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Abstract

Telomere length is regulated mostly by proteins directly associated with telomeres. However, genome-wide analysis of
Saccharomyces cerevisiae mutants has revealed that deletion of Hpr1p, a component of the THO complex, also affects
telomere length. The THO complex comprises four protein subunits, namely, Tho2p, Hpr1p, Mft1p, and Thp2p. These
subunits interplay between transcription elongation and co-transcriptional assembly of export-competent mRNPs. Here we
found that the deletion of tho2 or hpr1 caused telomere lengthening by ,50–100 bps, whereas that of mft1 or thp2 did not
affect telomere length. Since the THO complex functions in transcription elongation, we analyzed the expression of
telomere-associated proteins in mutants depleted of complex components. We found that both the mRNA and protein
levels of RIF1 were decreased in tho2 and hpr1 cells. RIF1 encodes a 1917-amino acid polypeptide that is involved in
regulating telomere length and the formation of telomeric heterochromatin. Hpr1p and Tho2p appeared to affect telomeres
through Rif1p, as increased Rif1p levels suppressed the telomere lengthening in tho2 and hpr1 cells. Moreover, yeast cells
carrying rif1 tho2 or rif1 hpr1 double mutations showed telomere lengths and telomere silencing effects similar to those
observed in the rif1 mutant. Thus, we conclude that mutations of components of the THO complex affect telomere
functions by reducing the expression of a telomere-associated protein, Rif1p.
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Introduction

Telomeres are the structure at the ends of eukaryotic linear

chromosomes [1,2]. They are essential for the maintenance of

chromosome integrity, and protect natural DNA ends from being

recognized as double-strand breaks. In most organisms, the

telomeric DNA is composed of short, tandemly repeated

sequences with a strand rich in guanine residues (G-strand)

running 59 to 39 toward the end of the telomere. For example, the

telomeric sequences in the brewer’s yeast Saccharomyces cerevisiae are

,250–300 base pair-long TG1–3/C1–3A repeats. Telomeres are

maintained by telomerase in most eukaryotes [3]. Telomerase is a

ribonucleoprotein containing a catalytic protein component TERT

(telomerase reverse transcriptase) and an associated RNA moiety,

TER, which serves as the template to extend telomeric DNA

sequences. In S. cerevisiae, these two components are encoded by

EST2 [4,5] and TLC1 [6], respectively.

Telomere length homeostasis involves the coordination of

telomere lengthening and shortening processes. Although the

complete mechanism of telomere length regulation remains to be

elucidated, controlling telomerase activity appears to be a major

part of the process [7]. For example, the binding of telomerase

Tlc1 RNA by yeast Ku proteins contributes to telomere length

regulation [8]. The mutation of YKU70 or YKU80 causes

shortening of telomere length [9–14]. It has also been reported

that Pif1p helicase negatively regulates telomerase by removing

telomerase from the telomeric DNA [15,16]. As a consequence,

mutation of PIF1 has been shown to lengthen telomeres [17].

These telomere-associated proteins affect telomere length by

directly regulating the telomerase activity [7]. Regulation of

telomerase could also be achieved through posttranslational

modification of telomere-associated proteins. For example,

phosphorylation of the telomere binding protein Cdc13p by

DNA damage response kinases Tel1p/Mec1p is required for

recruiting telomerase onto telomeres for telomere replication [18].

Short telomeres have been observed in cells missing either TEL1

or MEC1 [19–21].

Telomere length homeostasis can also be regulated by the

repressor/activator protein 1, Rap1p. in S. cerevisiae [22]. It has

been reported that several rap1 temperature-sensitive mutants

display phenotypes consistent with the role of Rap1p as a negative

regulator of telomere length [23–25]. Rap1p binds to a loosely

defined recognition site within the double-stranded TG1–3

telomeric DNA tracts to affect telomere functions [23–25].

Regulation of telomere length by Rap1p appears to be mediated

by Rif1p and Rif2p, which bind to the protein-interaction domain

at the C-terminus of Rap1p. Deletion of the nonessential RIF1 and

RIF2 genes results in extensive telomere elongation [26,27].
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Studies of Kluyveromyces lactis have further confirmed the role of

Rap1p in regulating telomere length [28–30].

In addition to affecting telomerase and telomere-associated

proteins, genes affecting telomere length have also been identified

as being involved in diverse cellular functions [31–33]. Among

them, deletion of HPR1 has been shown to increase telomere

length by ,50–150 bp. HPR1 is a component of the THO

complex (a suppressor of the Transcriptional defects of Hpr1

mutants by Overexpression) that is involved in transcriptionelon-

gation and the export of transcribed mRNAs [34,35]. The THO

complex is a conserved nuclear complex that is formed by four

protein subunits: Hpr1p, Tho2p (Rlr1p), Mft1p, and Thp2p in S.

cerevisiae. Mutations in THO components cause defects in

transcription-dependent hyper-recombination and mRNA export

[36–39]. Moreover, there is evidence that DNA:RNA hybrids are

formed co-transcriptionally, resulting in impaired transcription

elongation of GC-rich and long DNA sequences and defective

transcription-associated recombination [40]. However, it is

unclear how mutations of THO components cause changes in

telomere length. Here we found that mutations of THO

components affect telomeres by reducing the expression of Rif1p.

Our results reveal a novel mechanism by which telomere functions

could be affected indirectly through perturbing the expression of a

telomere-associated component.

Results

Mutations of THO complex components HPR1 and THO2
affect telomere length

In a genome-wide screen, mutation of HPR1 was found to cause

a ,50–150 bp increase in telomere length [31]. Since Hpr1p is a

component of the THO complex, we first tested whether the other

three THO components also affect telomere length. In S. cerevisiae,

the middle repetitive sequences known as the Y9 elements are

found in the subtelomeric regions of most chromosomes [41]. In

wild-type cells, XhoI digestion produces a ,1.3 kbp fragment from

the ends of Y9-bearing chromosomes that contains ,870 bp of Y9

and the terminal tract of ,350–430 bp of TG1–3/C1–3A DNA.

However, the lengths of Y9-bearing telomeres in both hpr1 and tho2

cells appeared ,75 bp longer than those in wild-type cells

(Fig. 1A). This telomere length phenotype was not progressive,

as increased cell divisions did not further affect its length (data not

shown). Interestingly, mutations of the other two THO complex

components, MFT1 and THP2, did not affect telomere length

(Fig. 1A), although it has been reported that mutations of these two

genes cause slightly shorter telomeres [31]. The reason for the

apparent discrepancy is unclear. Telomere lengths of yeast cells

harboring both hpr1 and tho2 mutations were also analyzed. As

shown in Figure 1A (right panel), hpr1 tho2 double mutations did

not further increase the telomere length. Thus, HPR1 and THO2

might affect telomere length through the same pathway. As a

control, the temperature sensitivity of the resulting strains were

analyzed since mutations of THO components also exhibit severe

growth defects at 37uC [42,43]. Indeed, all of the THO mutant

cells showed the expected temperature-sensitive phenotype

(Fig. 1B).

To determine if the telomere lengthening in hpr1 and tho2 cells

required the telomerase activity, deletion of telomerase RNA

component TLC1 was introduced into hpr1 and tho2 cells,

respectively. Yeast cells losing telomerase RNA undergo progres-

sive telomere shortening which eventually leads to cell death [6].

As shown in Figure 1C, telomere lengths in hpr1 tlc1 and tho2 tlc1

cells were similar to those in tlc1 cells. The results indicate that the

long telomeres observed in hpr1 and tho2 cells required functional

telomerase. The effect of recombination on telomere lengthening

of hpr1 and tho2 cells was also analyzed. A rad52 mutation was

introduced into tho2 cells and telomere length was examined. As

shown in Figure 1D, rad52 did not affect telomere length in either

wild-type or tho2 cells. The results suggest that telomere

lengthening observed in THO complex mutants is not due to

telomere recombination.

RIF1 expression is reduced in hpr1 and tho2 cells
Next, we explored the mechanism by which HPR1 and THO2

affect telomere length. The THO complex is involved in

transcription elongation. Hybrids of template DNA and tran-

scribed RNA are formed during transcription in mutants of the

THO complex components [40]. As a result, the transcription of

long genes is preferentially repressed [39,44]. We hypothesized

that mutations of HPR1 and THO2 might affect telomere length

by influencing the expression of genes that encode telomere-

associated proteins. We first surveyed the length of telomere-

associated proteins (Table 1). Among those we examined, RIF1 is

the longest gene with a size of 5,751 bps that encodes a protein

with 1,916 amino acid residues. To test if hpr1 and tho2 affect the

expression of the long genes, we analyzed the Rif1p protein level in

mutant cells. As shown in Figure 2A, Rif1p levels were decreased

by ,4 folds in both hpr1 and tho2 cells. In comparison, SIR4

(4,077 bps), CDC13 (2,775 bps), RAP1 (2,484 bps), and RIF2

(1,188 bps) were also analyzed. The results shown in Figure 2A

indicate that hpr1 and tho2 did not affect the expression of SIR4,

CDC13, or RAP1. The Rif2p level was only slightly decreased in

these two mutants. Since a yeast strain with 9 repeats of Myc

attached to the 39 end of the chromosomal RIF1 gene was used in

our analysis, the effect of Myc-tagging on Rif1p was also analyzed.

The RIF1-myc9 tagged allele caused similar, if not identical, effects

on telomere length and telomere silencing to those observed in

cells with the wild-type allele, implying that the tagged Rif1p is

expressed and functional (Fig. 2B).

It has been reported that the expression levels of yeast genes

increase with the G+C contents in wild-type and both hpr1 and

tho2 cells [44,45]. The G+C contents of the genes encoding

telomere-associated proteins were also surveyed (Table 1). Among

a total of 16 genes analyzed, all of them showed a G+C content

within the range of 34–44%, similar to the ,40% average G+C

content of all yeast genes. As a comparison, the E. coli lacZ gene

has a G+C content of ,56%. According to our findings, the

expression of telomere-associated genes in hpr1 and tho2 cells did

not appear to be affected by their G+C content (Fig. 2A).

To test if the reduction of Rif1p protein is specific to hpr1 and

tho2 mutations, Rif1p protein expression was also determined in

mft1 and thp2 cells. We discovered that the Rif1p protein level

remained the same in mft1 or thp2 cells (Fig. 2C), indicating that

the reduction in Rip1p levels is specific to hpr1 and tho2 mutations.

This result is also consistent with our observation that only hpr1

and tho2 but not mft1 or thp2 cells showed long telomeres (Fig. 1A).

To determine whether the reduced Rif1p level was due to

transcription defects caused by hpr1 and tho2 mutations, the RNA

level of RIF1 was analyzed. Total RNAs were prepared from yeast

cells and hybridized with specific probes against GCN1 (8,019 bps),

RIF1 (5,751 bps), RIF2 (1,188 bps), and TUB1 (1,460 bps) genes.

As shown in Figure 2D, both hpr1 and tho2 mutations showed

defects in transcribing the two long genes GCN1 and RIF1. The

effect is specific, as the transcript levels of short genes RIF2 and

TUB1 were not affected by the mutations. Thus, our results are in

agreement with the previous findings which suggest that hpr1 and

tho2 mutations affect the transcription of long genes. Consequently,

THO Complexes Affect Telomeres through Rif1p
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both the protein and RNA levels of RIF1 were significantly

reduced in these cells.

THO2 and HPR1 share the same pathway of RIF1 to
regulate telomere length

Given the role of RIF1 as a negative regulator of telomere length

and the finding that the deletion of RIF1 in yeast causes elongation

of telomere length [27], it is likely that the long telomeres observed

in hpr1 and tho2 cells were due to the reduction of RIF1 expression.

This simple scenario predicts that the telomere lengths of rif1 hpr1

or rif1 tho2 cells should not be longer than that in the rif1 cells.

Indeed, the telomere lengths of cells carrying rif1 hpr1 and rif1 tho2

mutations were similar to those in the rif1 cells (Fig. 3A). In

comparison, we found that telomere lengths were further

elongated when rif2 was introduced into hpr1 or tho2 cells

(Fig. 3A). Similarly, combinatorial effects were also observed

when pif1-m2 mutation was introduced into tho2 cells (Fig. 3A).

These results show that Hpr1p and Tho2p might affect telomere

length through the same pathway as Rif1p.

It is also interesting to note that TEL1 is a long gene (8,364 bps)

and its expression level is decreased in hpr1 cells [44]. Using real

time RT-PCR, we found that the amount of TEL1 RNA in hpr1 or

tho2 cells was decreased to ,10–15% of the wild-type level (Fig. 3B,

left panel). In comparison, the RNA level of GCN1 was also

decreased in hpr1 or tho2 cells, consistent with our previous

observation (Fig. 2 and 3B). Although Tel1p is not directly

associated with telomeres, it participates in telomerase recruiting

and its mutation has been shown to shorten telomeres [19]. To

evaluate the contribution of tel1 on telomere length maintenance

in THO mutants, telomere length of tel1 tho2 cells was determined.

As shown in Figure 3B (right panel), telomere length in both wild-

type and tho2 mutant cells was decreased by the same extent after

the introduction of a tel1 mutation. The results suggest that

although TEL1 RNA level is also decreased in THO mutants, the

observed telomere lengthening in hpr1 or tho2 cells is not due to the

decreased Tel1p level.

Our model also predicts that increasing the Rif1p level should

suppress the long telomere phenotype associated with hpr1 and tho2

Figure 1. THO complex components Hpr1p and Tho2p affect telomere length. (A) Telomere lengthening in hpr1 and tho2 strains. Yeast
DNA was isolated from the YPH499 yeast strain with indicated mutations, digested with XhoI, separated on a 1% agarose gel and analyzed by
Southern blotting. The blots were hybridized with probes prepared using the 600-bp sequence from the Y9 element 39 end. The position of the Y9
telomere is indicated. (B) Temperature-sensitive growth of THO complex mutants. Aliquots of ten-fold serial dilutions of yeast cells were spotted on
YEPD plates and incubated at 30 or 37uC for three days. (C) Telomerase is required for the telomere lengthening effects in hpr1 and tho2 cells. Yeast
cells carrying the indicated mutations were freshly sporulated and grown on YEPD plates at 30uC after 1 or 2 restreaks. Total yeast DNA was then
isolated and analyzed by Southern blotting. (D) Recombination is not required for telomere lengthening in tho2 cells. Total yeast DNA from the
indicated strains was isolated and analyzed by Southern blotting.
doi:10.1371/journal.pone.0033498.g001
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mutations. Initial attempts to overexpress RIF1 using a cen plasmid

did not yield a detectable elevation of Rif1p levels in hpr1 or tho2

cells. Accordingly, there was no change in telomere length in these

cells (data not shown). We then increased Rif1p levels by

introducing a high-copy number 2 m plasmid carrying RIF1 into

yeast cells. As shown in Figure 3C, increasing Rif1p reduced

telomere length in wild-type cells. Long telomeres observed in hpr1

and tho2 cells were suppressed when Rif1p levels were brought

back to the wild-type level. Significantly, there appeared to be a

negative correlation between telomere lengths and the expression

levels of Rif1p in the cells we examined. The results provide strong

evidence supporting that the long telomeres observed in hpr1 and

tho2 cells are caused by the reduction in the expression level of

Rif1p.

Enhancement of telomere silencing in hpr1 and tho2 cells
The function of RIF1 on telomeres is not limited to telomere

length regulation. It has been reported that rif1 also enhances the

telomere silencing effect [26,46]. To test if mutations of THO

components affect telomere silencing, expression of URA3 at

varying distances from telomeres was analyzed in strains carrying

THO mutations. As shown in Figure 4A, stronger repression of

URA3 was observed in cells harboring a tho2 mutation. The

enhancement of URA3 repression was observed in all three strains

tested and was most obvious in UCC509. The effect of hpr1 and

rif1 on telomere silencing was then evaluated using UCC509. We

anticipated that hpr1 would affect telomere silencing in a way

similar to that of tho2 mutation and that the addition of the hpr1 or

tho2 mutation to the rif1 mutant should not further enhance

telomere silencing. The results shown in Figure 4B, tho2 and hpr1

showed similar enhancement of telomere silencing, ant the

enhancement in both THO mutants was less than that conferred

by the rif1 mutation. The addition of the tho2 or hpr1 mutation had

no further effect on telomere silencing in the rif1 mutant. Thus,

mutations on the two THO components also affect telomere

silencing through a pathway mediated by RIF1.

Overexpressing SUB2 cannot restore the Rif1p level or
telomere length in tho2 and hpr1 cells

A high-copy suppressor screen using lacZ fused to a strong

promoter has found that SUB2 suppresses the transcriptional

defect of hpr1 [47–49]. SUB2 encodes a DEAD-box RNA helicase

that is involved in splicesosome assembly and mRNA exporting

[50–52]. Sub2p binds to Yra1p and the THO complex to form a

TREX (TRanscription/EXport) complex that couples elongation

and exporting of mRNA [35,52,53]. To test whether overexpress-

ing SUB2 also recovers RIF1 expression and restores telomere

length in THO mutants, tho2 and hpr1 cells with a plasmid

carrying SUB2 or sub2-5 were analyzed for Rif1p levels and

telomere length. The sub2-5 allele expresses a mutant Sub2p with

a Q308R mutation near the helicase motif IV, which does not

cause any detectable defects in splicing activity or spliceosome

assembly [54]. However, the expression level of sub2-5 is higher

than that of wild-type SUB2 in cells for unknown reasons [55]. As

shown, overexpressing SUB2 or sub2-5 could rescue the growth

defect of tho2 and hpr1 at 37uC (Fig. 5A), but did not restore the

Rif1p level (Fig. 5B). Our results of real time RT-PCR

experiments also showed that the RIF1 RNA in both tho2 and

hpr1 cells was not restored to the wild-type level by overexpressing

SUB2 (Fig. 5C). Consequently, telomere length in the tho2 and hpr1

cells remained long (Fig. 5D). Thus, while it is unclear why the

Rif1p level cannot be restored through overexpressing SUB2 or

sub2-5, the results support our conclusion that the lowered Rif1p

level is the cause for long telomeres in tho2 and hpr1 cells.

Discussion

Telomere length homeostasis is mainly achieved through

regulation of telomerase and telomere-associated proteins. Here

we discovered that THO complex components Hpr1p and Tho2p

also affect telomere length and telomere silencing. Long telomeres

and enhanced telomere silencing were observed in hpr1 and tho2

cells. We also discovered that RIF1 expression was greatly reduced

in hpr1 and tho2 cells, which is in agreement with a previous

observation that showed selective reduction of long transcripts by

THO mutations [36]. Moreover, our genetic analyses using

double mutations and overexpression demonstrated that telomere

phenotypes observed in hpr1 and tho2 cells were caused by

reduction of Rif1p levels. Thus, we have provided evidence that

THO mutations exert their effects on telomeres through affecting

the expression of Rif1p, the largest telomere-associated protein.

It has been shown that the hpr1 and tho2 mutations have the

highest impact on gene expression and recombination among

THO mutations [56]. Similarly, here we found that mutations on

HPR1 and THO2 affected both telomere length and telomere

silencing, whereas mutations on the other two THO components,

Mft1p and Thp2p, did not affect Rif1p level and telomere lengths.

Thus, it appears that the roles of Hpr1p and Tho2p are

functionally distinct from those of Mft1p and Thp2p. Although

the function of each component within the THO complex and the

detailed mechanism underlying the differential impacts of

individual THO mutations are not clearly defined, there appears

to be a hierarchical difference within these components in terms of

their in vivo biological relevance. Among these four components,

the Tho2p and Hpr1p subunits are more important for telomere

homeostasis.

Mutations of components of the THO complex cause a

reduction in the transcription of yeast genes [34,36–38,45,57].

Table 1. The sizes and G+C contents of genes encoding
telomere-associated proteins.

Gene name ORF size G+C content

RIF1 5751 36.24

SIR4 4077 37.23

SIR3 2937 36.50

CDC13 2775 43.93

EST2 2655 33.79

RAP1 2484 41.51

PIF1 2580 39.34

EST1 2100 36.00

YKU80 1890 39.52

STN1 1485 36.97

YKU70 1809 33.78

SIR2 1689 39.67

TLC1 1301 35.59

RIF2 1188 34.68

EST3 547 38.90

TEN1 483 35.60

TEL1 8364 35.80

LacZ 3069 56.21

doi:10.1371/journal.pone.0033498.t001
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Using the E. coli lacZ gene as a reporter, it has been shown that the

level of gene transcription decreases with increasing gene length

[39]. Further analysis has revealed that high G+C content might

contribute to the reduced expression of lacZ [39]. Here we

demonstrate a preferential reduction of RIF1 expression in hpr1 or

tho2 cells. The result is consistent with the prediction of preferential

reduction of long genes in THO mutants. We did not find

noticeable reduction in the expression of high G+C content genes

in hpr1 or tho2 cells. It is possible that because the overall G+C

contents of the genes encoding telomere-associated proteins are

low, the effect of G+C content becomes less apparent. In any case,

the G+C content did not appear to have a role in modulating the

expression of genes encoding telomere-associated proteins in cells

depleted of the THO complex.

A genome-wide expression analysis using microarray has

showed that the TEL1 level was significantly decreased in hpr1

Figure 2. tho2 and hpr1 selectively decrease the expression level of Rif1p. (A) The Rif1p protein level is decreased in tho2 and hpr1 cells.
Total yeast proteins from wild-type, tho2 or hpr1 yeast cells were precipitated with TCA, separated on an 8% SDS-polyacrylamide gel, and analyzed by
immunoblotting using antibodies against Rap1p, Cdc13p, a-tubulin, a-actin, Myc (for myc9-tagged Rif1p and Rif2p), or TAP (for TAP-tagged Sir4p)
(top panel). The percentages of protein expression relative to the wild-type cells are quantified (bottom panel). The bars were standard deviations
determined using data from three different colonies of the indicated yeast strain. (B) The myc9-epitope tagging does not affect the effect of Rif1p on
telomere length and telomere silencing. Telomere length of wild-type RIF1 or RIF1-myc9 cells were determined by Southern blotting using the Y9
element probe (left panel). Telomere silencing effects were determined in RIF1 or RIF1-myc9 cells. Yeast cells in 10-fold serial dilutions were spotted
on YC, YC lacking uracil, or plates containing 5-FOA (right panel). (C) The Rif1p protein level is not affected in mft1 and thp2 cells. The Rif1p level is
analyzed in mft1 and thp2 cells using immunoblotting analysis. (D) tho2 and hpr1 reduced the RIF1 RNA levels. The RNA transcripts of GCN1, RIF1, RIF2,
and TUB1 were analyzed using Northern blotting assays (left panel). The expression levels of the indicated RNA transcripts were quantified and
displayed as the percentages relative to the expression level in wild-type cells (right panel). The error bars were standard deviations calculated using
data from three different colonies of the indicated yeast strain.
doi:10.1371/journal.pone.0033498.g002
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cells [44]. Our analysis also shows that the TEL1 RNA levels are

decreased in both tho2 and hpr1 cells. Because cells harboring a tel1

mutation have short telomeres [19], a combinatory effect of

telomere shortening and lengthening was observed in the tho2 tel1

double mutant cells (Fig. 3B). This suggests that the telomere

lengthening observed in tho2 or hpr1 cells is not due to the reduced

TEL1 RNA levels. It is possible that although TEL1 expression is

reduced in THO mutants, the amount of Tel1p is still sufficient to

maintain its function on telomeres. In contrast, a ,40–50%

reduction of RIF1 RNA level causes a ,75–80% reduction of

Rif1p level, which is sufficient to contribute to an increase of

telomere length. The results implicate that the Rif1p level has to

be tightly regulated to stably maintain the telomere length. Of

note, although we found significant reduction of RIF1 expression

in both tho2 and hpr1 cells, RIF1 was not identified among the

repressed genes in THO mutants in the genome-wide expression

analyses. The microarray analyses considered the genes with

expression levels at least 1.5-fold above or below the wild-type

values as significantly different [44]. It is possible that the ,40–

50% reduction of the RIF1 RNA level in tho2 and hpr1 cells evaded

the detection by microarray analyses.

Through a high-copy suppressor screen, it has been discovered

that overexpressing SUB2 suppressed both the growth and

transcription defects of tho2 and hpr1 mutants [47–49]. It is

surprising to us that the Rif1p levels were not restored by

overexpressing SUB2 or sub2-5 in tho2 and hpr1 cells, although the

growth defects were abrogated. The cause of the temperature-

sensitive growth in tho2 and hpr1 cells is unclear. Given roles of the

THO complex in transcription and mRNA export, it is possible

that the growth defect is due to the impairment of bulk

transcription-, mRNA export, or the generation of transcriptional

byproducts upon the collapse of these gene expression processes.

Elucidation of the involving molecular mechanism awaits the

identification of target yeast genes affected by the THO complex

mutations. Alternatively, it is also possible that due to a separation

of function conferred by the sub2 alleles, SUB2 overexpression

leads to suppression of temperature sensitivity but not telomere

phenotypes. Indeed, it has been reported that SUB2 overexpres-

sion in tho2 cells only recovers ,20–30% of the lacZ activity driven

by a GAL1 promoter [49], further supporting that SUB2 might

function differently in suppressing growth defect and telomeres.

No matter what mechanism is used by Tho2p and Hpr1p in

Figure 3. THO2 and HPR1 function in the same pathway as RIF1 to regulate telomere length. (A) Yeast DNA from the indicated mutations
was isolated and analyzed by Southern blotting assays using the Y9 element probe. (B) The decreased Tel1p level does not contribute to telomere
lengthening in tho2 and hpr1 cells. Total mRNA from the indicated strains was isolated and analyzed for GCN1 and TEL1 RNA levels using real time RT-
PCR (left panel). Results were presented as relative levels normalized to the wild-type expression level. The bars were standard deviations determined
from three independent experiments. Yeast DNA from indicated strains was analyzed for telomere length (right panel). (C) Overexpressing Rif1p
suppresses the telomere lengthening in tho2 and hpr1 cells. Wild-type, tho2, or hpr1 yeast cells carrying plasmids pRS426 or pRS426-RIF1 (o/e RIF1)
were cultured at 30uC. Telomere lengths of these cells were then analyzed using Southern blotting assays (top panel). Immunoblotting analysis of the
Rif1p level was also performed (bottom panel).
doi:10.1371/journal.pone.0033498.g003
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Figure 4. Deletion of THO complex components Hpr1p or Tho2p enhances the telomere position effect. (A) tho2 enhances the
telomere position effect. Wild-type or tho2 cells with URA3 at 1.1 kbp (UCC507), 2.5 kbp (UCC509), or 5.5 kbp (UCC511) from the telomere of
chromosome VII–L were analyzed. Cells in 10-fold serial dilutions were spotted on YC, YC lacking uracil, or plates containing 5-FOA, and incubated
until colonies formed. (B) THO2 and HPR1 function in the same pathway as RIF1 to regulate the telomere position effect. Samples of serial dilutions of
UCC509 cells with the indicated mutations were spotted on plates as indicated.
doi:10.1371/journal.pone.0033498.g004

Figure 5. Overexpressing SUB2 cannot restore the Rif1p level and telomere length in tho2 and hpr1 cells. (A) Overexpressing SUB2
suppressed the growth defect of tho2 or hpr1 cells. Strains of the indicated genotypes derived from THO2/tho2, or HPR1/hpr1 diploids carrying SUB2
or sub2-5 overexpressing plasmids were grown on YC plates at 30u or 37uC. (B) SUB2 or sub2-5 overexpression did not restore the Rif1p level in tho2 or
hpr1 cells. Immunoblotting assays were carried out as described. (C) SUB2 overexpression did not restore the RIF1 level in tho2 or hpr1 cells. Total
mRNA from the indicated strains was isolated and analyzed for the RIF1 RNA level using real time RT-PCR. Results were presented as relative levels
normalized to the wild-type expression level. The bars were standard deviations calculated using data from three independent experiments. (D) SUB2
or sub2-5 overexpression did not restore the telomere length in tho2 or hpr1 cells. Telomere length analyses were performed as previously described.
doi:10.1371/journal.pone.0033498.g005
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controlling gene expression, our results still clearly indicate that

the lowered Rif1p level is the cause of long telomeres in tho2 and

hpr1 cells.

Materials and Methods

Strains and plasmids
All of the strains in this study were constructed in the YPH499

(MATa ura3-52 lys3-5 ade2-10 trp1-D63 his3-D200 leu2-D1)

background [58]. YPH499-derived strains carrying SIR4-TAP-

TRP1, tlc1D::LEU2, tho2D::HIS3, hpr1D::HIS3, mft1D::HIS3,

thp2D::HIS3, tel1D::HIS3, rif1D::TRP1, rif2D::TRP1 and pif1–m2

were constructed in this study or obtained from S.-C. Teng

(National Taiwan University College of Medicine, Taipei,

Taiwan). MS179 (Rif1-G8-myc9) and MS206 (Rif2-G8-myc9)

yeast strains were kindly provided by V. A. Zakian (Princeton

University). In these two strains, the chromosomal copies of RIF1

and RIF2 were tagged with 9-myc, respectively. A spacer with 8-

glycine was also introduced in between RIF1 or RIF2 and the tag

[59]. Both strains were back crossed four times to YPH499 to

minimize differences in genetic backgrounds. UCC507, UCC509,

and UCC511 strains were kindly provided by D. E. Gottschling

[60]. In these strains, URA3 was inserted at 1.2, 2.5, 5.5 kbp away

from the left telomere of chromosome VII, respectively. Plasmid

pRS426-RIF1-myc9 was generated by PCR amplification of the 39

DNA fragment of RIF1-G8-myc9 using the genomic DNA of

MS179 as the template and subsequent subcloning of the fragment

into plasmid pRS426-RIF1 (2m, URA3, D. Shore, University of

Geneva, Sciences III, Geneva, Switzerland [26]). Plasmids

pRS424-SUB2 and pRS424-sub2-5 were provided by E. Lahue

[55].

Telomere length determination
To determine telomere lengths, yeast DNA was prepared,

digested with XhoI, and separated on 1% agarose gels. Next, DNA

fragments were transferred to a Hybond N+ paper (Amersham) for

hybridization using a random primed Y9 DNA probe [61].

Immunoblotting analysis
Immunoblot analysis was carried out according to standard

procedures using ECL detection (Perkin Elmer). Polyclonal

antibodies against Rap1 were kindly provided by S.-C. Teng.

Polyclonal antibodies against Cdc13(1–252)p were raised in

rabbits [62]. Anti-a-tubulin (T9026) and anti-actin (MAB1501)

antibodies were purchased from Sigma-Aldrich and Millipore,

respectively. The anti-myc antibody (for Rif1-G8-myc9 and Rif2-

G8-myc9) was purchased from LTK-Biolab. The anti-TAP

antibody (CAB1001, for Sir4-TAP) was purchased from Open

Biosystems. Horseradish peroxidase-conjugated donkey anti-rabbit

or sheep anti-mouse antibodies (Amersham) were used as the

secondary antibodies.

Northern Blotting analysis
Yeast cells were grown to an OD600 of 0.6 and then RNA was

extracted using the hot phenol extraction protocol. Briefly, yeast

cells were harvested by centrifugation and quickly resuspended in

cold TES (10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS). Equal

volumes of acid phenol (Phenol : Chloroform = 5 : 1, pH 4.5,

Sigma) were added and the samples were incubated at 65uC for

60 min. Acid phenol extraction was repeated several times until

the interface was clear. The extracted RNA was extracted with

equal volumes of CHCl3 and precipitated by ethanol. Ten mg of

the extracted RNAs were separated by 1.2% formaldehyde

agarose gels, transferred onto Hybond N+ membranes (Amer-

sham), and hybridized with DNA probes prepared by random

priming. The primers used to prepare PCR amplified DNA probes

were: Rif1 forward (59-ATCGAATTGATCAGCATATCCTC-

CGTAGGTCTCAACACGA-39), Rif1 reverse (59-GCTACAC-

TTTTTGTAACCGG-39), Rif2 forward (59-ATGGAGCATG-

TAGATTCCGATTTTGCACCTATAAGGAGAT-39), Rif2 re-

verse (59-GAAACTTACTTAAGCTCGGA-39), Tub1 forward

(59-AGTATTAATGGTATGTTCGATTTGCCCGTCCAGG-

CTAGAT-39), Tub1 reverse (59-GTAAATAGCCCTTGGAA-

CGA-39), Gcn1 forward (59-GCGAATCACACGTGTC-

TAAAAGAGTTCCCTTTTTGCAAGA-39), and Gcn1 reverse

(59-GCGACACAAAAATCAAGAAA GA-39).

Real time RT-PCR analysis
Five micrograms of RNA were first treated with RNase-free

DNase (Qiagen #79254) at 37uC for 30 min. Reverse transcrip-

tion of the RNA was conducted using the RevertAid M-MuLV

reverse transcriptase (Fermentas #EP0442) with oligo-dT as the

primer. Real time PCR analyses were conducted using the ABI

Step one real-time PCR system. Primer pairs used in this analysis

were: GCN1 (59-TGCGTGATCCTGTTATCCCA-39, 59-CGA-

CAGCCCATATTTCTCTTTCATCTTCAAATCTGTCACT-

39), RIF1 (59-ATTCACCTCCTCGAATGACA-39, 59-AGTTT-

CTTCTTTCTTCCACAGATATTCCGTTCAAGTCGCC-39),

TEL1 (59-AGGCGGAGTTGTGAAAGAGTTTACGCAGTA-

39, 59-AAATTTGATGGATCCGTGGCTTGCTGAATC-39),

and TUB1 (59-AAGAAGACCGTCCAATTGGT-39, 59-GGCA-

CCCACTTCGATGTAATCTCTTTCTAAAGCAGCCAAA-39).

The TUB1 RNA level was used as an internal control in each set of

the experiments.

Assay for telomere position effect
Strains UCC507, UCC509, and UCC511 were used to evaluate

the effect of telomere silencing. These strains were crossed with

YPH500 carrying tho2, hpr1, or rif1 mutations. The resulting

diploid strains were induced into meiosis and the resulting tetrads

were dissected. Haploid strains with URA3 placed near the

telomere and tho2, hpr1, or rif1 mutations were then selected. These

cells were streaked on YC plates and grown for 3 days at 30uC.

Colonies were resuspended in water, and aliquots of different

dilutions were spotted on YC plates, YC plates lacking uracil or

plates containing 5-FOA. Plates were incubated at 30uC until

colonies formed. Usually, it takes 3 days for colonies to form on

YC plates, and it takes 6–7 days on plates containing 5-FOA.
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