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Abstract

Surging wildfires across the globe are contributing to escalating residential losses and have major social, economic, and
ecological consequences. The highest losses in the U.S. occur in southern California, where nearly 1000 homes per year have
been destroyed by wildfires since 2000. Wildfire risk reduction efforts focus primarily on fuel reduction and, to a lesser
degree, on house characteristics and homeowner responsibility. However, the extent to which land use planning could
alleviate wildfire risk has been largely missing from the debate despite large numbers of homes being placed in the most
hazardous parts of the landscape. Our goal was to examine how housing location and arrangement affects the likelihood
that a home will be lost when a wildfire occurs. We developed an extensive geographic dataset of structure locations,
including more than 5500 structures that were destroyed or damaged by wildfire since 2001, and identified the main
contributors to property loss in two extensive, fire-prone regions in southern California. The arrangement and location of
structures strongly affected their susceptibility to wildfire, with property loss most likely at low to intermediate structure
densities and in areas with a history of frequent fire. Rates of structure loss were higher when structures were surrounded by
wildland vegetation, but were generally higher in herbaceous fuel types than in higher fuel-volume woody types.
Empirically based maps developed using housing pattern and location performed better in distinguishing hazardous from
non-hazardous areas than maps based on fuel distribution. The strong importance of housing arrangement and location
indicate that land use planning may be a critical tool for reducing fire risk, but it will require reliable delineations of the most
hazardous locations.
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Introduction

As the frequency, extent, and severity of wildfires are surging

across the world [1,2], so too are the ecological, social, and

economic consequences. Residential losses associated with wild-

land fire have escalated globally [3–5], and recent fire events have

resulted in billions of dollars of damage per event [6]. The

problem is particularly critical in Mediterranean-climate regions of

the world, where major metropolitan centers are juxtaposed with

highly flammable ecosystems [7]. Since the 1950s, southern

California has experienced the highest losses in property and life in

the U.S., averaging 500 homes per year [8]. Here we show that

the arrangement and location of structures strongly affects their

susceptibility to being destroyed in a wildfire, and that empirically

based maps developed using housing density and location can

better identify hazardous locations than fuel-based maps.

The escalation of wildland fire losses is typically attributed to

housing development within or adjacent to wildland vegetation

(i.e., the ‘‘wildland-urban interface’’) [6,9], changing climate

conditions [1], or an accumulation of hazardous wildland fuels

[10]. The primary preventive strategy used for reducing fire

impacts has been the manipulation of wildland vegetation to

reduce hazardous fuels. The U.S. federal government has strongly

promoted and funded fuel reduction treatments to mitigate fire

hazard, and federal land management agencies spent billions of

dollars (e.g., $2.7 billion from 2001–2006) to treat millions of

hectares within the last decade [10]. Yet, while costs for

suppression and treatment have nearly tripled since 1996 [11],

the fire problem has only gotten worse.

With the growing realization that wildland fuel manipulations

can alter fire outcomes only to a limited extent, the need for

alternatives has risen. For example, a structure’s survival during a

wildfire depends largely on its building materials and the

characteristics of fuels in its immediate surroundings [3],

suggesting that fire hazard can be reduced by homeowner actions

to protect the structure [12].

However, what remains unclear is to what extent property loss

depends on the role of land planning and the placement and

arrangement of homes relative to the spatial patterns of wildland

fire hazards. Past land-use decision-making has allowed homes to

be constructed in highly flammable areas, and this may be one of

the roots of the fire problem [13]. Although it is not feasible to

change current housing patterns, homes in the most hazardous

locations could be identified and prioritized for fire protection

efforts, and land use planning and regulation may potentially be a

powerful tool for reducing future property loss [14], especially in
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areas such as southern California where substantial future housing

growth is expected [15], and across the western US, where further

development is expected in a substantial proportion of the

wildland-urban interface [16].

If land use regulation and planning are to effectively reduce

wildland fire loss, they have to be based on solid understanding of

what landscape factors most significantly contribute to wildfire

danger and where to locate and arrange homes to reduce fire

hazard. Currently, most fire hazard maps are based on expert

knowledge of how fuel and fire history determine threats to a given

community e.g., [17–19]. Similar fire hazard maps have been

created for the state of California that identify communities at risk

and areas of substantial fire threat to people. These maps are readily

available [20] and widely used. Fire hazard maps, however, are only

effective if they accurately delineate areas where property loss is

most likely to occur. Whether this is the case or not is unknown since

most have never been evaluated against empirical data.

We constructed a complete database of structure locations in two

extensive, fire-prone regions of southern California and identified

which structures were destroyed or damaged by wildfires since 2001

(Fig. 1). These two regions were the Santa Monica Mountains, one

of the largest wildland open space areas adjacent to the Los Angeles

metropolitan area and San Diego County, site of major wildfire

losses in both 2003 and 2007 [20]. Based on these data, we used

logistic regression and maximum entropy analysis to answer three

questions: 1) What is the relative importance of housing

arrangement (i.e., the spatial pattern of residential structures),

location, and environment in explaining property loss from fire? 2)

How well do currently available statewide fuel-based maps of fire

hazard correspond to actual wildfire impacts? 3) Can fire hazard

maps based on empirical data and an expanded set of explanatory

variables successfully predict local-scale housing losses?

Results

In the Santa Monica Mountains, 3% of 36,399 structures were

located within the boundaries of 10 large fires that occurred from

2001 to 2009. In these fires, 173 homes, guest houses, or

outbuildings were destroyed and an additional 140 were damaged.

For the second study region in San Diego County, 4% of 687,869

structures were located within one of 40 fire perimeters. In these

fires, 4315 structures were completely destroyed and an additional

935 were damaged.

In both study regions, the spatial arrangement of structures

(Table 1) significantly influenced the likelihood of property loss

(i.e., destruction or damage) (Figs. 2 and 3). Property loss was more

likely in smaller, more isolated housing clusters with low- to

intermediate housing density and fewer roads, although road

density was insignificant after accounting for spatial autocorrela-

tion in the Santa Monica Mountains (Table 2). Structures located

near the edges of developments, or in housing clusters on steep

slopes, were also more susceptible. Many relationships were

nonlinear, with the highest property loss occurring when structures

were at intermediate distances to other structures or housing

clusters.

In addition to spatial arrangement, a structure’s location on the

landscape was also a highly significant predictor of property loss

(Fig. 2). In both study regions, property loss was significantly

related to a structure’s distance from the coastline, but the relative

effect varied. In the Santa Monica Mountains, property loss

occurred disproportionately closer to the coast, whereas structures

farther from the coast were most susceptible in San Diego County

(Tables 2 and 3).

The other significant location-dependent variable affecting

property loss was historical fire frequency (Fig. 2). In the Santa

Monica Mountains, this was the single most important predictive

variable. Here, property loss was most likely in areas of historical

high fire frequency, which corresponded with wind corridors. Fire

frequency was also a significant variable in San Diego County, but

here the relationship was nonlinear.

Property loss was more likely to occur when structures were

surrounded by wildland vegetation rather than by urban or

impervious areas (Fig. 4). However, property loss was also more

(Santa Monica Mountains) or as likely (San Diego County) to

Figure 1. The Santa Monica Mountains and San Diego County, California, USA. Study areas in gray. The Santa Monica Mountains are
located in Ventura and Los Angeles counties, and both study areas are located within the South Coast Ecoregion of California, USA. Study areas in
gray.
doi:10.1371/journal.pone.0033954.g001
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occur within herbaceous fuel types than within the higher fuel-

volume woody types that are typically considered as the most

hazardous fuels.

Variables with correlation coefficients greater or equal to 0.7 in

the Santa Monica Mountains included road length and area of

housing cluster (0.95) and elevation and distance to coast (0.72). In

San Diego County, pairs of correlated variables also included road

length and area of housing cluster (0.99), distance to nearest

structure and distance to nearest housing cluster (0.71). Distance to

coast was correlated with housing density (2.71) and elevation

(0.89). To develop multiple-regression models, we removed

elevation and road length from consideration in the Santa Monica

Mountains, because they explained less variation than the variable

with which they were correlated. For the San Diego County

analyses, we removed distance to coast, road length, and distance

to nearest housing cluster.

Figure 2. Percent deviance explained for generalized additive models (GAMs). GAMs explain the influence of firefighter access, biophysical
variables, structure arrangement, and structure location on burned structures from fires during 2001–2010 in the Santa Monica Mountains, CA and
San Diego County, CA. CDF – California Department of Forestry and Fire Protection.
doi:10.1371/journal.pone.0033954.g002

Table 1. Variables analyzed for explaining structure loss in the Santa Monica Mountains and San Diego County.

Variable Source Description

Fire frequency 2001 CDF* Fire perimeter overlays Number of fires (2001–2010)

Distance to coast Derived from coastline of county Continuous distance in meters

Fire threat CDF* Ranking from 1 to 5

Fire threat to people CDF* Ranking from 1 to 5

Communities at risk CDF* Binary, at risk or not at risk

Housing density Derived from digitized structures Structures per hectare

Distance nearest housing cluster Derived from 100 m buffer of structures Continuous distance in meters

Housing dispersion Derived from 100 m buffer of structures Standard deviation/mean distance between structures in housing cluster

Distance to nearest structure Derived from digitized structures Continuous distance in meters

Distance to edge of housing cluster Derived from digitized structures Continuous distance in meters

Area of housing cluster Derived from 100 m buffer of structures Squared meters

Elevation US Geological Survey digital elevation model (DEM 30 meters

Slope Derived from the DEM Percent slope

Southwestness Derived from the DEM SW = con(aspect(,dem.) = = 212, 201,(cos(((aspect(,dem.)2255)
div deg)+1) * 100)))

Road length US Census Bureau TIGER/Line files Meters

*California Department of Forestry Fire and Resource Assessment Program.
doi:10.1371/journal.pone.0033954.t001
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The multiple-regression GAM model for the Santa Monica

Mountains included fire frequency, housing density, distance to

edge of housing cluster, distance to coast, slope, area of housing

cluster, southwestness, fuel type, housing dispersion, distance to

nearest structure and housing cluster. Only nonparametric terms

were selected, except fuel type, which was categorical. The

deviance explained for the model was 65.7%, and the area under

the curve (AUC) of receiver operating characteristic (ROC) plots,

indicating the ability of the model to discriminate between burned

and unburned structures on test data (20%), was 0.82.

The multiple-regression GAM model for San Diego County

included housing density, distance to edge of housing cluster, area

of housing cluster, elevation, fire frequency, fuel type, and housing

dispersion. All terms included in the model were nonparametric

except for distance to edge of neighborhood, which was linear, and

fuel type. The deviance explained for the model was 45.5%, and

the AUC was 0.87.

Our fire-hazard maps developed with the Maxent model using

empirical data and multiple explanatory variables (Figs. 5 and 6)

performed well. The AUC of receiver operating characteristic

(ROC) plots on test data (15% withheld) was 0.987 for the Santa

Monica Mountains and 0.923 for San Diego County.

In contrast, statewide fire-hazard maps developed using fuel

rank and fire rotation were unable to predict which structures were

burned by fire (Fig. 7). This poor performance of the statewide

maps was also evident through visual comparison with maps of

actual property loss (Figs. 5 and 6). Similarly, property loss was not

substantially higher in the highest hazard or communities-at-risk

areas of the statewide maps. In most cases, property loss was

evenly divided among hazard levels (Fig. 8A and 8B), and even

where a substantial proportion of burned structures were located

in areas mapped as high fire hazard, most of the unaffected

structures were also distributed in these high-hazard areas,

suggesting high commission error (Fig. 8C and 8D). The most

worrisome finding was that the majority of property loss occurred

in areas not designated as at-risk (Fig. 8E and 8F).

The results of all sensitivity analyses indicated that the results

were robust: the importance and ranking of variables remained

essentially the same for all data sets at different buffer distances

and certainty classifications (Table 3). Differences in results were

slightly larger using different buffer distances than using all burned

structures across a range of certainty levels versus all destroyed

structures classified at the highest level of certainty. The main

difference between the 200 and 100-m buffer analysis was that

housing density was somewhat less important while distance to

nearest housing cluster and southwestness were somewhat more

important using the 200-m buffer in the Santa Monica Mountains.

In San Diego County, housing dispersion and distance to the edge

of housing cluster were somewhat more important using the 200-

m buffer. We also found no substantial difference in results for the

Maxent models.

After adding a spatial term, spatial autocorrelation was no longer

present in the residuals of any of the models (Table 2). Also,

although there were small differences in the coefficients between

spatial and non-spatial models, the direction of influence consis-

tently remained the same. The only variables that were no longer

significant after accounting for spatial autocorrelation included the

CDF communities at risk map, the distance to the nearest housing

cluster, southwestness, and road length for the Santa Monica

Mountains, and southwestness for San Diego County.

Discussion

Wildfire is a key process that interacts with all major components

of the earth system, but fire frequency, extent, and/or severity are

on the rise [1,2,21,22]. Residential losses to wildfire have also

escalated despite enormous investments in wildland fuel manipu-

lation, improvements in fire-safe codes and building regulations,

and advanced fire suppression tactics. Therefore, our finding that

housing arrangement and location were the most important

contributors to property loss supports the notion that patterns of

land use may be partly responsible for property loss in the wildland-

urban interface [13].

One reason that property loss is related to the arrangement of

housing across the landscape may be that the amount and

arrangement of human infrastructure also strongly and non-

linearly influence wildfire ignitions and frequency [7,23,24].

Therefore, the places where homes are most likely to burn may

also be the places where fires are most likely occur, which is

partly a function of the distribution of people. Thus, there may be

spatial interactions and feedbacks between fire and housing

patterns.

In southern California, as in many regions, humans cause most

fires [7,23–25]. Thus, population growth and housing development

increase fire frequency. Yet, although urban expansion increases fire

frequency in general, the highest hazard tends to be in low-density

housing areas, where structures are interspersed with wildland

vegetation [9]. Scattered, isolated structures are more difficult for

firefighters to defend, and poor firefighter access may explain why

housing clusters with fewer roads were more vulnerable in San

Figure 3. Maps from portions of San Diego County illustrating
how housing arrangement influences the likelihood that a
house will be lost from wildfire. Structures most likely to be burned
by fires (in red) were: in areas with low to intermediate structure
density; in small, dispersed housing clusters, close to the edge of the
housing cluster, at intermediate distance to the nearest structure or
housing cluster than structures that were unaffected (in blue).
doi:10.1371/journal.pone.0033954.g003
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Diego County. However, there can also be situations in which high

housing density contributes to structure-to-structure fire spread e.g.,

[26], depending on their flammability [27].

The importance of a structure’s location on the landscape

relative to the coast and historical patterns of fire frequency shows

that certain places are more fire-prone than others, which in turn

reflects how biophysical and human variables together create

conditions that are particularly conducive to wildfire occurrence

[2]. In our study areas, these relationships are also likely a function

of a structure’s location relative to predominant wind patterns and

direction [28]. In the Santa Monica Mountains, certain fire

corridors tend to burn repeatedly, and winds funnel down these

corridors toward vulnerable structures located directly in their

path. Here, the high-density coastal strip is narrow, and homes are

closer to continuous vegetation than in San Diego County, where

high-density development extends inland for much greater

distances. This may be why houses were more likely to burn at

a closer distance to the coast in the Santa Monica Mountains than

in San Diego County. The low-density, high-risk areas in San

Diego County are located farther inland where, if an ignition

occurs there under extreme wind conditions, the fire is in its initial

stages. Santa Ana winds blow from west toward the coast, and they

are particularly dangerous in the beginning because they are

usually most explosive and fast-moving right after they start, and it

takes time to mobilize firefighting resources. Thus, the significance

of distance to coast may be a proxy for other variables, such as the

juxtaposition of housing density, contiguous fuels, and location

relative to predominant wind patterns.

The importance of historical fire frequency suggests that, at least in

non-forested ecosystems, fuel age may not be an important predictor

of home loss [25], despite the fact that fuel age and time-since-fire

maps are often used to delineate fire hazard. In fact, substantial

property loss occurred when the primary surrounding fuel type was

low fuel-volume grasslands. Although this result may seem counter-

Table 2. Model coefficients for generalized linear models (GLMs) estimated with and without autocovariate terms in the Santa
Monica Mountains and San Diego County.

Linear Autocovariate linear Quadratic Autocovariate quadratic P-value

Santa Monica Mountains

Fire frequency 2001 0.860 0.440 ,0.001

Distance coast 0.004 0.002 27.0E-07 24.0E-07 ,0.001

CDF Fire threat 5.900 2.880 28.5E-01 23.9E-01 ,0.001

CDF Fire threat people 3.070 1.540 ,0.01

CDF Communities risk 20.540 20.280 NS

Housing density 1.010 1.130 23.9E-01 24.0E-01 ,0.001

Distance housing cluster 0.006 0.004 21.0E-05 27.0E-06 NS

Housing dispersion 2.280 2.670 ,0.001

Distance structure 0.020 0.020 23.0E-05 22.0E-05 ,0.001

Distance edge 20.021 20.017 ,0.001

Area housing cluster 22.0E-07 28.0E-08 ,0.001

Slope 0.033 0.016 ,0.001

Elevation 20.001 20.001 0.01

Southwestness 20.002 0.002 NS

Road length 22.0E-05 22.0E-05 NS

San Diego County

Fire frequency 2001 1.53 1.05 20.33 20.22 ,0.001

Distance to coast 3.0E-04 3.0E-09 2.0E-04 2.0E-09 ,0.001

CDF Fire threat 20.54 20.68 0.189 0.17 ,0.001

CDF Fire threat people 2.27 1.69 ,0.001

CDF Communities risk 20.93 20.51 ,0.001

Housing density 20.99 20.47 ,0.001

Distance housing cluster 0.005 0.004 24.0E-06 21.0E-06 ,0.001

Housing dispersion 23.08 21.68 0.865 0.542 ,0.001

Distance structure 0.007 0.004 25.0E-06 22.0E-06 ,0.001

Distance edge 20.02 20.01 ,0.001

Area of housing cluster 22.0E-08 27.0E-09 ,0.001

Slope 0.17 0.12 ,0.001

Elevation 0.001 0.003 ,0.001

Southwestness 20.005 20.003 NS

Road length 21.0E-06 27.0E-07 ,0.001

Quadratic terms were evaluated for all models, and coefficients are only provided for those models in which the quadratic term was significant in the non-spatial model.
doi:10.1371/journal.pone.0033954.t002
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intuitive, herbaceous fuels tend to have low fuel moisture, facilitate

high wind speeds and fire spread, and have low heat requirements for

ignition, thus promoting longer fire seasons and high fire frequency

[29,30]. Grasslands also tend to ignite quickly, then carry fires into

shrublands or woodlands [31]. These results suggest a need to

reexamine the assumptions used in existing hazard maps and the

management practice of converting shrublands to grasslands.

Fire hazard in the CDF statewide maps, as with most hazard

maps [17–19,32], depends largely on the assumption that fuel

properties are the primary contributors to fire danger. However,

our empirical data indicate that, at least at the local scale

considered here, fuel was not as significant as measurable factors

related to the arrangement and location of structures. This is likely

because the influence of fuel is complex and interacts with other

risk factors [33]. Therefore, our empirical maps developed using a

more comprehensive set of predictor variables, including fuel type,

housing arrangement and location, and other environmental

variables, performed better in distinguishing hazardous from non-

hazardous areas.

Another reason for the discrepancy in map performance may be

related to differences in mapping approach: while our approach used

empirical data on actual structure loss, the statewide maps were

developed based on a priori assumptions of where hazard is expected

to be highest. At larger scales, such as the state level, the CDF fuel-

based maps would likely perform better at picking out where homes

are most vulnerable to fires. We also did not evaluate the CDF maps

developed for local responsibility areas, which may better capture

finer-scale patterns of hazard in local jurisdictions.

The fact that unburned structures in our analysis were more likely

to be located in ‘‘communities at risk,’’ whereas burned structures

were more likely to be located outside of high-risk areas is potentially

due to two reasons. At the most basic level, this may simply be caused

by an incorrect identification of communities at risk. However, we

caution that the discrepancy may also be due to scale effects and the

definition of ‘‘community at risk.’’ At a broad scale, ‘‘communities at

risk’’ are likely located within areas that generally have the potential

for hazardous fires, and places with more houses in such a danger

zone are more likely to be identified as a ‘‘community at risk.’’

However, at the structure level, low-housing density significantly

increases the chance a house will burn – while it decreases the

likelihood that at home will be included in a ‘‘community at risk.’’ In

summary, our results support the notion that property loss is a

function of many physical and biological factors, in addition to

characteristics of home construction and maintenance that we did

not consider, such as roofing, construction materials, and home

landscaping.

The effects of housing arrangement and location on the

likelihood that a house will be destroyed or damaged by wildfire

suggest that land use planning may be a critical tool for reducing fire

hazard. Restricting development from hazardous locations has been

effective for other hazards, such as flooding and the prevention of

building on floodplains [34]. In the case of fire, new structures

should be located and arranged in ways that not only minimize their

exposure to hazard, but may also limit the increase in fire

occurrence that often accompanies urban development. For

example, our results suggest that in both study areas, new

development would have a lower likelihood of burning if it were

located away from fire-prone areas, such as wind corridors or steep

slopes, and if new structures were arranged in intermediate-to high-

density neighborhoods designed to minimize the amount of

interface between homes and wildland vegetation. New develop-

ment within large, existing urban areas, which typically also have

better firefighter access, would also lower the likelihood of burning,

compared to new development in more isolated, remote settings.

Land use planning that considers minimizing future structure loss

and prioritizing other fire prevention actions would be more

informed with maps that reliably differentiate the most hazardous

locations than with maps currently used for this purpose. Although

the direction of influence was the same for most variables in the two

study regions, the relative importance varied, and the distance from

coast and elevation had opposite effects. This supports the notion

that hazard is place-specific [35], and fire hazard mapping should

therefore be individualized for specific landscapes.

Table 3. Percent deviance explained in generalized additive
models (GAMs) for structures that were destroyed or
damaged (Burned) and destroyed with the highest certainty
(Destroyed); and for burned structures analyzed using a
200 m buffer distance (200 m).

Burned Destroyed 200 m Relationship

Santa Monica Mountains

Fire frequency 2001 35.59 31.63 NA Positive

Distance coast 24.86 22.85 NA Intermediate

CDF fire threat 6.23 4.37 NA Intermediate

CDF fire threat people 5.69 5.01 NA Positive

CDF Communities at risk 0.42 0.81 NA Negative

Housing density 36.68 33.19 14.04 Intermediate

Distance housing cluster 1.08 1.46 14.23 Intermediate

Housing dispersion 3.18 2.23 4.24 Positive

Distance structure 1.85 2.17 NA Intermediate

Distance edge 24.92 33 16 Negative

Area of housing cluster 13.47 12.88 18.06 Negative

Surrounding fuel type 4.3 3.18 NA NA

Slope 19.66 17.79 18.31 Positive

Elevation 2.04 0.78 1.62 Negative

Southwestness 7.93 8.91 16.1 NA

Road length 11.4 11.2 13.98 Negative

San Diego County

Fire frequency 2001 10.2 10.6 NA Intermediate

Distance coast 30.0 28.19 NA Intermediate

CDF fire threat 21.8 20.4 NA Intermediate

CDF fire threat to people 23.9 24.1 NA Positive

CDF Communities at risk 0.0 0.02 NA Negative

Housing density 31.0 28.16 21.59 Negative

Distance housing cluster 3.2 2.92 0.97 Intermediate

Housing dispersion 3.3 2.85 8.62 Parabolic

Distance structure 18.7 15.73 NA Intermediate

Distance edge 30.5 28.74 54.76 Negative

Area of housing cluster 20.1 16.41 10.63 Negative

Surrounding fuel type 6.5 4.90 NA NA

Slope 11.4 13.94 10.61 Positive

Elevation 16.6 25.5 19.75 Positive

Southwestness 7.3 6.98 4.17 NA

Road length 20.9 19.6 15.4 Negative

The buffer distance used in all other analysis was 100 m. Relationship describes
the shape of the response curve for all models. Ïntermediate signifies a
nonlinear relationship in which values were highest at intermediate levels of the
variable. Values listed as NA in 200 m were for variables that were only analyzed
at the level of the individual house.
doi:10.1371/journal.pone.0033954.t003
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Materials and Methods

Data and digitizing structures
We explained property loss by comparing structures that were

burned (i.e., destroyed or damaged) by wildfires to those structures

that were unaffected. The likelihood of a house burning in a fire

has two major components: the first is the likelihood that there will

be a fire, and the second is the likelihood that a structure will burn

if there is a fire. That ‘total’ likelihood required us to include both

structures inside and outside of fire perimeters in the model. We

Figure 5. Fire hazard maps versus actual burned structures in the Santa Monica Mountains. (A) CDF ‘‘Fire threat’’ (B) CDF ‘‘Communities
at risk’’ (C) CDF ‘‘Fire threat to people (D) Empirically based map showing probability of structure being burned by fire (E) Structures that were
destroyed or damaged (red) and unaffected (blue) by wildfire from 2001–2010. CDF – California Department of Forestry and Fire Protection.
doi:10.1371/journal.pone.0033954.g005

Figure 4. Proportion of burned structures within broad fuels types in the Santa Monica Mountains and San Diego County.
doi:10.1371/journal.pone.0033954.g004
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also wanted to account for the full range of variation for the

explanatory variables because planning decisions occur at a

landscape scale, not just for a subset of structures within fire

perimeters. Therefore, we digitized and analyzed all residential

structures within the Santa Monica Mountains National Recre-

ation Area in Ventura and Los Angeles counties, California as well

as the portion of San Diego County that falls within the South

Coast Ecoregion. Using onscreen digitizing, we carefully scanned

the most recent aerial imagery available in Google Earth for each

study area and placed a point over every visible structure. We

digitized all structures, including homes, outbuildings, and guest

houses, because we assumed that the factors explaining which

homes burned were similar to those explaining the burning of

other structures. Because most of the vegetation in our study areas

is non-forested, there were very few occasions in which vegetation

canopy obscured structures in the imagery. Structures were in all

cases at least partly visible, even if they were covered by

vegetation, and we looked at earlier images available in Google

Earth to confirm where structures were located. The canopy cover

was generally lower farther back in time.

Due to the large number of structures in San Diego County, many

of which are located in high-density urban core areas, we used a

parcel map to facilitate the digitizing process. For small parcels (area

,900 m2, equivalent to one 30630 m pixel of the environmental

data, see below), we placed the point representing the structure in the

centroid of the polygon instead of digitizing the exact location of the

structure within the parcel boundary. We assumed the location of the

structure within the boundary of small parcels would not significantly

alter the overall calculations of spatial pattern among structures.

However, for large parcels, the location of the structure within the

parcel boundary may be important because the parcel may include

more than one pixel, and thus, the environmental data are associated

with the structure may depend on structure location. Distance

calculations to other structures could also be more substantially

influenced by the location of structures in large parcels, which is why

we analyzed the Google Earth imagery to place those structures

accurately. We did not digitize houses under construction at the date

the remote sensing imagery was recorded.

To identify burned structures, we developed an initial address

list and spatial database of structures destroyed or damaged by

fires from a variety of records, including official incident reports,

county assessors’ offices, public works departments, city records,

and newspaper reports. Because these records were incomplete,

we also used Google Earth imagery for a systematic visual analysis

to correct geocoded locations and to identify additional structures

that had not been documented. For this analysis, we identified

burned structures by comparing pre-fire to post-fire images that

are available in Google Earth. To develop a data set of houses to

inspect for property loss, we selected all structures that fell within

and up to 80 m outside any perimeter of a fire that occurred since

2001 in both study areas. We used 80 m because it is twice the

distance beyond which flame fronts are not expected to ignite

Figure 6. Fire hazard maps versus actual burned structures in San Diego County. (A) CDF ‘‘Fire threat’’ (B) CDF ‘‘Communities at risk’’ (C)
CDF ‘‘Fire threat to people (D) Empirically based map showing probability of structure being burned by fire (E) Structures that were destroyed or
damaged (red) and unaffected (blue) by wildfire from 2001–2010. CDF – California Department of Forestry and Fire Protection.
doi:10.1371/journal.pone.0033954.g006
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wood [36].The determination of destroyed or damaged structures

was based on data collected from official records combined with

visual inspection of imagery. Destroyed structures were those in

which the house had completely burned to the ground, whereas

damaged structures where those that had partially burned.

Because damaged structures were more difficult to identify in

the imagery, we ruled that if a fire had clearly burned into the

property (i.e., if vegetation had visibly been burned), the structure

was classified as damaged.

For both the destroyed and damaged structures, we assigned an

estimate of certainty for the classification and conducted sensitivity

analyses to test if results were similar for destroyed structures that

were classified with the highest level of certainty versus a complete

dataset with all destroyed and damaged homes at all certainty

levels. In our classification, we indicated ‘‘1’’ for uncertain if the

house was damaged or destroyed; ‘‘2’’ for fairly certain; ‘‘3’’ for

absolutely certain. Since the results were similar (Table 3), we used

the full dataset in our analyses to obtain the largest sample size.

Although rare, if two buildings burned on a parcel, we only

included one in our analysis. For those structures that burned in

more than one fire, which only occurred in San Diego, we only

used the data for the first fire to avoid double counting of

structures in the spatial analysis.

Explanatory variables
To fully explore the influence of housing arrangement and

pattern, we analyzed both the spatial relationships among

individual structure locations and the arrangement of structures

within housing clusters. Housing clusters were defined as groups of

houses with a maximum distance of 100 m from each house to any

other house [24]. We calculated these housing clusters by creating

a 100 m buffer around each structure and dissolving overlapping

boundaries. Thus, areas with many homes within 100 m of each

other constituted one large housing cluster, while smaller housing

clusters contained fewer or more isolated homes. This allowed

spatial analysis based on the spatial and biophysical properties of

the structure locations as well as spatial and biophysical properties

of the housing clusters within which structures were located. Thus,

some variables were calculated for the housing cluster in which the

structure was located and the values for that housing cluster were

assigned back to the structure. Other variables were calculated

only for the location in which the structure was located.

Because our objective was to better understand the landscape

factors that significantly contribute to the likelihood that a house

will burn in a wildfire, particularly focusing on those factors that

are relevant to land use planning, we only assessed variables

affecting exposure of structures to wildfires (i.e., fires spreading

into the property and reaching the structure, or embers landing on

a structure). We did not consider factors such as urban landscaping

or housing construction materials within the home ignition zone

that determine whether the house survived the exposure. To

evaluate the influence of housing arrangement and location on

susceptibility to wildfire, we considered a suite of variables

representing different spatial configurations and locations of

structures as well as additional environmental variables that may

affect property loss due to their potential control over fire spread

behavior, fuel moisture, or flammability [23,37] (Table 1).

Housing arrangement variables. We evaluated the area of

the housing cluster to test the hypothesis that small, isolated groups

of structures are more susceptible to wildfire than large groups of

structures. Housing density was calculated as the number of

structures divided by the area of the housing cluster. For every

Figure 7. The percent contribution of explanatory variables in Maxent empirical fire hazard model. CDF – California Department of
Forestry and Fire Protection.
doi:10.1371/journal.pone.0033954.g007
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structure, we calculated the distance to the edge of the housing

cluster to evaluate whether structures in the interior of housing

clusters were less susceptible to wildfire than structures at the edge.

To assess local spatial patterns, we calculated the distance from

each structure to its nearest neighbor, and for overall landscape

configuration of structures, we calculated the distance from each

housing cluster to the next nearest housing cluster. Finally, we

calculated the coefficient of variation, or, the standard deviation of

distance among structures in a housing cluster divided by the

mean to assess housing dispersion, or, regularity of housing

pattern.

Housing location variables. To test whether structures

located in fire-prone parts of the landscape were more likely to be

burned, we overlaid fire perimeter polygons compiled by the

California Department of Forestry (CDF)-Fire and Resource

Assessment Program and created a continuous raster map

representing the number of times an area had burned from the

beginning of record-keeping, 1878, until 2001. We did not include

any fires that occurred after 2001 to ensure that our count of fire

frequency was independent of those fires that burned the

structures in our analysis. We calculated the distance from the

coast for every structure as another way to test whether a

structure’s location influences its likelihood to be burned. In

southern California, a number of variables that influence fire

patterns, including climate, terrain, and vegetation distribution,

are correlated with the distance to the coast. Distance to the coast

is also correlated with housing patterns, and may influence how a

house is arranged relative to the major wind corridors in the

region [38]. Although the inclusion of weather data at the time of

fires would be more directly related to fire behavior and danger,

the high variability of weather over space and time limits the

ability to relate specific weather data to the place and time that

fires burn structures. First, we did not know the exact time that

fires burned structures, and thus could not retrieve the temporally

matching weather data. Second, weather stations are generally

located too far away from where fires burned homes to reflect local

variability in weather conditions.

Biophysical variables. Terrain-derived variables included

the average elevation and percent slope of the housing cluster as

well as a cosine-transformation of aspect to create an index of

‘southwestness,’ which could account for the influence of solar

radiation and aspect on fuel properties and fire behavior. For each

structure, we also determined fuel type in the surrounding by

identifying the most common fuel model within a 1 km buffer of

the structure. This buffer allowed us to identify the vegetation

types fires spread through before reaching the property. Our

objective for this analysis was to determine which broad-based fuel

classes were most closely associated with structure loss. If more

than one fuel type occurred in the buffer, we used the fuel type

present in the majority of the area. We obtained spatial fuel model

Figure 8. Distribution of actual burned structures in classes of statewide fire hazard maps. Proportion of structures burned (in red) or
unaffected (in blue) distributed within map classes of: (A) CDF ‘‘Fire threat’’ in Santa Monica Mountains. (B) CDF ‘‘Fire threa’’ in San Diego County. (C)
CDF ‘‘Fire threat to people’’ in Santa Monica Mountains (D) CDF ‘‘Fire threat to people’’ in San Diego County (E) CDF ‘‘Communities at risk’’ in Santa
Monica Mountains (F) CDF ‘‘Communities at risk’’ in San Diego County. CDF – California Department of Forestry and Fire Protection.
doi:10.1371/journal.pone.0033954.g008
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data, developed for fire behavior modeling, from statewide maps

developed by the U.S. Forest Service (N. Amboy) at 30 m

resolution. The fuel models provided in the USFS maps were

created through remote sensing and classified according to Scott

and Burgan [39]. From this map, we grouped together the fuel

models from broad fuel types (representing grassland, shrubland,

and timber). We also grouped agriculture, barren land, and urban

land into one type representing mostly urban landscaping and

impervious surface (i.e., with little wildland vegetation).

Firefighter access. As a way of indirectly assessing firefighter

access to the structure, we calculated the length of road within

each housing cluster using the 2000 US Topologically Integrated

Geographic Encoding and Referencing system TIGER/line files

from the US Census.

Statewide fire hazard maps
Statewide fire hazard maps were available online from the

California Department of Forestry and Fire Protection (CDF)

[20].We downloaded the Wildland Urban Interface (WUI) ‘‘fire

threat’’ data product that includes a series of maps that rank the

wildland fire threat to human development. The term ‘‘fire threat’’

in these maps is used analogously to the way we use the term fire

‘‘hazard’’ or, a phenomenon or place where harm is likely to

occur.

The ‘‘fire threat’’ map is based on the hazard ranking of

different fuels types combined with the fire rotation period, or, the

average area burned during the period of record for different

vegetation types. Fuels types with higher fuel loads and vegetation

types that burned most frequently were considered most

hazardous. The ‘‘fire threat to people’’ map is based on a cost-

distance calculation that estimates distances from areas of high fire

hazard. As an example, the highest ‘‘fire threat to people’’ is

calculated as a maximum of 2400 m from ‘‘extreme threat’’ in the

fire threat map. Finally, the ‘‘communities at risk’’ map depicts

U.S. Census communities with more than 1 house per 8.09 ha

(20 acres) that are located in areas with ‘‘high fire threat to

people.’’

The CDF provides additional fire hazard severity maps

developed separately for state and local responsibility areas. The

finer-scale maps for local responsibility areas, which include

incorporated cities, cultivated agricultural lands, and portions of

the desert, are limited in extent and only overlap a small portion of

our study areas. Due to the limited extent of the local responsibility

area maps, and the fact that the state responsibility maps were still

being refined, we did include these in our analysis. Their proposed

modeling approach will be based upon the existing fire threat and

communities at risk maps and will be refined to include additional

methods that characterize brand production from vegetative fuels.

To evaluate how well the CDF statewide fire hazard maps

corresponded to actual burned structures, we included the three

maps as predictor variables in our statistical analyses and

quantified the distribution of burned and unaffected structures

within the different classes of each map.

Analysis
To identify the variables that best explain property loss and to

estimate the relative contribution of each variable, we developed

generalized additive models (GAMs) using a binary response (i.e.,

house burned or unaffected by fire) and logit link. We used three

target degrees of freedom for smoothing splines for our continuous

explanatory variables. Because we wanted to compare the

independent relative variance explained for all explanatory

variables, we estimated separate regression models for each

variable. However, we also calculated the correlation coefficients

among all variables and developed multiple-regression models

with non-correlated variables for each study area. We used a

stepwise selection procedure, entering variables according to

amount of deviance explained and exploring both forward and

backwards directions. We used AIC as the selection criterion for

variable selection. To develop the models, we split the data for

training and testing (withholding 20% of the data for testing) so we

could calculate the area under the curve (AUC) of receiver

operating characteristic (ROC) plots on an independent dataset to

quantify model performance.

We used GAMs because prior studies reported nonlinear

relationships between fire patterns and many of our predictor

variables [7,23,24]. Unlike parametric statistical methods, such as

generalized linear models (GLMs), in which nonlinear relation-

ships are specified a priori (e.g., through polynomial terms) in the

model, GAMs allow the structure of the data to determine the

shape of the response curves. Thus, GAMs provide a more flexible

and automated approach for identifying and describing nonlinear

relationships [40,41]. We used the GAMs to estimate the shape of

response curves and to calculate deviance explained (D2,

analogous to R-squared in linear regression) for all explanatory

variables.

Although non-parametric methods, such as GAMs, tend to be

less sensitive to the effects of spatial autocorrelation than other

model approaches [42], we wanted to ensure that spatial

autocorrelation did not significantly influence the results of our

analysis. The main concerns about spatial autocorrelation in

regression models are inflated significance values and biased

coefficients [42,43]. GAMs do not estimate regression coefficients,

which are replaced with smoothing functions. This is why we also

fit GLMs to our data because they are parametric models similar

to GAMs, but they estimate coefficients. Therefore, the GLMs

allowed us tocheck the influence of autocorrelation on both

coefficients and the significance of variables. The GLMs also

allowed us to test whether our results were robust by comparing

two modeling methods. We first developed non-spatial GLMs, and

fit linear and quadratic terms for all variables (except for fuel type,

which was categorical). After detecting residual autocorrelation in

these nonspatial models using Moran’s I [43], we calculated an

autocovariate term to account for the influence of neighboring

values on predictions, and included as the term as an additional

explanatory variable in models. To calculate the autocovariate

term, we specified a neighborhood radius of 1, which finds the

minimum distance for which all observations (i.e., structure

locations) are linked to at least one neighbor. The influence of

structures located within any neighborhood radius was weighted

by inverse distance. . After fitting these autocovariate models, we

used Moran’s I to recheck for spatial autocorrelation of model

residuals, compared the coefficients to the nonspatial models, and

checked variable significance after incorporating the autocovariate

term..All model fitting and evaluation were accomplished using

the gam, spdep, vegan, and ROCR packages for R [44].

Empirical fire mapping
To develop empirical fire hazard models and maps, we selected

Maxent [45], a machine-learning method that is best recognized

for creating species distribution models and maps. We selected

Maxent because it outperforms other presence-only and presence-

background species distribution modeling methods [41] and has

been applied successfully to map the distribution of fire [46].

Maxent assumes that the best approximation of an unknown

distribution (e.g., fire hazard) is the one with maximum entropy.

The model iteratively evaluates contrasts between values of

explanatory variables at locations of the response variable (i.e.,
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burned structures) and for averages of the explanatory variables

across the entire study area. The output is an exponential function

that assigns a hazard probability (i.e., probability of structure being

burned) to each site or cell of a map. In the output map, areas of

predicted high risk that do not have structures on them represent

environmental conditions similar to those in which structures have

actually burned.

Because mapped predictor variables were required for the

modeling, so that conditions similar to those where structures were

burned could be delineated continuously across the landscape, we

created maps representing a subset of the variables that we

explored with the regression analysis. These variables represented

a combination of structure arrangement, location, and biophysical

variables, including: interpolated structure density, distance to

coast, fuel type, slope, historical fire frequency, and southwestness.

We developed models that included CDF fire hazard maps as

predictors to test their importance relative to the other predictor

variables. However, for generating maps and quantifying model

performance, we only used models that did not include CDF

predictor variables.

Sensitivity tests
The results of our analysis may have been affected by the size of

the buffer that we used around structures to create housing

clusters, the degree of impact of fire on the structure (i.e., des-

troyed or damaged), and certainty of the classification (i.e., 1–3).

Therefore, to evaluate how sensitive our results were to these

variables, we created housing clusters around structures using a

200 m buffer and compared the regression results for which

housing cluster was relevant in the to those obtained when using a

100 m buffer. We also performed separate regressions using only

those structures that had been destroyed with complete certainty (a

‘‘3’’) and compared those to the regressions of all burned structures

at all certainty levels. For the Maxent analysis, we also compared

models using only structures that were destroyed with the highest

level of certainty to models using all burned structures at all

certainty levels.
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