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Abstract

For survival and development, autonomous agents in complex adaptive systems involving the human society must
compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method
is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship
(namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk
low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors.
Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both
market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional
finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based
simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We
report that investments with a negative risk-return relationship have dominance over those with a positive risk-return
relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system’s evolution,
which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only
to complexity science, but also to finance and economics, to management and social science, and to physics.
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Introduction

One can see most of the social, ecological, and biological

systems that contain a large number of interacting autonomous

agents as complex adaptive systems (CASs), because the agents

have adaptive capacities to the changing environment [1]. CAS

dynamics have attracted much attention among physical scientists

[2–6]. For survival and development, such agents in various kinds

of CASs involving the human society must compete against or

collaborate with each other for sharing limited resources or wealth,

by utilizing different methods. One method is to invest, in order to

obtain payoffs with risk. Accordingly, understanding the risk-

return relationship (RRR) has not only an academic value but also

a practical importance. So far this relationship has a two-fold

character. On one hand, one considers investments as high risk

high return and vice versa; the RRR is positive (risk-return

tradeoff) [7,8]. This is also an outcome of the traditional financial

theory under the efficient market hypothesis. On the other hand,

one also finds that some investments are high risk low return and

vice versa; the RRR is negative (Bowman’s paradox) [9,10].

However, almost all investment products take ‘‘high risk high

return’’ as a bright spot to attract investors, and neglect the

possible existence of ‘‘high risk low return’’. This actually results

from a received belief that investments with a positive RRR are

dominant over those with a negative RRR in the human society;

the belief directs investors to operate daily investing activities

including gambling [11]. Here we investigate the RRR by

designing and investigating a model CAS which includes the

following two crucial factors:

– Market efficiency. The present system exhibits market efficiency at

which it reaches a statistical equilibrium [5,6]. We shall address

more relevant details at the end of the next section.

– Closeness. The system involves two conservations: one is the

conservation of the population of investors (Conservation I), the

other is the conservation of wealth (Conservation II).

Regarding Conservation I/II, it means that we fix the total

number/amount of the subjects/wealth in the system.

Clearly the two factors have real traces in the human society.

Accordingly they have played an important role in helping to

establish traditional finance/economics theories. The present

designing system just allows us to investigate the joint effect of

the two factors on the RRR.

Results

Human Experiment
On the basis of the CAS, we conduct a series of computer-aided

human experiments. (These experiments are essentially online

games, thus ethics approval was not necessary. In the mean time,

we obtained verbal consent from all the subjects.) Details: there are

two virtual rooms, Room 1 and Room 2 (represented by two

buttons on the computer screen of the subjects), for subjects to

invest in. The two rooms have volumes, M1 and M2, which may
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represent the arbitrage space for a certain investment in the real

world. In the experiments, we recruited 24 students from Fudan

University as subjects. The subjects acted as fund managers, who

were responsible for implementing a fund’s investing strategy and

managing its trading activities. We told the subjects the

requirement of total 30 rounds for each M1=M2, and offered

every subject 1000 points (the amount of virtual money constructs

the fund managed by the subject) as his/her initial wealth for each

M1=M2. In an attempt to make the subjects maximize their

pursuit of self-interest, we promised to pay the subjects Chinese

Yuan according to the fixed exchange rate, 100:1 (namely, one

hundred points equal to one Chinese Yuan), at the end of the

experiments, to offer every subject 30 Chinese Yuan as a bonus of

attendance, and to give extra 50 Chinese Yuan to the subject who

gets the highest score for one M1=M2. At the beginning of the 1st

round of each M1=M2, we told the 24 subjects the actual ratio of

M1=M2, and asked each subject to decide his/her investing weight

[signed as x(i) for Subject i]. Note the investing weight, x(i), is the

percentage of his/her investing wealth (investment capital) with

respect to his/her total wealth, and it will keep fixed within the 30

rounds for a certain M1=M2. At every round, each subject can

only independently invest in one of the two rooms. After all the

subjects made their own decisions, with the help of the computer

program, we immediately knew the total investments in each room

(signed as W1 and W2 for Room 1 and Room 2, respectively) at

this round. While keeping the total wealth conserved, we

redistributed the total investment W1zW2 according to the

following two rules:

(1) We divided the total investment, W1zW2, by the ratio of

M1=M2, yielding (W1zW2)
M1

M1zM2
and (W1zW2)

M2

M1zM2
as the payoff for Room 1 and Room 2, respectively.

(2) We redistributed the payoff of Room k (k~1or2) by the

investment of the subjects. Namely, for each round, the payoff

for Subject i choosing Room k to invest in, wpayoff (i), is

determined by wpayoff (i)~(W1zW2)
Mk

M1zM2

|
win(i)

Wk

,

where win(i) is the investing wealth of Subject i,

win(i)~x(i)w(i). Here w(i) is the total wealth possessed by

Subject i at the end of the previous round.

Before the experiments, we told the subjects the above two rules

for wealth re-allocation. After each round, every subject knows

his/her payoff, wpayoff (i). If there is wpayoff (i)wwin(i), that is,

Subject i gets more than the amount he/she has invested, we

consider Subject i as a winner at this round. Equivalently, if
W1

M1
v

W2

M2
, the subjects choosing Room 1 to invest in win at this

round. Clearly, when
W1

W2
~

M1

M2
, every subject obtains the payoff

which equals to his/her investing wealth. Namely, the arbitrage

opportunity has been used up. Accordingly, we define the

Figure 1. Averaged ratio, SW1=W2T, versus M1=M2 for the
human experiments with 24 subjects (red squares) and agent-
based computer simulations with 1000 agents (blue dots). Here
‘‘S � � � T’’ denotes the average over the total 30 experimental rounds
(experimental data of W1=W2 for each round are shown in Table 1) or
over the 800 simulation rounds (the additional 200 rounds were
performed at the beginning of the simulation for each M1/M2; during
the 200 rounds, we train all of the strategies by scoring them whereas
the wealth of each agent remains unchanged). All the experimental and
simulation points lie in or beside the diagonal line (‘‘slope = 1’’), which is
indicative of SW1=W2T&M1=M2 . Parameters for the simulations: S~4
and P~16.
doi:10.1371/journal.pone.0033588.g001

Table 1. Experimental data of W1=W2’s for six M1=M2’s
within 30 rounds.

Round
M1=M2

~1

M1=M2

~2

M1=M2

~3

M1=M2

~6

M1=M2

~7

M1=M2

~9

1 1.247723 1.143654 5.267782 2.98977 24.41429 2.146853

2 0.582237 0.702725 1.717598 11.02642 6.827457 4.860541

3 0.759914 1.897306 2.43237 10.32266 11.25343 11.30546

4 1.903253 1.240914 2.699907 2.97036 5.688661 9.681926

5 1.940527 1.564242 3.999681 3.977399 6.546176 5.249869

6 1.4852 4.711605 2.815152 6.900399 5.13295 6.16301

7 0.71966 2.087147 8.280381 2.991117 9.27272 7.25918

8 0.675138 1.692307 4.590899 3.35285 7.12301 8.996662

9 1.029128 2.73341 1.833477 4.363129 4.329496 7.133701

10 0.867554 2.095702 3.063358 7.273544 8.198398 14.26918

11 1.50125 1.305197 3.862686 18.23372 5.927536 5.500789

12 0.846259 2.292878 3.826587 8.50234 4.673143 5.141253

13 0.629585 1.992493 5.31337 4.613084 13.47519 34.4646

14 0.784858 2.462247 4.687499 19.73941 4.867279 3.889573

15 1.484235 1.807911 2.991726 3.40541 9.820732 7.442826

16 2.309969 1.544355 3.301258 4.864645 19.63957 15.74645

17 1.01251 2.078769 1.009523 8.219743 4.389477 11.55617

18 0.987891 2.624829 1.531467 2.935522 6.684373 8.712361

19 1.319123 2.25104 2.29988 3.813827 6.655679 6.623739

20 0.872338 2.045779 3.140856 5.690231 9.253236 7.973963

21 1.166773 2.006077 5.282071 5.889009 5.021116 5.825073

22 0.896165 1.419159 3.53215 6.137386 7.409623 8.32772

23 0.872224 2.141954 2.629218 11.09127 7.033376 15.57089

24 1.275063 1.990766 4.722947 5.989491 7.216511 10.87512

25 0.695696 2.151347 3.410795 7.790409 8.787551 4.759215

26 1.149307 2.150258 3.400615 8.213546 6.472158 13.14246

27 1.379602 1.621164 5.898509 5.078065 6.915495 7.992252

28 0.809361 1.62651 2.421057 3.698009 5.514453 11.76899

29 0.772988 1.670855 3.576442 7.848631 7.483899 16.27463

30 0.367173 2.010509 2.90843 11.10609 8.9996 4.854004

doi:10.1371/journal.pone.0033588.t001

Risk-Return Relationship
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W1

W2
~

M1

M2
state as an equilibrium (or balanced) state [12]. This

state may have some practical significance because global

arbitrage opportunities for investing in the human society always

tend to shrink or even disappear once known and used by more

and more investors. As shown in Figure 1 (as well as Table 1), our

experimental system can indeed achieve SW1=W2T&M1=M2 at

which the system automatically produces the balanced allocation

of investing wealth; this system thus reaches a statistical

equilibrium. In other words, the ‘‘Invisible Hand’’ plays a full

role [6], or alternatively the system exhibits market efficiency.

That is, all subjects are pursuing self-interest and we run the

present system under three conditions: with sufficient information

(namely, the wealth change for each round has reflected the

possible information), with free competition (i.e., no subjects

dominate the system and there are zero transaction costs), and

without externalities (the wealth change of a subject has reflected

the influence of his/her behavior on the others).

If a subject (namely, a fund manager) chooses a larger investing

weight, he/she will invest more virtual money in a room.

According to the rules of our experiment, the room he/she

chooses will then be more likely to be the losing one. Besides, the

initial wealth is the same for every subject and he/she knows

nothing but himself/herself. From this point of view, the larger

investing weight he/she chooses, the higher risk (or uncertainty)

he/she will take for the fund (i.e., the initial 1000 points).

Therefore, throughout this work, we simply set the investing

weight, x(i), to equal the risk he/she is willing to take. Here we

should remark that the present definition of risk appears to be

different from that in finance theory. For the latter, one often

defines risk according to variance. Nevertheless, the two kinds of

risk are essentially the same because they both describe the

uncertainty of funds and have a positive association with each

other. On the other hand, we should mention that the risk we

define for each subject does not change with the evolution of the

time. This is a simplification which makes it possible to discuss the

pure effect of a fixed value of ‘‘risk’’. Nevertheless, if we choose to

Figure 2. Relationship between the risk, x(i), and the return, rT(i)~½wT(i){w0(i)�=w0(i), for (a)–(f) 24 subjects and (g)–(l) 1000 agents at
various M1=M2’s. (a)–(f) Data of the human experiments (total 30 rounds for each M1=M2); (g)–(l) Data of the agent-based computer simulations
(total 800 rounds for each M1=M2 , with additional 200 rounds performed at the beginning of the simulations; during the 200 rounds, we train all of
the strategies by scoring them whereas the wealth of each agent remains unchanged). Here wT (i) is Agent i’s wealth at the end of T rounds (the total
number of rounds, T , is T~30and800 for the experiments and simulations, respectively), and w0(i) is Agent i’s initial wealth. All of the subjects or
agents are divided into two groups with preferencev1 (red squares) and preference = 1 (blue dots). Here, the ‘‘preference’’ is given by C1=T , where
C1 is the number of times for subjects or agents to choose Room 1 within the total T rounds. The values or distribution of the preferences of the
subjects or agents can be found in Figs. 4 and 5. Here, ‘‘Linear Fit’’ denotes the line fitting the data in each panel using the least square method,
which serves as a guide for the eye. (The fitting functions are listed in Table 2.) All of the lines are downward, which indicate a statistically negative
relationship between risk and return. The present negative relationship just reflects the dominance of investments with a negative RRR in the whole
system, in spite of a relatively small number of investments with a positive RRR. Other parameters: (g)–(l) S~4 and P~16.
doi:10.1371/journal.pone.0033588.g002

Risk-Return Relationship
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let the ‘‘risk’’ change with the time, for the same purpose, we may

take an average of the ‘‘risk’’ over the full range of time.

Figure 2(a)–(f) displays the risk-return relationship for the

investments in the designing CAS. From statistical point of view,

we find that investments with a negative RRR are dominant over

those with a positive RRR in the whole system.

An Agent-Based Model
Clearly the human experiments have some unavoidable

limitations: specific time, specific avenue (a computer room of

Fudan University), specific subjects (students from Fudan Univer-

sity), and the limited number of subjects. Now we are obliged to

extend the experimental results [Figure 2(a)–(f)] beyond such

limitations. For this purpose, we resort to an agent-based model

[12–14].

Similar to the above experiments, we set two virtual rooms,

Room 1 and Room 2 (with volume M1 and M2, respectively), for

N agents (fund managers) to invest in. Then, for each M1=M2,

assign every agent 1000 points as his/her initial wealth and an

investing weight, x(i), which is randomly picked up between 0 and

1 with a step size of 0.001. In order to avoid the crowding or

overlapping of strategies of different agents [15–17], we design the

decision-making process for each agent with four steps.

– Step 1: set a positive integer, P, to represent the various

situations for investing [5,6].

– Step 2: assign each agent S strategies according to S integers

between 0 and P, respectively. For example, if one of the S

integers is L, then the corresponding strategy of the agent is

given by the ratio L=P (0ƒL=Pƒ1), which represents the

probability for the agent to choose Room 1 to invest in [5].

Figure 3. Same as Figure 2(g)–(l), but showing the relationship between the risk, x(i), and the relative wealth, wT(i)=w0(i), on a
logarithmic scale. ‘‘Linear Fit’’ corresponds to the line fitting the data of preferencev1 or preference~1 using the least square method, which
serves as a guide for the eye. (The fitting functions are listed in Table 3.)
doi:10.1371/journal.pone.0033588.g003

Table 2. Linear fitting functions for Figure 2.

M1=M2 For the experimental data [Fig. 2(a)–(f)] For the simulation data [Fig. 2(g)–(l)]

1 rT (i)~0:17{0:31x(i) [Fig. 2(a)] rT (i)~0:40{0:82x(i) [Fig. 2(g)]

2 rT (i)~0:0073{0:036x(i) [Fig. 2(b)] rT (i)~0:53{1:08x(i) [Fig. 2(h)]

3 rT (i)~0:49{0:74x(i) [Fig. 2(c)] rT (i)~0:37{0:76x(i) [Fig. 2(i)]

6 rT (i)~0:31{0:41x(i) [Fig. 2(d)] rT (i)~0:44{0:89x(i) [Fig. 2(j)]

7 rT (i)~0:24{0:29x(i) [Fig. 2(e)] rT (i)~0:35{0:68x(i) [Fig. 2(k)]

9 rT (i)~0:26{0:33x(i) [Fig. 2(f)] rT (i)~0:20{0:38x(i) [Fig. 2(l)]

doi:10.1371/journal.pone.0033588.t002

Risk-Return Relationship
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– Step 3: for an agent, each strategy has its own score with an

initial score, 0, and is added one score (or zero score) if the

strategy predicts (or does not predict) the winning room

correctly after each round.

– Step 4: every agent chooses either Room 1 or Room 2 to invest

in according to the prediction made by the strategy with the

highest score.

Figure 4. Preferences of (a)–(f) the 24 subjects in the human experiments (plotted in the bar graph) or (g)–(l) the 1000 agents in the
agent-based computer simulations, for various M1=M2’s. Here, ‘‘Mean’’ denotes the preference value averaged for (a)–(f) the 24 subjects or
(g)–(l) 1000 agents. In (a)–(f), the present 24 subjects are ranked by their risk (namely, their investing weight) from low to high, within the range (a)
[0.16, 1], (b) [0.01, 1], (c) [0.02, 1], (d) [0.16, 1], (e) [0.31, 1], and (f) [0.29, 1]; see Table 4 for details. Similarly, in (g)–(l), the 1000 agents are ranked by
their risk from low to high, within the range (0, 1] assigned according to the code ‘‘(double)rand()%1001=1000’’ in the C programming language. In
(a)–(f), the ratio between the numbers of subjects with ‘‘preference = 1’’ and ‘‘preferencev1’’ are, respectively, (a) 2/22, (b) 4/20, (c) 5/19, (d) 7/17, (e)
11/13, and (f) 8/16. In (g)–(l), the ratio between the numbers of agents with ‘‘preference = 1’’ and ‘‘preferencev1’’ are, respectively, (g) 2/998, (h) 23/
977, (i) 94/906, (j) 233/767, (k) 200/800, and (l) 220/780.
doi:10.1371/journal.pone.0033588.g004

Table 3. Linear fitting functions for Figure 3.

M1=M2 For‘‘preferencev1’’ For‘‘preference~1’’

1 log10 (wT (i)=w0(i))~0:10{0:31x(i) [Fig. 3(a)] log10 (wT (i)=w0(i))~0:05z0:058x(i) [Fig. 3(a)]

2 log10 (wT (i)=w0(i))~0:07{0:23x(i) [Fig. 3(b)] log10 (wT (i)=w0(i))~0:02z0:24x(i) [Fig. 3(b)]

3 log10 (wT (i)=w0(i))~0:09{0:28x(i) [Fig. 3(c)] log10 (wT (i)=w0(i))~0:01z0:05x(i) [Fig. 3(c)]

6 log10 (wT (i)=w0(i))~0:09{0:37x(i) [Fig. 3(d)] log10 (wT (i)=w0(i))~0:01z0:19x(i) [Fig. 3(d)]

7 log10 (wT (i)=w0(i))~0:10{0:42x(i) [Fig. 3(e)] log10 (wT (i)=w0(i))~0:003z0:29x(i) [Fig. 3(e)]

9 log10 (wT (i)=w0(i))~0:11{0:68x(i) [Fig. 3(f)] log10 (wT (i)=w0(i))~0:004z0:48x(i) [Fig. 3(f)]

doi:10.1371/journal.pone.0033588.t003

Risk-Return Relationship
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In addition, both the payoff function and the rules for re-

distributing investing wealth in Room 1 and Room 2 are set to be

the same as those already mentioned in the section of Human

Experiments.

Comparison between Experimental and Simulation
Results

As shown by Figure 1, our agent-based computer simulations

also give SW1=W2T&M1=M2, that is, the system under

simulation also exhibits market efficiency. Further, according to

the simulations, we achieve the same qualitative conclusion:

investments with a negative RRR are statistically dominant over

those with a positive RRR in the whole system; see Figure 2(g)–(l).

Nevertheless, when we scrutinize Figure 2(j)–(l), we find that some

particular data seem to be located on a smooth upward line. Then

we plot these data in blue, and further find that they are just

corresponding to all the agents with ‘‘preference = 1’’. Encourag-

ing by this finding, we blue all the data of ‘‘preference = 1’’ in the

other 9 panels of Figure 2, and observe that a similar upward line

also appears in the experimental results [see the blue dots in

Figure 2(a)–(f); note the blue dots in Figure 2(c) and (e) are also, on

average, in an upward line even though they appear to be not so

evident].

For the upward lines themselves, they are clearly indicative of

investments with a positive RRR. Hence, to distinctly understand

our main conclusion about the dominance of investments with a

negative RRR in the whole system, we have to overcome the

puzzle, namely, the strange appearance of these upward lines

(constructed by the blue dots in Figure 2). For convenience, we just

need to answer Question 1: why do all the ‘‘preference = 1’’ data

dots of Figure 2(g)–(l) exist in an upward line? To this end, the

process to find the answer to Question 1 will also help to reveal the

mechanism underlying the above main conclusion.

Comparison among Experimental, Simulation, and
Theoretical Results

To answer Question 1, alternatively we attempt to study the

relationship between risk and wealth; see Figure 3. In Figure 3, the

‘‘preference = 1’’ data dots appear to be arranged in an upward

straight line, and the straight line exactly corresponds to the

upward line constructed by the blue dots in Figure 2(g)–(l) due to

the relationship between the wealth and return. So, Question 1

equivalently becomes Question 2: why do all the ‘‘preference = 1’’

data dots of Figure 3 exist in an upward straight line? To answer it,

we start by considering Agent i with investment weight, x(i). Then

his/her return and wealth after t rounds are, respectively, rt
0(i)

and wt(i). Here, the subscript te½0,T �. (Note T stands for the total

number of simulation rounds, T~800.) Clearly, when t~0,

wt(i)~w0(i), which just denotes the initial wealth of Agent i.
Then, we obtain the expression for rt

0(i)~½wt(i){wt{1(i)�=
½wt{1(i)x(i)�. Accordingly, we have w1(i)~w0(i)½1zr1

0(i)
x(i)� and w2(i)~w1(i)½1zr2

0(i)x(i)�~w0(i)½1zr1
0(i)x(i)�½1z

r2
0(i)x(i)�, thus yielding wT (i)~w0(i)½1zr1

0(i)x(i)� . . . ½1z

rT
0(i)x(i)�~w0(i) P

T

t~1
½1zrt

0(i)x(i)�. As a result, we obtain

Table 4. Values for the risk (namely, investing weight) of the 24 subjects for six M1=M2’s in the human experiments.

Subject M1=M2~1[Fig. 4(a)] 2[Fig. 4(b)] 3[Fig. 4(c)] 6[Fig. 4(d)] 7[Fig. 4(e)] 9[Fig. 4(f)]

1 0.16 0.01 0.02 0.16 0.31 0.29

2 0.21 0.02 0.2 0.2 0.46 0.31

3 0.29 0.11 0.21 0.41 0.47 0.39

4 0.31 0.2 0.4 0.46 0.49 0.4

5 0.36 0.26 0.41 0.49 0.52 0.47

6 0.42 0.41 0.45 0.5 0.7 0.57

7 0.42 0.48 0.46 0.61 0.75 0.7

8 0.42 0.5 0.46 0.7 0.75 0.7

9 0.46 0.5 0.48 0.7 0.79 0.71

10 0.47 0.52 0.5 0.74 0.86 0.74

11 0.48 0.57 0.63 0.76 1 0.79

12 0.5 0.6 0.72 0.8 1 0.9

13 0.5 0.64 0.74 0.8 1 1

14 0.55 0.74 0.89 0.82 1 1

15 0.56 0.81 0.91 0.86 1 1

16 0.61 1 1 0.86 1 1

17 0.61 1 1 1 1 1

18 0.63 1 1 1 1 1

19 0.66 1 1 1 1 1

20 0.67 1 1 1 1 1

21 0.72 1 1 1 1 1

22 1 1 1 1 1 1

23 1 1 1 1 1 1

24 1 1 1 1 1 1

We ranked the 24 subjects by their risk from low to high, as already used in Figure 4(a)–(f).
doi:10.1371/journal.pone.0033588.t004

Risk-Return Relationship
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log10

wT (i)

w0(i)
~ log10fP

T

t~1
½1zrt

0(i)x(i)�g ~
XT

t~1

log10½1zrt
0(i)x(i)�

~
XT

t~1

rt
0(i)

" #
x(i)~TSrt

0(i)Tx(i). Here the third ‘‘ = ’’ holds due

to rT
0(i)x(i)?0 for the T simulation rounds of our interest. In

this equation, SrT
0(i)T denotes the average return, namely, the

value obtained by averaging rT
0(i) over the T rounds, and

wT (i)

w0(i)
represents the relative wealth. Thus, the relationship between

log10

wT (i)

w0(i)
and x(i) should be linear; the sign of the slope of the

straight lines is only dependent on the average return, SrT
0(i)T.

Because the agents with preference = 1 always enter Room 1

with M1(wM2), the average return, SrT
0(i)T, for them is not

only positive but also the same. This is why all the blue points

in Figure 3 lie on an upward straight line. However, for the

other agents with preferencev1 (Figure 3), they will change

rooms from time to time, so their average return, SrT
0(i)T, is

different from one another. This is the reason why the red

points do not form a straight line as the blue points do. From

this point of view, the downward straight line we draw for the

red points in Figure 3 is just a statistical analysis, showing a

trend. They do not actually form a straight line. So far, our

answer to Question 2 can simply be ‘‘because for the small

number of agents with preference = 1, their average return,

SrT
0(i)T, is not only positive but also the same’’.

According to the above theoretical analysis, we can now

understand that the statistical dominance of investments with a

negative RRR in the whole system results from the distribution of

subjects’/agents’ preferences: the heterogeneous preferences(v1)
owned by a large number of subjects/agents together with the

identical preferences(~1) possessed by a small number of

subjects/agents. Details about the actual values for the preferences

can be found in Figs. 4–5. Figs. 4–5 also show the environmental

adaptability of subjects or agents.

Discussion

On the basis of the designed CAS (complex adaptive system), we

have revisited the relationship between risk and return under the

influence of market efficiency and closeness by conducting human

experiments, agent-based simulations, and theoretical analysis. We

have reported that investments with a negative RRR (risk-return

relationship) have dominance over those with a positive RRR in

this CAS. We have also revealed the underlying mechanism

related to the distribution of preferences. Our results obtained for

the overall system do not depend on the evolutionary time, T , as

long as T is large enough. On the other hand, the experimental

data for each T have been listed in Table 1. Clearly, the results for

each T can change accordingly. In fact, such changes echo with

Figure 5. Same as Figure 4, but showing the distribution of preferences.
doi:10.1371/journal.pone.0033588.g005
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those fluctuations or volatilities yielding arbitrage opportunities for

investors in the real human society.

This work should be valuable not only to complexity science,

but also to finance and economics, to management and social

science, and to physics. In finance and economics, it may remind

investors about their daily investing activities. In management and

social science, our work is of value on clarifying the relationship

between risk and return under some conditions. In physics, the

present work reveals a new macroscopic equilibrium state in such

a CAS.
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