-protein DNJ-13. Thus, it

is likely that the changes in cofactor affinities result from

alterations to the conformational cycle and the rate-limiting step,

which are due to the deletions in the lid domain.

DNJ-13 binds more weakly to the ‘‘open’’ CeHsc70-D545 than

to the hydrolysis-competent CeHsc70-D512 or CeHsc70. It is

intriguing that the conformational changes in response to ATP-

binding provide the platform for the high-affinity interaction with

DNJ-13. In similarity to the ATP hydrolysis reaction itself, the

initial segment of the lid domain acts as an inhibitor of the

CeHsc70NDNJ-13 interaction. The competitive binding of BAG-1

and DNJ-13 suggests that competition is generated by favoring a

specific conformation during the hydrolysis cycle, which excludes

or reduces the apparent affinity of the other cofactor. As such, the

presence of BAG-1 weakens the apparent binding constant of

DNJ-13 (see Figure 5B). It is generally interesting to note that the

strongest effects on ATP turnover occur during the weak cofactor

interactions. This is intuitive, as for a productive acceleration of

the hydrolysis reaction an unfavorable conformational transition

has to be overcome by cofactor binding.

Conservation of the Hsc70 system in nematodes
A large number of studies exist on the hydrolysis reaction of

Hsc70 proteins from other model organisms and the regulation of

their activity by substrate proteins and cofactors. In particular, the

DnaK-system of E. coli has been characterized in considerable

detail. Several mutations in DnaJ and DnaK have been described,

which disrupt the binding of cofactors and a mechanism of the

interaction had been postulated that explains the stimulation of the

ATPase rate of DnaK in the presence of DnaJ [25,66–79].

Substrate-lid truncations in DnaK have been characterized and

revealed effects on substrate binding and refolding activities, but

only weak effects on ATP-hydrolysis [47,64,65]. The inhibitory

properties of the lid domain, as observed for CeHsc70-D545, have

not been uncovered in these studies. It is important to note that

strong differences exist between DnaK and the eukaryotic

proteins, specifically within the helical lid domain, which is almost

unrelated in terms of primary sequence. The function of the lid

domain as an inhibitor of the intrinsic hydrolysis rate and thus the

potential coupling of its motions to the hydrolysis reaction might

hence be different in the bacterial system [47,80]. Fewer data are

available for eukaryotic systems. In yeast, the very low hydrolysis

rates of Ssa1 and Ssa2 render comparison to the nematode system

difficult [43]. The best eukaryotic match might be the mammalian

system, but no systematic analysis of lid truncations has been

performed here yet. As a consequence, it remains to be

determined, whether the effects observed in our study are of

general importance to all Hsp70 systems or whether they represent

a specialty of C. elegans. Our data comparing the activity and

stability of the human and nematodal versions of Hsc70 point to

the fact that the slightly higher basal activity of CeHsc70 at equal

Figure 7. A model for the regulation of CeHsc70’s ATPase by
the lid domain. A structural hypothesis for the regulation of the
CeHsc70 ATPase cycle may be formulated based on the structures
2KHO of DnaK (74) and 3D2E of the Hsp70-homolog protein Sse1 (75).
After initial binding of ATP to the NBD of CeHsc70 (Step ARB),
conformational changes result in a hydrolysis competent conformation
(Step BRC). This reaction is favored in CeHsc70, as evident from the
observation, that hydrolysis is not rate-limiting. The helical lid likely
regulates the equilibrium or the kinetics of the BRC transition, as this
reaction appears to be much slower in CeHsc70-D545. DNJ-13 (red)
accelerates the formation of the hydrolysis-competent conformation
and thus promotes ATP hydrolysis. ATP hydrolysis likely is irreversible
(Step CRD). After hydrolysis, DNJ-13 leaves the complex and Hsc70
returns to its open conformation (Step DRE). BAG-1 (yellow) acts to
displace the nucleotide (Step ERA). Based on this model, simultaneous
BAG-1 and DNJ-13 binding to CeHsc70 would be mutually exclusive,
although several intermediate steps might exist during this sophisti-
cated cycle.
doi:10.1371/journal.pone.0033980.g007
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temperatures may be due to a shifted activity and stability

optimum that coincides surprisingly well to the optimum growth

or body temperature of both organisms.

Also, regarding the interaction between Hsc70 and Hsp40 a

wealth of data exists. The strict dependence of the Hsc70/J-

protein interaction on the presence of ATP has been observed in

studies using Hsp70-systems from bacteria, eukaryotes and

organelles [18,74,75,77,81,82]. However, recent data on the ER-

resident Hsp70-system highlight that for some systems complex

formation is also possible in the presence of ADP [83] and

consequently the regulation may be more complex. Also,

DnaJNDnaK complexes have been observed in the presence of

ADP during NMR experiments [77]. For the C. elegans system, we

observe complex formation only in the presence of ATP, but based

on the fast ATP hydrolysis rates, it has to be assumed that in the

observed assemblies hydrolysis has taken place and the interaction

also may happen as a post-hydrolysis DNJ-13NCeHsc70NMg-ADP-

Pi complex. As AUC only provides very limited kinetic

information, the dissociation rate of this complex cannot be

determined. Still, it is unlikely that the complex is assembled at all

stages of the ATPase cycle, suggesting that the nucleotide-release

controlled steady-state hydrolysis rate of 0.43 min21 to

0.58 min21 (Table 2) serves as an upper limit for the complex

stability.

It is surprising that large DNJ-13NCeHsc70NMg-ADP-Pi com-

plexes are formed during AUC. As Hsp40-like proteins contain

dimerization sequences at the C-terminus, the formation of these

assemblies as heterotetrameric complexes appears possible.

Certainly, it cannot be ruled out that a combination of specific

and unspecific interactions leads to the formation of these

assemblies [84]. Given the high concentration of CeHsc70 and

the presence of substoichiometric amounts of DNJ-13 in the

luciferase-refolding assays, it is also possible that this multimeric

protein complex may serve as a functional species in the refolding

of firefly luciferase.

Materials and Methods

Worm handling and analysis of the heat-shock response
Worms were handled according to standard procedures and

grown on NGM plates seeded with OP50 bacteria. To analyze the

heat-shock response worms were synchronized and grown for four

days on NGM plates at 20uC to obtain young adult worms (YA

stage). Plates containing on average 100 nematodes were sealed in

plastic bags and heat-shocked at different temperatures in a water

bath for two hours. Plates were removed from the plastic bags and

returned to the 20uC incubator. After 12 hours the GFP

expression was localized and quantified by visual inspection.

‘‘100% induction’’ required bright expression in all nematodes on

the plate in the following cells: pharyngeal muscle cells, intestinal

rings 1, 8 and 9, both spermathecae, body wall muscle cells and a

visible induction in hypodermal cells. Incomplete induction

patterns or heterogeneity between individual worms was evaluated

by intermediate %-values. Survival was scored based on the

recovery of nematodes from the heat-shock after 24 hours. The

experiment was repeated three times. The strain containing the

integrated hsp-70::GFP construct was a kind gift of Richard I.

Morimoto (Northwestern University, Evanston, IL, USA).

Sequence alignments and determination of homologies
The domain boundaries were defined according to the

Conserved Domain Database after a conserved domain query

on the protein sequence (http://blast.ncbi.nlm.nih.gov/). In order

to determine the degree of conservation within one domain,

identical and homologous residues, as identified by the BLAST

alignment tool, were determined and percentage values for each

domain were calculated.

Expression clones and protein purification
Expression plasmids for His6-fused CeHsc70 fragments were

generated based on the pET28a (Merck KGaA, Darmstadt,

Germany) plasmid as described earlier [14]. The coding sequence

of dnj-13 was cloned into the pET28a vector for protein expression

using a full-length cDNA clone of dnj-13 in the RNAi plasmid

L4440 (Thermo Scientific, Huntsville, AL, USA) as a template. To

clone bag-1, a cDNA preparation of C. elegans nematodes was

generated, using the Qiagen RNAeasy kit (Qiagen, Hilden,

Germany) and reverse transcriptase (Promega, Madison, WI,

USA) with a polyT-primer according to the manufacturer’s

protocol.

Proteins were expressed in the E. coli BL21-CodonPlus (DE3)-

RIL strain (Agilent Technologies, Santa Clara, CA, USA).

Bacteria were grown to an OD600 of 0.8 and expression was

induced with 1 mM IPTG. After four hours, bacterial cells were

harvested and resuspended in 40 mM HEPES/KOH, pH 7.5,

300 mM KCl. Bacterial cells were lysed using the cell disruption

instrument TS 0.75 (Constant Systems Ltd., Northants, UK) and

the soluble fraction was applied to a HisTrap 5 ml column (GE

Healthcare, Chalfont St Giles, UK). The protein was eluted with

disruption buffer containing 300 mM imidazole. CeHsc70 and

BAG-1 were further purified using ResourceQ ion exchange

chromatography and size exclusion chromatography on a Super-

dex 75 HiLoad column (both GE Healthcare, Chalfont St Giles,

UK). DNJ-13 was loaded onto a ResourceS ion exchange column

and was further purified by size exclusion chromatography using a

Superdex 75 HiLoad column (both GE Healthcare, Chalfont St

Giles, UK). HsHsc70 was expressed as described previously [85]

and purified on DEAE-Sepharose, Resource Q (both GE

Healthcare, Chalfont St Giles, UK), Fluoroapatite (Bio-Rad,

Hercules, CA, USA) and for polishing on Superdex 200 HiLoad

(GE Healthcare, Chalfont St Giles, UK) columns. The purity of

the proteins was determined to be more than 95% according to

SDS-PAGE. Protein concentrations were 220 mM for BAG-1,

160 mM for DNJ-13 and 60 mM for CeHsc70. The His6 tag was

removed by digestion of 1 mg of His6-CeHsc70 with 5 U of

thrombine (Merck KGaA, Darmstadt, Germany) according to the

manufacturer’s instructions and subsequent purification via a

HisTrap 1 ml column (GE Healthcare, Chalfont St Giles, UK, see

above). The removal of the tag did not affect the stability of

CeHsc70 and its activity was increased within the range of error

(compare Figure S2).

Differential scanning fluorimetry
Differential scanning fluorimetry (DSF) was deployed to

determine the unfolding temperature of CeHsc70, its fragments

and HsHsc70 by monitoring an increase in the fluorescence of

SYPRO orange upon binding to exposed hydrophobic parts of the

protein [86]. The dye (Invitrogen, Carlsbad, CA, USA), is diluted

1:100 in buffer solution (40 mM HEPES/KOH pH 7.5, 150 mM

KCl). This pre-mix is diluted again 1:10 in buffer solution

containing 0.5 mg/ml CeHsc70. Temperature dependent unfold-

ing of CeHsc70 and the resulting increase in fluorescence was

measured in the Mx3000P qPCR System (Agilent Technologies,

Santa Clara, CA, USA). Fluorescence reads were performed at a

heating rate of 0.5uC/min every minute. All measurements were

performed in triplicates. Melting curves were normalized and

averaged. ADP was added to 2 mM where indicated.
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Circular dichroism thermal transitions
Circular dichroism (CD) temperature transitions were recorded

in 40 mM HEPES, pH7,5, 150 mM KCl at 217 nm. The heating

rate was 0.5uC/min, starting at 12uC. Moving averaging at a

window size of 5 datapoints was applied to the curves to reduce

noise. The curves were normalized to allow comparison. The data

were not fitted to obtain thermodynamic unfolding parameters, as

transitions were irreversible.

Steady-state ATPase activity measurements
Steady-state ATPase activities were determined as described

earlier [14,87]. In short, an ATP-regenerating system was used,

employing lactate dehydrogenase, NADH, phosphoenol pyruvate

and pyruvate kinase in a buffer containing 40 mM HEPES/KOH,

pH 7.5, 150 mM KCl, 5 mM MgCl2. Assays were started by

addition of 2 mM ATP, the assay temperature was 25uC for all

experiments, when not indicated differently.

The influence of cofactors on the CeHsc70 activity was

analyzed by titration. The ATPase activities at different cofactor

concentrations were fit to obtain apparent KD-values according to

the following equation:

v~v0z(vmax{v0) � Ltot

(LtotzKD)

In cases where the apparent affinity of the interaction was so high

that stoichiometric or substoichiometric binding was observed, the

following equation was used:

v~vmaxz
1

2 �Mtot

� (vmax{v0)�

LtotzKD{Mtot{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(LtotzKD{Mtot)

2z4 �Mtot � KD

q� �

Single-turnover ATPase activity experiments
Single-turnover ATPase assays were based on the separation of

[a-32P]-ADP from [a-32P]-ATP (Hartmann Analytic, Braunsch-

weig, Germany) by thin layer chromatography [88]. 30 ml of a

solution containing 20 mM CeHsc70 and 30 mM DNJ-13 or BAG-

1 in assay buffer (40 mM HEPES/KOH pH 7.5, 150 mM KCl,

5 mM MgCl2) were mixed to a final concentration of 5 mM ATP

containing 1.0 mCi [a-32P]-ATP. At defined time points, aliquots

of 3 ml were withdrawn from the assay reaction and added to 2 ml

100 mM EDTA, pH 8.0, to stop the hydrolysis reaction. 0.9 ml of

these aliquots were applied to polyethylenimine-cellulose plates

(Merck Bioscience, Darmstadt, Germany) and chromatographi-

cally separated using a mobile phase of 0.5 M LiCl in 2 N formic

acid. Evaluation of the chromatogram was performed using a

Typhoon 9200 Variable Mode Imager (GE Healthcare, Chalfont

St Giles, UK). Spot intensities were determined using ImageQuant

(GE Healthcare, Chalfont St Giles, UK). The values were

normalized and plotted against the reaction time. Data analysis

was performed using single-exponential functions for all assays.

Analytical ultracentrifugation with fluorescently labeled
cofactors

Analytical ultracentrifugation (AUC) was performed using

fluorescently labeled BAG-1 (*BAG-1) and DNJ-13 (*DNJ-13).

BAG-1 was labeled at its sole cysteine residue at amino acid

position 7 with Alexa Fluor 488 C5-maleimide (Invitrogen,

Carlsbad, CA, USA). DNJ-13 was labeled with 5-(and-6)-

carboxyfluorescein succinimidylester (Invitrogen, Carlsbad, CA,

USA) at neutral pH in order to obtain preferential labeling at the

N-terminal amine group. Both labels were added to the protein

(1 mg/ml) at a threefold molar excess upon continuos mixing.

After 2 h of incubation at room temperature, unreacted label was

quenched by adding DTT to a final concentration of 20 mM in

the case of *BAG-1 or an Tris to a final concentration of 100 mM

in the case of *DNJ-13. Free label was separated from the labeled

protein by size-exclusion chromatography. The labeling efficiency

of *BAG-1 and *DNJ-13 was determined using the manufacturer’s

guidelines and was found to be 0.95 and 1.2, respectively.

AUC was performed with a ProteomeLab XL-A ultracentrifuge

(Beckman Coulter, Brea, CA, USA) equipped with a fluorescence

detection system (Aviv Biomedical, Lakewood, NJ, USA). The

centrifugation experiments in general were performed at 20uC at

42 000 rpm. Labeled protein at a concentration of 300 nM was

sedimented in the absence and presence of binding partners and

different nucleotides. Sedimentation velocity experiments were

evaluated using dc/dt analysis as described before [89–91].

Species distributions in dc/dt plots were fit to Gaussian or bi-

Gaussian functions in order to obtain the s20,w values of the

observed sedimentation boundaries. It is important to note, that in

particular when binding affinities are low and the interaction is

dynamic, sedimentation boundary analysis, as employed by the

dc/dt-approach, can result in a reduced s20,w value compared to

an irreversible protein complex of the same composition. Full

analysis of sedimentation runs, as performed for *BAG-1 and

*DNJ-13 in the absence of additional factors, was performed using

the Finite Element Whole Boundary Fitting and C(s) methods of

the UltraScan software package [92], which fits the data set

assuming one species of particles and determines the sedimenta-

tion coefficient s20,w and the Diffusion coefficient D20,w. These

values are then used to obtain the molecular weight of the

sedimenting particle. The molecular weight, s20,w and D20,w of

*DNJ-13 and *BAG-1 corresponded to the values obtained for the

unlabeled proteins.

Luciferase refolding assay
Recombinant luciferase (10 mM) was denatured for 45 min at

room temperature in denaturing buffer (25 mM HEPES/NaOH,

pH 7.5, 50 mM KCl, 15 mM MgCl2, 1 mM ATP, 10 mM DTE,

0.05 mg/mL BSA, 5 M GdmCl). For refolding, denatured

luciferase was diluted 1:125 in luminescence buffer (25 mM

HEPES/NaOH, pH 7.5, 50 mM KCl, 15 mM MgCl2, 1 mM

ATP, 2 mM DTE, 0.05 mg/mL BSA, 240 mM CoA, 0.1 mM

luciferin, 10 mM PEP, 50 mg/mL pyruvate kinase) containing

3.2 mM CeHsc70, 0.8 mM DNJ-13 and 0.4 mM BAG-1. Reactions

were carried out in white 96-well LIA-plates (Greiner Bio-One,

Solingen, Germany). Luciferase activity was detected continuously

over a time period of 2 h at 25uC by using a Tecan GENiosTM

microplate reader (Tecan Trading Ltd., Männedorf, Switzerland).

Limited proteolysis
The CeHsc70 fragments D512, D545 and the full-length protein

were digested by chymotrypsin at 25uC. The reaction was carried

out in 40 mM HEPES/KOH, pH 7.5, 20 mM KCl, 10 mM

CaCl2 with a final concentration of 20 mg/ml a-chymotrypsin

(Sigma-Aldrich, St. Louis, MO, USA) and 600 mg/ml of the

corresponding proteins. By adding PMSF, dissolved in DMSO to

a final concentration of 33 mM at the indicated time points, the

digestion was stopped. The samples were immediately boiled in

16 loading buffer, resolved electrophoretically on 12% polyacryl-
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amide gels and stained with coomassie blue according to standard

protocols.

Statistical validation
In vivo experiments were replicated three times. The results at

each temperature were averaged among these replicates and the

standard deviation was calculated. Both values are presented in the

respective figures. CD unfolding transitions, single-turnover

ATPase, AUC and luciferase refolding assays were performed in

three separate experiments and representative data are shown. In

cases, where kinetic parameters were derived from these assays,

the values obtained from fitting the three independent kinetics

were averaged and are given together with their respective

standard deviation. Steady-state ATPase measurements were also

performed in triplicates and the obtained kcat and apparent KD

values and their standard deviation were obtained by averaging.

Supporting Information

Figure S1 Thermal stability of CeHsc70 versus
HsHsc70. DSF melting curves indicate that Hsc70 from C.

elegans (%) is about 10uC less stable than the human ortholog (#).

Adding ADP stabilized CeHsc70 (&) as well as human Hsc70 (N) to

a similar extent. Error bars reflect the standard deviation of three

experiments.

(TIF)

Figure S2 The influence of a His6 tag on ATPase
activity. His6-CeHsc70 as used throughout the study and as

described in the Materials and Methods section was compared to a

His6 free protein batch, generated from the same stock. The

removal of the tag increases the average activity within the margin

of error (standard deviation of three measurements).

(TIF)

Figure S3 Comparative stabiliy of CeHsc70 truncations.
(A) CD thermal transitions indicate that all variants of CeHsc70 -

although about 10uC less stable than the human protein (grey) are

comparably stable (CeHsc70, yellow; CeHsc70-D545, light blue;

CeHsc70-D512, red; CeHsc70-D384, green). Compare Table 1 for

transition midpoints. (B) A similar stability for all fragments is also

highlighted by limited proteolysis. CeHsc70, CeHsc70-D545, and

CeHsc70-D512 were subjected to a-chymotrypsin digestion and

subsequent denaturing gel electrophoresis after quenching the

reaction at the indicated timepoints. The kinetics are similar for all

proteins, which all degrade to a species indicated by the asterisk.

This implies that the overall structure of the core domain is

preserved. (C) DSF further confirms a comparable overall

CeHsc70 (%), CeHsc70-D545 (D), and CeHsc70-D512 (#) the

fragments and the wild type proteins are stabilized in a highly

similar manner by the addition of ADP (&, m, N, respectively; see

Table 2 for transition midpoints). (D) CeHsc70-D545 (%) exhibits

a slightly different transition curve. Yet, the transition midpoint at

about 37uC is comparable to the other fragments. The

stabilization of the structure by roughly 10uC through the addition

of ADP (&) is also observed.

(TIF)
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