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Abstract

Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple
sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we
examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was
associated with reduced central nervous system (CNS) inflammation, decreased Th1 and Th17 responses, and an increase in
regulatory T cells (Treg). In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive
recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC) that included
a decrease in CD11c+CD11b+CD4+ dendritic cells (DC) and an elevation of CD11bhiGr1hi monocytes. CD11b+ cells from these
mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased
production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-
treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both
APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on
T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type
II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were
obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its
effects on cells of the innate immune system, and may not influence T cells directly.
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Introduction

Laquinimod (N-ethyl-N-phenyl-5-chloro-1, 2-dihydroxy-1-

methyl-2-oxo-quinoline-3-carboxamide) is a novel oral agent with

immunomodulatory properties that is currently under evaluation

for treatment of relapsing-remitting (RR) multiple sclerosis (MS)

and other autoimmune diseases [1–3]. Laquinimod is structurally

related to roquinimex (linomide), which demonstrated efficacy in

MS [4], although its development was halted after unanticipated

serious adverse events occurred in a phase III trial [5]. In

screening a large number of chemically modified quinoline-3-

carboxamides, laquinimod was discovered to have less toxicity and

greater efficacy than linomide in the MS model, experimental

autoimmune encephalomyelitis (EAE) [6]. Laquinimod has since

shown efficacy in phase II and phase III MS clinical trials, without

evident immunosuppression or significant toxicities [1,2,7].

Studies in EAE indicate that laquinimod can promote immune

modulation and neuroprotection [8,9]. Laquinimod inhibited

development of EAE [9–11] and suppressed production of

proinflammatory cytokines [8,9,12]. However, those studies did

not address the mechanisms responsible for alteration of T cell

responses. It is possible that laquinimod could act directly on T

cells, or modulate T cell responses through its effects on accessory

cells. In this regard, it is now understood that some medications

currently used in MS treatment exert effects through antigen

presenting cells (APC) [13,14], which then contribute to T cell

immune modulation [13,15].

In this study, we investigated laquinimod’s mechanism of action

for immune modulation. Oral laquinimod treatment initiated

during remission prevented further relapses and reduced central

nervous system (CNS) inflammation. In vivo laquinimod treatment

was associated with reduced proinflammatory Th1 and Th17
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responses, elevation of CD4+CD25+Foxp3+ regulatory T cells

(Treg), and alterations in dendritic cells (DC) and monocyte

subpopulations. These myeloid cells exhibited an anti-inflamma-

tory (type II) cytokine and signaling profile [16,17]. When used as

APC, they promoted development of Treg and inhibited

differentiation of proinflammatory T cells, regardless of whether

or not T cells were exposed to laquinimod. Our results

demonstrate that laquinimod modulates T cell immune responses

through a direct effect on myeloid APC.

Results

Laquinimod reverses EAE and inhibits pathogenic T cell
immune responses

Laquinimod was tested in prevention of chronic EAE in two

mouse strains, DBA/1 (H-2q) and C57BL/6 (H-2b). When

immunized with recombinant MOG 1–125, DBA/1 mice are

known to develop a severe disease course [18]. As shown in

Figure 1A, oral laquinimod treatment prevented development of

EAE in DBA/1 mice. Similarly, oral laquinimod treatment

prevented induction of MOG p35-55-induced EAE in C57BL/6

mice.(Fig. 1B). Very few infiltrating CD4+ T cells were detected in

the CNS of laquinimod-treated mice, whereas abundant CNS

infiltration of CD4+ Th1, Th17 and GM-CSF expressing cells

were detected in vehicle-treated mice (Fig. 1C, p,0.01). Recent

studies demonstrated the important role of GM-CSF on the

encephalitogenicity of Th1 and Th17 cells in EAE [19,20]. To

determine whether laquinimod prevents EAE by modulating

peripheral T cell immune responses important for the develop-

ment of the disease, CD4+ splenocytes from mice treated with

laquinimod or vehicle were analyzed for their inflammatory

profile. Preventive treatment with laquinimod significantly de-

creased the number of IFN-c and IL-17 producing cells (Fig. 1D,

p,0.01). In addition to a decrease in Th1 and Th17 responses, we

observed a corresponding increase in CD4+CD25+Foxp3-express-

ing regulatory T cells (Treg, Fig. 1D, p,0.01). As we observed that

laquinimod treatment inhibited proinflammatory T cell responses,

we addressed whether it altered the encephalitogenic potential of

myelin-specific T cells when transferred to naı̈ve mice. As shown

in Figure 1E, PLP-specific T cells from laquinimod-treated mice,

which produced reduced quantities of proinflammatory cytokines,

were less encephalitogenic than T cells from vehicle-treated mice

(Fig. 1E, Fig. S1).

It was demonstrated that laquinimod treatment prior to, or at

the time of onset of clinical signs, suppressed EAE development in

C57BL/6 mice immunized with MOG p35-55 [9]. In a study of

EAE induced by myelin basic protein in B10.RIII mice, it was

observed that laquinimod treatment after onset, but before peak of

clinical disease, prevented subsequent relapses [21]. We examined

whether laquinimod could reverse established RR-EAE in SJL/J

mice. When oral laquinimod treatment was initiated during

remission after the first exacerbation, it prevented subsequent

relapses (Fig. 2A). Histological analysis of these mice revealed a

significant reduction in CNS inflammatory lesions (Fig. 2B).

Laquinimod mediates T cell immune responses via a
direct effect on APC function

We next addressed whether laquinimod mediated immune

modulation by acting on T cells directly or through alteration of

APC function. Purified CD11b+ cells from laquinimod- or vehicle-

treated mice were tested as APC for stimulation of naı̈ve MOG

p35-55-specific (2D2) T cells under Th1- or Th17-polarizing

conditions. In a reciprocal manner, we examined how purified

naı̈ve MOG p35-55-specific T cells from vehicle- or laquinimod-

treated 2D2 mice responded to CD11b+ APC from untreated

mice. CD11b+ APC from laquinimod-treated mice, but not from

untreated mice, inhibited the development of Th1 (Fig. 2C) and

Th17 cells (Fig. 2D). In contrast, no difference in Th1 and Th17

polarization was observed when purified MOG-specific T cells

from laquinimod-treated mice were cultured with untreated

CD11b+ APC (Fig. 2C, 2D). In line with these findings,

proliferation of 2D2 T cells was reduced when CD11b+ cells

from laquinimod-treated mice were used as APC, although no

effect on T cell proliferation was observed when 2D2 T cells from

laquinimod-treated mice were cultured with vehicle-treated

CD11b+ cells or activated by anti-CD3/anti-CD28 in the absence

of APC (Fig. S2).

As our data indicated that laquinimod-mediated T cell immune

modulation was driven through its influence on APC, we

investigated how oral laquinimod treatment affected individual

subsets of myeloid APC. First, we examined classical CD11chigh

dendritic cells (cDC), including CD8+ cDC (CD8a+ CD42

CD11b2) and CD4+ cDC (CD4+ CD82 CD11b+). A significant

decrease of CD4+ cDC, which are particularly potent APC among

subpopulations of DC [22,23], was observed after seven days of

laquinimod treatment. In contrast, we did not detect significant

changes in the frequency of CD8+ cDC (Fig. S3). A similar pattern

of DC subpopulations and T cells was observed in laquinimod-

treated mice that had been immunized for EAE induction (data

not shown). Further, we did not observe alterations in the

frequencies of CD4+ or CD8+ T cells, showing that laquinimod

treatment alone did not alter T cell homeostasis in naı̈ve mice

(Fig. 3A, Fig. S3). Interestingly, laquinimod treatment also did not

alter proliferative responses in rats immunized with the enceph-

alitogenic peptide, MBP p68-86 [24].

CD11b+Gr1+ cells, known as myeloid-derived suppressor cells,

can exhibit regulatory function [25–27]. Upon laquinimod

treatment, we observed a significant increase in frequency of

CD11b+Gr1+hi cells in naı̈ve mice (Fig. 3B). As oral laquinimod

treatment induced changes in both CD11c+ and CD11b+ APC

subsets, we evaluated whether alteration of APC function was

unique, or common to both subpopulations. Here, we evaluated

whole splenic CD11b+, CD11b+CD11c2 and CD11c+ cells from

laquinimod-treated mice. Under either proinflammatory-polariz-

ing (Fig. 3C–E) or non-polarizing conditions (Fig. 3F), each of

these myeloid APC subpopulations inhibited differentiation of Th1

and Th17 cells (Fig. 3C–F). An expansion in frequency of Treg

was observed when we examined cultures using CD11b+ cells as

APC (Fig. 3F). Our results demonstrate that T cell immune

modulation induced by oral laquinimod treatment is not limited to

its effects on one specific myeloid APC subset.

Laquinimod induces type II monocytes and DC
T cell immune modulation in glatiramer acetate (GA) therapy of

MS and EAE is associated with expansion of anti-inflammatory

type II (M2) monocytes that produce less proinflammatory

cytokines and elevated levels of anti-inflammatory cytokines

[16,17,28]. As myeloid APC in laquinimod treatment directed T

cell immune modulation, we evaluated the cytokines produced by

monocytes and DC. As shown in Figure 4A, both

CD11b+CD11c2 monocytes and CD11c+ DC from laquinimod-

treated naive (unimmunized) mice exhibited a type II phenotype,

characterized by reduced cellular production of proinflammatory-

polarizing cytokines IL-6, IL-12/23 (p40) and TNF, and a

corresponding increase in anti-inflammatory IL-10. This type II

cytokine profile was also detected in myeloid APC subsets isolated

from laquinimod-treated mice immunized with MOG p35-55 (Fig.

S4). We examined if laquinimod treatment alone influences

Laquinimod in CNS Autoimmunity
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expression of MHC II, CD40, CD80, CD86 and PD-L1, an

inhibitory costimulatory molecule. Laquinimod treatment of naive

mice was consistently associated with a small, but significant,

reduction in CD80 (Fig. 4B). Our results clearly demonstrate that

oral laquinimod treatment promotes development of both type II

monocytes and type II DC, which are capable of inhibiting

proinflammatory myelin-specific T cell responses.

As laquinimod inhibited proinflammatory cytokine production

by monocytes and DC, we examined whether in vivo laquinimod

treatment altered key signaling pathways that participate in

expression of these molecules. Activation of the Janus kinase

signal transducer and activator of transcription (JAK-STAT)

pathway is required for expression of several proinflammatory

cytokines of APC, thus influencing T-cell differentiation [29]. As

shown in Figure 4C, LPS-induced STAT1 phosphorylation

(activation) was reduced in CD11b+ monocytes isolated from

laquinimod-treated mice. In contrast, in vivo laquinimod treat-

ment did not alter phosphorylation of p38 mitogen-activated

protein (MAP) kinase, representing another signaling cascade

involved in stress responses. Thus, our data indicate that in vivo

laquinimod treatment alters activation of select signaling pathways

in myeloid type II APC.

In order to investigate whether laquinimod-induced type II

myeloid APC could modulate clinical responses in vivo, we

isolated type II CD11b+ monocytes from laquinimod-treated mice

and adoptively transferred them into recipient mice with

established EAE. These type II CD11b+ monocytes ameliorated

clinical (Fig. 4D) and histological signs (Fig. 4E) of EAE in

recipient mice.

Discussion

In this report, we have observed that oral laquinimod treatment

can prevent or reverse established EAE. In vivo laquinimod

treatment was associated with alterations in myeloid APC

subpopulations that included a reduction in CD4+ cDC, a potent

DC subpopulation. We have shown that laquinimod treatment

promoted development of anti-inflammatory type II monocytes

and DC, reminiscent of our previous work demonstrating that in

vivo treatment of mice with glatiramer acetate (GA, copolymer-1,

CopaxoneH), an approved therapy for RRMS [30], induced

Figure 1. Laquinimod prevents EAE and decreases encephalitogenicity of T cells. DBA/1 (A) mice and C57BL/6 mice (B) were treated daily
with laquinimod (25 mg/kg, n = 6/group) or vehicle (water, n = 6/group) starting from the day of immunization with rMOG 1-125 (DBA/1) or MOG
p35-55 (C57BL/6). Fourteen days after immunization, CNS infiltrating cells (C) and spleen cells (D) from C57BL/6 mice treated with laquinimod or
vehicle were evaluated for secretion of IFN-c, IL-17, GM-CSF and for expression of CD25 and Foxp3 by CD4+ cells. Representative FACS staining is
shown including quantification (n = 4–5 mice per group). (E) Laquinimod decreases pathogenic potential of T cells. Splenocytes and lymph node cells
were isolated from PLP-immunized mice treated with laquinimod or vehicle. Cells were restimulated in vitro, and 107 cells were transferred into naı̈ve
SJL/J recipients (n = 5/group). Data are representative of two independent experiments. For EAE disease course, mean disease score 6 s.e.m. are
displayed; for other experiments mean 6 s.d. *P,0.05, **P,0.01, Mann-Whitney U test.
doi:10.1371/journal.pone.0033797.g001
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differentiation of anti-inflammatory type II monocytes [17].

Laquinimod did not alter numbers of CD4+ T cells. In a previous

study, it was observed that laquinimod treatment reduced

secretion of IFN-c and IL-17 [9]. Here, we have demonstrated

that oral laquinimod administration in EAE was associated with

anti-inflammatory T cell polarization as demonstrated by

reductions in frequencies of proinflammatory Th1 and Th17 cells

in vivo, and an increase in Treg. By studying how in vivo

laquinimod treatment influenced individual populations of mye-

loid APC or naive myelin-specific T cells, we demonstrated that T

cell immune modulation was linked to induction of type II myeloid

APC, but not from its effects on T cells alone. Thus, at physiologic

levels achieved by in vivo treatment, laquinimod impacts APC, but

may not influence T cells directly.

In general, CD4+ and CD8+ T cells, which express antigen-

specific a/b+ T cell receptors, recognize peptide fragments of

processed proteins only in association with polymorphic MHC

molecules on APC [31]. In this regard, GA, which is a

polypeptide-based therapy, provides antigenic determinants and

leads to expansion of GA-reactive T cells that can be identified in

therapy of MS [32–34] or EAE [17,35,36]. The requirement for

MHC II on GA-induced type II monocytes was discovered at the

time adoptive transfer of monocytes was first developed as an

experimental paradigm to study how therapeutics can influence

APC-T cell interaction in vivo [17]. In this regard, GA-induced

type II monocytes from wild-type mice, but not from mice

selectively deficient in MHC II, induced T cell immune

modulation (i.e. expansion of Treg and Th2 cells) and reversed

EAE in recipient mice. However, as a synthetic heterocyclic

molecule, laquinimod itself is unlikely to serve as a target for T cell

recognition. Use of the EAE model permits investigators to

characterize how laquinimod can alter T cell responses that are

elicited by direct immunization with myelin peptides or proteins, a

situation not encountered in MS, a naturally occurring disease.

Evaluating whether laquinimod treatment of MS modulates T cell

function in the absence of active antigenic stimulation may be

Figure 2. Laquinimod reverses RR-EAE and inhibits inflammatory T cell responses via a direct effect on myeloid APC. (A) Daily oral
laquinimod treatment reverses relapsing remitting EAE. SJL/J mice were immunized with PLP p139-151 and treated with laquinimod or vehicle (n = 9)
at the remission phase (arrow points to the start of the treatment). (B) Lesion quantification showed reduced total number of meningeal and
parenchymal inflammatory foci in SJL/J mice treated with laquinimod after first exacerbation of the disease. Representative Luxol fast blue-H&E
staining of the cerebellum is shown. (C, D) Laquinimod-treated myeloid APC inhibit differentiation of naive T cells into Th1 and Th17 cells. Whole
splenic in vivo laquinimod-treated or untreated CD11b+ cells were used as APC in co-culture with untreated naive (CD4+CD442CD62L+) T cells from
MOG p35-55 TCR-transgenic mice (2D2). Conversely, naive T cells were isolated from laquinimod- or vehicle-treated 2D2 mice and cultured with
purified vehicle-treated CD11b+ cells and Ag (MOG p35-55). Polarization of naı̈ve T cells into Th1 lineage was induced by IL-12 (C) and polarization
into Th17 lineage was induced by IL-23, IL-6 and TGF-b (D). Intracellular cytokine staining for IFN-c and IL-17 after three days in culture is shown. For
all experiments, data shown are representative of two independent experiments. For EAE disease course and other experiments, mean disease score
and mean 6 s.e.m. are displayed; *P,0.05, Mann-Whitney U test.
doi:10.1371/journal.pone.0033797.g002
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Figure 3. Laquinimod alters myeloid APC subsets and inhibits Th1 and Th17 polarization of myelin-specific T cells. All experiments
were conducted with myeloid-APC purified (purity $95%) by MACS sorting from mice treated with laquinimod or vehicle for ten days. (A) DC were
isolated from the spleen and defined as CD11chigh. Percentages of splenic CD11chigh CD4+ cDC (CD4+CD11b+) from laquinimod-treated or vehicle-
treated mice (n = 4), and percentage of total splenic CD4+ cells from laquinimod- and vehicle-treated mice (n = 5) are shown. (B) Splenic and blood
CD11b+ cells were stained for Gr1. Relative percentages of CD11b+Gr1hi (arrow points to Gr1hi cells) out of total splenic and blood CD11b+ cells from
mice treated with laquinimod (dark grey bar) or vehicle (white bar) is shown (n = 4). (C–E) Purified splenic CD11b+, CD11b+CD11c2 (C, D) or CD11c+ (E)
cells were used as APC in co-culture with naı̈ve CD4+ 2D2 T cells and Ag (MOG p35-55). Th1 and Th17 differentiation were induced as described

Laquinimod in CNS Autoimmunity
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more challenging. Our observations that in vivo laquinimod

treatment of unimmunized mice modified expression of myeloid

subpopulations and APC function should focus attention on

exploring the mechanism of action of laquinimod in MS therapy

on cells of the innate immune system. Our demonstration that

laquinimod has a principle effect on innate immunity provides

above. Intracellular cytokine staining shows the percentage of IL-17 and IFN-c after 3 days in culture (gate). (F) Purified splenic CD11b+CD11c2 or
CD11c+ cells were used as APC in co-culture with naı̈ve CD4+ 2D2 T cells under non-polarizing conditions. FACS analyses after four days in culture for
IL-17 and IFN-c and for Foxp3 by CD4+ cells is shown. Data shown as mean 6 s.e.m. are representative of at least two independent experiments;
*P,0.05, Mann-Whitney U test.
doi:10.1371/journal.pone.0033797.g003

Figure 4. Laquinimod-induced type II (M2) monocytes reverse established EAE. Laquinimod-induced anti-inflammatory cytokine shift in
CD11b+CD11c2 and CD11c+ cells. (A) FACS analysis of intracellular production of TNF, IL12/23p40, IL-6 and IL-10 by CD11b+CD11c2 and CD11c+ cells
isolated from spleens of naive (unimmunized) mice treated with laquinimod or vehicle. (B) Cell surface FACS analysis of MHC II, proinflammatory and
inhibitory costimulatory molecules on CD11b+CD11c2 cells. (C) In vivo laquinimod treatment affects signaling pathways that participate in
proinflammatory cytokine production. Protein extracts were isolated from peritoneal macrophages of naı̈ve C57BL/6 mice treated with laquinimod or
vehicle and stimulated with LPS for various time points. Phosphorylated (P) STAT1, (P) p38-MAPK, Pan-STAT1 and Pan-p38-MAPK were detected by
Western blot analysis. (D) CD11b+ cells from laquinimod-treated donor mice reversed established EAE. 56106 purified splenic CD11b+ cells from mice
treated with laquinimod or vehicle were injected i.v. into recipient C57BL/6 mice immunized with MOG p35–55 after they developed a disease grade
of 2 (black arrow indicates time point of adoptive transfer, (n = 5/group). (E) Quantification showed reduced total number of inflammatory foci after
adoptive transfer of in vivo laquinimod treated CD11b+ cells into C57BL/6 mice immunized with MOG p35-55. Data shown in panels above are
representative of three independent experiments. For EAE disease course, mean disease score 6 s.e.m. are displayed; *P,0.05, **P,0.01 Mann-
Whitney U test.
doi:10.1371/journal.pone.0033797.g004
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mechanistic insight relevant to results from the two recent phase

III clinical trials in RRMS that tested laquinimod (0.6 mg daily)

and indicated that dose provided a more pronounced effect on

disability progression than relapse rate reduction [37,38]. Further,

our findings also suggest that laquinimod could be beneficial in

secondary progressive MS, a phase that involves chronic

inflammation and neurodegeneration that is thought to be driven

by innate immunity [39].

A recent study evaluated the potential role of brain-derived

neurotrophic factor (BDNF) in laquinimod treatment [40]. A

small, but significant increase in serum BDNF levels was detected

in laquinimod-treated MS patients. These authors also evaluated

the role of BDNF in laquinimod treatment of EAE. It is known

that BDNF-deficient mice develop more severe chronic EAE [41].

They demonstrated that monocytes from laquinimod-treated

donor wild-type mice, but not monocytes from laquinimod-treated

BDNF-deficient mice or from untreated wild-type mice, amelio-

rated EAE in recipient mice. The authors concluded that the

effects of laquinimod on monocytes are BDNF-dependent.

However, they did not transfer untreated BDNF-deficient

monocytes, and therefore did not distinguish the influence of the

production, or the absence, of BDNF alone on monocyte function

independent of laquinimod treatment. In order to attribute the

effect of laquinimod to BDNF production by monocytes using this

experimental approach, it is advantageous to not only compare

laquinimod-treated and untreated wild-type monocytes to laqui-

nimod-treated BDNF-deficient monocytes, but to simultaneously

compare the adoptive transfer of untreated BDNF-deficient

monocytes to both untreated wild-type monocytes and to

laquinimod-treated BDNF-deficient monocytes.

In this investigation, we have identified cellular mechanisms

that contribute to immune modulation by laquinimod, focusing on

the interaction of myeloid APC and T cells. Type II monocyte

differentiation was associated with reduced production of proin-

flammatory IL-6, IL-12/IL-23 (p40) and TNF, and increased

production of anti-inflammatory IL-10. It is important to

characterize the molecular pathway(s) utilized by laquinimod for

this type II cytokine profile. Laquinimod is not known to have a

well-defined target, although some in vitro data suggest that

quinoline-3-carboxamides bind S100A9, a calcium binding

protein [42] that influences cell signaling. Other results indicate

that this class of molecules may alter NF-kB signaling [43]. We

have begun evaluating the signaling events contributing to type II

APC differentiation in monocytes/macrophages isolated from

laquinimod-treated mice. First, we focused on activation of

STAT1, a transcription factor that participates in expression of

several proinflammatory cytokines [44,45]. Laquinimod treatment

suppressed inducible STAT1, but did not alter activation of p38

MAPK, another signaling pathway involved in expression of

proinflammatory cytokines that can be regulated independently or

coordinately with STAT1 [46]. Interestingly, inhibition of STAT1

and p38 MAPK signaling was observed in development of type II

monocytes by GA [17] (N. Molnarfi and S.S. Zamvil, unpub-

lished), suggesting that the signaling events modulated by GA and

laquinimod during type II APC differentiation are not the same.

Our observations represent only the initial steps in understanding

how laquinimod influences intracellular signaling pathways in type

II myeloid cell differentiation. Although we used both in vivo and

ex vivo analyses to evaluate type II myeloid cells, laquinimod was

only administered in vivo, which we believe more closely reflects

the physiology of laquinimod treatment in MS. In contrast with

previous studies [9,11,21,40], we evaluated APC-T cell interac-

tion, the interface between innate and adaptive immunity,

primarily by in vivo laquinimod treatment in the absence of

peptide immunization, and therefore obviating concern of

adjuvant. Our findings in this report support evaluation of type

II myeloid cells in laquinimod treatment of MS patients.

Materials and Methods

Mice
C57BL/6, DBA/1 and SJL/J female mice, 5 to 8 weeks of age,

were purchased from Jackson Laboratories (Bar Harbor, MN,

USA). MOG p35–55–specific TCR transgenic 2D2 mice were

provided by V.K. Kuchroo (Harvard Medical School, Boston,

MA).

Ethics Statement
The experimental protocol adheres to guidelines for animal use

in research set by the National Institutes of Health and was

approved by the Office of Research, University of California San

Francisco (UCSF) Institutional Animal Care and Use Committee

(IACUC Approval AN081032-03B).

Peptides
Mouse MOG p35-55 (MEVGWYRSPFSRVVHLYRNGK)

and mouse PLP p139-151 (HSLAKWLGHPDKF) were synthe-

sized by Auspep (Parkville, Australia). Recombinant rat MOG

(rMOG 1-125) was synthesized by AnaSpec (Fremont, CA).

EAE Induction
Seven to 10-week-old female C57BL/6, DBA/1 or SJL/J mice

were injected subcutaneously with 50 mg MOG p35-55, 50 mg

rMOG or 100 mg PLP p139-151, respectively, in complete

Freund’s adjuvant (DIFCO Laboratories, Detroit, MI). After

immunization and 2 days later, mice received 200 ng (C57BL/6)

or 100 ng (SJL/J) pertussis toxin intraperitoneally (i.p.). For

adoptive transfer, donor SJL/J mice were immunized as described

above and treated daily with laquinimod or vehicle. 10 days later,

cells from draining lymph nodes and spleen were isolated, re-

stimulated for 48 h (20 mg/ml PLP p139-151), and injected i.p.

into naive SJL/J recipients (107 cells per mouse). Animals were

observed daily and clinical scores were assessed as follows: 0, no

signs; 1, decreased tail tone; 2, mild monoparesis or paraparesis; 3,

severe paraparesis; 4, paraplegia and/or quadraparesis; and 5,

moribund or death. All experiments were carried out in

accordance with guidelines prescribed by the Institutional Animal

Care and Use Committee at the University of California, San

Francisco.

Laquinimod treatment
Laquinimod (TEVA Pharmaceuticals Industries, Ltd (Israel))

was dissolved in purified water and administered daily (25 mg/kg)

by oral gavage. This dose was chosen as it was previously observed

that lower doses were less effective [9]. Treatment started at the

day of EAE induction or after first disease exacerbation. Control

mice received a similar volume of vehicle (water) daily [42]. In

other experiments (e.g., monocyte transfer, cytokine analysis, in

vitro APC-T cell assays), mice were treated for 10 days with

laquinimod or vehicle before isolation of specific cell subsets.

Generation of Th1 and Th17 cells
CD4+CD62L+CD44+ naı̈ve T cells were magnetically sorted

from TCR-transgenic 2D2 mice (purity greater than 96%) using

magnetic beads (Miltenyi Biotec, Auburn, CA) and stimulated with

MOG p35-55 (20 mg/ml) in the presence of antigen-presenting

cells (APC, e.g., MACS-sorted CD11b+, CD11c+ cells) at a T cell/
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APC ratio of 1:5. Th17 differentiation was induced by addition of

3 ng/ml TGF-b, 20 ng/ml IL-23, 20 ng/ml IL-6 (R&D Systems,

Minneapolis, MN). For Th1 cells, 10 ng/ml IL-12 (R&D) were

added. Cells were harvested between days 3 and 4, and cytokine

production was analyzed using a FACS Canto flow cytometer

(BD, San Jose, CA).

Monocyte isolation and co-culture with naı̈ve T cells
Splenic CD11b+ and CD11c+ cells were separated from

laquinimod or vehicle-treated mice using magnetic beads

(Miltenyi). We evaluated monocyte and dendritic cell preparations

for expression of CD11b, CD11c, B220, CD3 (BD Pharmingen,

San Diego, CA). Purity of monocytes and dendritic cells used as

APC was routinely greater than 95%. CD11b+, CD11b+CD11c2

or CD11c+ APC were co-cultured with T cells from 2D2

transgenic mice and their respective antigen for 3 days at a ratio

of 25:1.

T cell proliferation
Purified CD11b+ cells from laquinimod- or vehicle-treated mice

were cultured with naı̈ve CD4+ cells isolated from laquinimod- or

vehicle-treated 2D2 mice and antigen (MOG p35-55, 20 mg/ml).

Cells were cultured in 96-well microtitre plates at a concentration

of 0.256106 cells/ml. Culture medium consisted of RPMI 1640

supplemented with L-glutamine (2 mM), sodium pyruvate

(1 mM), penicillin (100 U/ml), streptomycin (0.1 mg/ml), 2-

mercaptoethanol (561025 M) and 10% (v/v) fetal bovine serum.

Cells were incubated for 48 h and pulsed for 18 h with 1 mCi per

well of [3H]-thymidine before harvesting.

Adoptive transfer of monocytes
Monocytes were isolated from the spleens of 8–10-week-old

mice treated with laquinimod or vehicle for 10 days. Monocytes

were enriched by magnetic cell sorting using CD11b+ magnetic

beads (Miltenyi), resulting in a general purity of at least 95%.

Recipient C57BL/6 mice were immunized with MOG p35–55,

randomized at EAE score 2 and injected intravenously (i.v.) with

56106 laquinimod- or vehicle-treated monocytes.

Isolation of CNS infiltrating mononuclear cells
Isolation of CNS infiltrating cells was performed as previously

described [47]. Briefly, mice were perfused using PBS. CNS tissue

was manually cut into small pieces and incubated for 20 min in

Hank’s Buffered Saline Solution containing collagenase. Homog-

enate was resuspended in 30% Percoll (Sigma) and underlain with

70% Percoll and centrifuged for 30 min. Cells were harvested

from the resulting interface.

Histopathology
Brains and spinal cords of mice were fixed in 10% neutral-

buffered formalin, sectioned and stained with Luxol fast blue (LFB)

and hematoxylin and eosin (H&E). Meningeal and parenchymal

inflammatory lesions and areas of demyelination were quantified

as previously described [48,49].

Isolation of peritoneal macrophages
C57BL/6 mice were treated for 10 days with laquinimod or

vehicle. On day 7 of treatment, mice received i.p. injection of 1 ml

thioglycollate (Becton Dickinson). Three days later, macrophages

were harvested from mice by peritoneal lavage. Peritoneal

macrophages were plated on Petri dishes in Dulbecco’s modified

Eagle’s medium (supplemented with 10% heat-inactivated fetal

bovine serum) for 1 hour at 37uC in an atmosphere of 5% CO2.

After incubation, cells were washed three times with Hank’s

balanced salt solution to remove non-adherent cells, and

equilibrated with Dulbecco’s modified Eagle’s medium that

contained 10% fetal bovine serum. Cells were allowed to rest for

24 h before treatment with LPS.

Western blot
Peritoneal macrophages isolated from mice treated with

laquinimod or vehicle were stimulated with LPS (1 mg/ml) for

various time points. Cell pellets were treated with ice-cold lysis

buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium

deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM phenyl-

methylsulfonylfluoride (PMSF), 1 mM Na3VO4, 1 mM NaF)

containing protease inhibitors and phosphatase inhibitors (Roche).

Proteins were separated by SDS-PAGE and transferred onto

nitrocellulose membranes (Amersham Biosciences) for subsequent

immunoblotting with antibodies specific for phosphorylated

STAT1, pan-STAT1, phosphorylated p38MAPK and p38 MAPK

(Cell Signaling Technology, Danvers, MA).

Flow cytometry
Single-cell suspensions were incubated with anti-CD16/CD32

(1:100) to prevent nonspecific antibody binding, then stained with

anti-CD4, -CD8, -CD62L, -CD44, -CD11c, -CD11b, -B220, Gr1

(Ly6C/G), -CD3, -MHCII, -CD40, -PDL-1, -CD80, and -CD86

(all 1:100) (eBioscience, San Diego, CA). Intracellular cytokine

production by CD4+ T cells and APC was analyzed by monitoring

the expression of IFN-c, IL-17, GM-CSF, IL-6, IL-12/23 (p40),

TNF and IL-10 (1:100) (eBioscience). Foxp3 staining was

performed according to the manufacturer’s protocol (eBioscience).

For intracellular cytokine staining, T cells were stimulated with

phorbol 12-myristate 13-acetate (PMA, 50 ng/ml) plus ionomycin

(500 ng/ml) in the presence of GolgiStop (1 ml/ml) (BD, San Jose,

CA). CD11b+ cells were stimulated with LPS (1 mg/ml) for 12 h in

the presence of GolgiStop. Cells were analyzed by flow cytometry

on a FACS Canto (BD).

Statistical analysis
Data are shown as mean 6 s.e.m or s.d. We examined

significance between groups using the Mann-Whitney U test. A

value of P#0.05 was considered significant.

Supporting Information

Figure S1 Splenocytes and lymph node cells were
isolated from PLP-immunized mice treated with laqui-
nimod or vehicle for 10 days. Cells were restimulated in vitro

and analyzed by FACS for secretion of IFN-c, IL-17, GM-CSF

and expression of CD25 and Foxp3 by CD4+ cells at the day of

transfer into naı̈ve SJL/J recipients. Data are representative of two

independent experiments.

(TIF)

Figure S2 Splenic purified CD11b+ cells from laquini-
mod- or vehicle-treated mice were used as APC in co-
culture with untreated naive CD4+ 2D2 T cells. Converse-

ly, naive 2D2 T cells were isolated from laquinimod- or vehicle-

treated 2D2 mice and cultured with purified vehicle treated

CD11b+ cells and Ag (MOG p35-55). Proliferative response of

2D2 cells is displayed as counts per minute (cpm) after [3H]-

thymidine incorporation. Results are shown as means of triplicates

6 s.e.m. Data are representative of three independent experi-

ments.

(TIF)
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Figure S3 DC were isolated from the spleen and defined
as CD11chigh CD8+ cDC (CD11b2CD42). Relative percent-

ages of CD8+ DC and total splenic CD8+ T cells from laquinimod-

treated compared to control mice is shown (n = 4). Results are

shown as means 6 s.e.m. Data are representative of two

independent experiments.

(TIF)

Figure S4 Laquinimod modulates cytokine profiles of
CD11b+CD11c2 and CD11c+ cells. FACS analysis of

cytokines produced by CD11b+CD11c2 and CD11c+ cells isolated

from spleen of mice on day 11 after immunization with MOG

p35-55 and treated with laquinimod or vehicle. Shown are TNF,

IL12/IL23p40, IL-6 and IL-10. Data are representative of two

independent experiments.

(TIF)
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