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Abstract

Reduced-representation genome sequencing represents a new source of data for systematics, and its potential utility in
interspecific phylogeny reconstruction has not yet been explored. One approach that seems especially promising is the use
of inexpensive short-read technologies (e.g., Illumina, SOLiD) to sequence restriction-site associated DNA (RAD) – the
regions of the genome that flank the recognition sites of restriction enzymes. In this study, we simulated the collection of
RAD sequences from sequenced genomes of different taxa (Drosophila, mammals, and yeasts) and developed a proof-of-
concept workflow to test whether informative data could be extracted and used to accurately reconstruct ‘‘known’’
phylogenies of species within each group. The workflow consists of three basic steps: first, sequences are clustered by
similarity to estimate orthology; second, clusters are filtered by taxonomic coverage; and third, they are aligned and
concatenated for ‘‘total evidence’’ phylogenetic analysis. We evaluated the performance of clustering and filtering
parameters by comparing the resulting topologies with well-supported reference trees and we were able to identify
conditions under which the reference tree was inferred with high support. For Drosophila, whole genome alignments
allowed us to directly evaluate which parameters most consistently recovered orthologous sequences. For the parameter
ranges explored, we recovered the best results at the low ends of sequence similarity and taxonomic representation of loci;
these generated the largest supermatrices with the highest proportion of missing data. Applications of the method to
mammals and yeasts were less successful, which we suggest may be due partly to their much deeper evolutionary
divergence times compared to Drosophila (crown ages of approximately 100 and 300 versus 60 Mya, respectively). RAD
sequences thus appear to hold promise for reconstructing phylogenetic relationships in younger clades in which sufficient
numbers of orthologous restriction sites are retained across species.
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Introduction

In the practice of molecular systematics, a common goal is to

efficiently sample as much informative data from the genomes of

as many taxa as possible for phylogeny reconstruction. For many

years, pursuit of this goal has emphasized sequencing orthologous

genes, with individual studies typically sampling few genes relative

to the number of taxa. This low gene-to-taxon ratio is due largely

to the painstaking effort often required to find genes that can both

be reliably amplified and sequenced across the taxa of interest, and

have sufficient variation to confidently resolve phylogenetic

relationships. In some clades, comparative genomics has led to

substantial increases in the number of candidate genes available

for screening (e.g., COS, COSII; [1,2]), and some recent

phylogenetic studies have notably sampled many more genes than

before (e.g. [3–7]). However, widespread sampling of the genome

generally remains difficult and rare outside of model taxa.

In contrast to the traditional gene-centric approach, second

generation short-read sequencing technology (e.g. Illumina and

SOLiD) offers an alternative method of sampling genome-wide

nucleotide variation in the form of restriction site associated DNA

(RAD) sequencing [8], which targets the flanking regions of

restriction sites. RAD was initially developed for large-scale

microarray-based genotyping in two model organisms, the

threespine stickleback (Gasterosteus aculeatus) and the fungus

Neurospora crassa [9–11]. Baird and colleagues [8] were the first to

combine RAD with the Illumina short-read sequencing platform,

and described a new method for multiplexed sequencing of the

flanking regions of restriction sites with high coverage, which they

used to find more than 13,000 single nucleotide polymorphisms

(SNPs) and map traits in the threespine stickleback and N. crassa.

By using restriction sites to reduce genomic representation,

RAD sequencing preferentially targets orthologous regions (to the

extent that restrictions sites are conserved across individuals) that

are scattered throughout the genome. As such, it potentially

represents a more cost-effective means of generating comparative

genomic data for molecular systematics than sequencing and

assembling entire genomes at the same level of coverage. RAD

sequencing has only recently begun to be applied to studies of non-

model organisms and/or natural populations, and to date these

have only addressed questions at or below the level of a single

species. For example, Emerson et al. [12] used RAD sequencing to

identify over 3,700 SNPs in a phylogeographic study of the pitcher

plant mosquito (Wyeomyia smithii), and Hohenlohe et al. [13] used

the method to conduct population genomic analysis of natural

populations of threespine stickleback (G. aculeatus).

Can RAD sequences be advantageously applied to interspecific

phylogeny reconstruction in the absence of a reference genome?

The challenge presents a number of potential problems, such as:

the orthology relationships among sequences are unknown at the
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outset, and must be estimated; evolution of restriction sites is

expected to yield missing data (incomplete samples of orthologous

sequences across taxa); and the genetic linkage relationships among

loci are unknown. In this paper, we describe a simple workflow for

processing RAD sequences and assembling data matrices for ‘‘total

evidence’’ phylogenetic analysis, and conduct a series of in silico

experiments that test its performance in the context of sequenced

genomes and known relationships within Drosophila, mammals, and

yeasts, which represent a range of genome sizes and evolutionary

divergence times. We focus specifically on two key questions: (1) In

the absence of a reference genome, can the orthology of RAD

sequences be accurately assessed across species? (2) What param-

eters for assembling phylogenetic data matrices yield the most

accurate and well-supported trees?

Methods

Simulating RAD sequencing using known genomes
We generated RAD data sets by scanning fully sequenced

genomes of Drosophila (12 species), mammals (11 species), and

yeasts (Saccharomyces: seven species, and one outgroup species,

Candida albicans). The Drosophila genomes were downloaded

together as an alignment from http://www.biostat.wisc.edu/

,cdewey/fly_CAF1/data/fly_CAF1.1.tar.gz. All mammal ge-

nomes were downloaded individually from the NCBI genome

resources server (http://www.ncbi.nlm.nih.gov/genome/guide/)

as contigs or assembled chromosomes if available. Yeast genomes

were downloaded from GenBank under accession numbers: S.

cerevisiae, BK06935–BK06949; S. paradoxus, AABY01000000; S.

mikatae, AABZ01000000; S. bayanus, AACA01000000; S. kluyveri,

AACE00000000; S. castellii, AACF00000000; S. kudriavzevii,

AACI00000000; C. albicans, AACQ01000000. All species sampled

are listed with their genome sizes in Table 1.

For each genome, we simulated RAD data by sampling either

short (50 base pair (bp)) or long (100 bp) sequences immediately

upstream and downstream of all restriction sites of the enzymes

SbfI (59-CCTGCAGG-39), NotI (59-GCGGCCGC-39), or EcoRI

(59-GAATTC-39). We chose 50 and 100 bp because these are

typical read lengths currently produced by the Illumina sequenc-

ing platform. Restriction site sequences themselves were not

included in the simulated reads. Restriction enzymes vary in cut

frequency and hence in the number of RAD sequences generated,

and our goal was to harvest datasets of manageable size (based on

preliminary studies), i.e., on the order of no more than a few

million sequences in total from each group (Drosophila, mammals,

and yeasts). For Drosophila, we chose the enzymes SbfI and NotI

because they recognize longer, GC rich sequences that occur less

frequently across the genome. We also recorded the position of

each sequence in the original alignment to facilitate assessment of

the accuracy of orthology estimation. Mammal genomes are

relatively large, so we used only the most selective restriction

enzyme, NotI, while for the smaller yeast genomes we chose the

more frequent cutter, EcoRI.

In practice, RAD sequencing yields millions of Illumina reads

that must be processed into consensus sequences at each locus for

each sample, accounting for sequencing error and variation (e.g.,

heterozygosity). Methods for doing so have been explored by Li et

al. [14], Emerson et al. [12], Hohenlohe et al. [13], and Catchen

et al. [15]. In this study, we assume that the data have been

processed to this point.

A phylogenetic workflow for RAD sequence data
For each data set, our goals were to cluster and align

orthologous sequences across species, concatenate alignments into

a character matrix, reconstruct the phylogeny, and measure its

effectiveness at correctly inferring evolutionary relationships. Our

strategy for finding phylogenetically informative loci is based on

initially clustering the data by sequence similarity and then

filtering the resulting clusters by taxonomic coverage.

1. Clustering. In the absence of a reference genome,

sequence similarity is the simplest way to infer orthology. We

clustered each data set by sequence similarity using UCLUST v2.0

[16]. The UCLUST algorithm facilitates rapid clustering of large

data sets by avoiding exhaustive pairwise comparisons, instead

heuristically using representative seed sequences that are typically

the longest sequences in the data set (in our case, RAD sequences

are all of equal length and seeds are created from the first

sequences in the input file that do not match the previous seeds). It

produces clusters in which the identity of each sequence to the

seed is equal to or greater than the specified similarity value. Seeds

are created as the sequence input file is traversed, meaning that

results are potentially dependent on input order. To account for

this effect, we randomized the order of sequences and repeated

clustering and all subsequent steps in the analysis five times for

each Drosophila data set. We calculated the means and standard

errors of the characteristics and accuracies of trees resulting from

these replicates for each set of parameters. For a subset of these

data sets, we then performed 100 additional randomizations of

sequence input order and subsequent phylogenetic analyses to

more thoroughly estimate the distribution of phylogenetic results

arising from variation in sequence input order.

We tested a range of similarity values for clustering: for

Drosophila, 50–95% in 5% increments; for mammals, 55, 70, and

90%; and for yeasts, 50–90% similarity in 10% increments. Fewer

similarity values were explored for mammals and yeasts due to the

larger sizes of those data sets and the computation time required

for each parameter investigated. All other UCLUST parameters

were left at their default values.

2. Filtering. Clustering by sequence similarity is clearly an

imperfect solution to the problem of orthology assessment. An

ideal cluster in this context would contain a single orthologous

sequence from each taxon in the data set. However, sequences

may be similar but not orthologous, e.g., in the case of duplicated

genes or repetitive elements, or orthologous but not similar, e.g.

due to evolutionary divergence. For these reasons some clusters

are expected to contain more than one sequence per taxon, and/

or fewer than the total number of taxa. We therefore filtered

clusters in two sequential steps: we first discarded all clusters

containing more than one sequence from a single species, then

discarded those clusters with fewer taxa than a specified minimum

threshold number (a parameter we refer to hereafter as ‘‘min.

taxa’’). The minimum number of taxa required for an informative

unrooted phylogenetic tree is four. In the interest of understanding

how the proportion of missing data affects phylogenetic accuracy,

for the latter step we tested min. taxa values of four, six, and nine

for Drosophila, four and six for mammals, and four and five for

yeasts.

3. Alignment, supermatrix assembly, and tree

inference. For each data set and parameter combination,

filtered clusters were individually aligned using MUSCLE v3.8

[17] and concatenated into a single total evidence supermatrix

[18], with missing data symbols inserted as needed. This yielded

600 supermatrices for Drosophila (i.e., from five input-order

replicates of 120 combinations of clustering and filtering

parameters), 20 for mammals, and 20 for yeasts. For each

Drosophila supermatrix, we identified clusters that consisted

entirely of orthologous sequences from the reference genome

alignment, and created two submatrices for separate analysis: one
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containing only orthologous clusters, and one of only non-

orthologous clusters. For each supermatrix, a maximum

likelihood tree was inferred using RAxML v7.0.4 [19] under the

general time-reversible nucleotide model with gamma-distributed

rate heterogeneity and invariant sites (GTRGAMMAI).

Benchmark RAD trees
To assess the impact of orthology estimation errors on

phylogenetic inference, we conducted a series of ‘‘best-case’’

benchmark analyses in which orthology was known a priori. We

scanned the Drosophila genome alignment for restriction sites, and

extracted subalignments of orthologous RAD sequences for each

restriction site. In each subalignment, taxa for which the restriction

site was missing (due to nucleotide variation disrupting the

recognition sequence or the loss of the entire locus) were excluded,

and missing data symbols were inserted in their place to simulate

real data. Subalignments were then concatenated and subjected to

phylogenetic analysis as described above. The procedure was

repeated with the same combinations of restriction enzyme, read

length, and min. taxa from steps 1 and 2 (Table S1), resulting in 12

matrices of known orthology (two read lengths6two restriction

enzymes6three min. taxa sizes).

Measuring phylogenetic accuracy
Phylogenetic accuracy was evaluated by comparing inferred

trees with published reference phylogenies (Fig. 1). The reference

Table 1. Species of Drosophila, mammals, and fungi included in this study.

Species Genome size (bases) #50 bp reads

Drosophila NotI SbfI

D. ananassae 151452809 3628 5230

D. erecta 125196136 3072 4372

D. grimshawi 136438528 2166 2224

D. melanogaster 120416594 2666 4000

D. mojavensis 156491326 4034 3062

D. persimilis 144081254 4636 5146

D. pseudoobscura 136104117 4704 5114

D. sechellia 120266937 2698 4208

D. simulans 125504156 2672 4058

D. virilis 155510099 4960 3176

D. willistoni 171979099 1540 2038

D. yakuba 123618427 2866 4288

Mammals NotI

Bos taurus 2906457325 19096

Canis lupus familiaris 2418212456 27736

Cavia porcellus 1949659178 15584

Equus caballus 2474878062 16850

Homo sampiens 2775440241 16496

Macaca mulatta 3011952279 17440

Mus musculus 2593552788 11930

Oryctolagus cuniculus 2076044328 32996

Pan troglodytes 3010437433 17406

Pongo pygmaeus 3092841440 17168

Rattus norvegicus 2663612739 8890

Fungi EcoRI

Saccharomyces bayanus 11865314 8608

S. castellii 11242286 9618

S. cerevisiae 11122836 8068

S. kluyveri 11506563 7028

S. kudriavzevii 11177778 8630

S mikatae 10772608 7818

S. paradoxus 11872617 8870

Candida albicans 14284095 10094

Genome size is presented in the total number of nucleotides (bases). #50 bp reads is the number of simulated RAD sequences using the given restriction enzyme.
#100 bp reads was similar but could differ slightly because we did not include sequences that failed the length requirement.
doi:10.1371/journal.pone.0033394.t001
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phylogeny for Drosophila, from [4], was estimated using neighbor-

joining, parsimony, and Bayesian inference, and all of the nodes

have bootstrap and posterior probability support values at or close

to 100%. The reference phylogeny for mammals [20] is based on

maximum likelihood and Bayesian inference of coding sequences

orthologous to 10 genes in a 1.9 Mb region of human

chromosome 7 using RY-coding (i.e. only transversions were used

for inference) to reduce non-phylogenetic signal. All but a single

node have 100% posterior support (the node which places human

and chimpanzee as sister species has 36% posterior support) and

this is due to insufficient signal (low number of transversions)

between primate sequences [20]. When transitions were included

in the analysis, this node was also highly supported (100%

posterior support). The reference phylogeny for yeast [3] is based

on maximum likelihood and maximum parsimony analyses of a

concatenated matrix of 106 genes, and all nodes are strongly

supported with bootstrap values of 100%.

We quantified phylogenetic accuracy by counting the number

of correct nodes on the inferred trees. A node was counted as

correct if it defined a taxon bipartition that was identical to one

present in the reference phylogeny. Node support was measured

from 100 nonparametric bootstrap replicates in RAxML for each

supermatrix. We compared bootstrap values of correct and

incorrect nodes over sets of trees using Mann-Whitney U tests

due to the non-independence of each tree.

Multilocus species tree inference
The large number of loci produced by RAD sequencing

motivate the question of whether the data can be used in the

context of species tree estimation methods that apply coalescent

theory to multiple unlinked loci, and infer a tree while accounting

for incomplete lineage sorting of individual genes (e.g. [21–23]).

We proceeded under the assumption that each locus was unlinked,

to simulate conditions in which no reference genome is available.

We used *BEAST [22] to estimate the species tree of Drosophila.

Due to limits of computer memory, we analyzed only a subset of

20 parameter combinations with the smallest data matrices (Table

S2). All analyses assumed unlinked substitution models and tree

models, constant population size, a strict molecular clock, a

general time-reversible substitution model with gamma-distributed

rate heterogeneity and invariant sites with estimated base

frequencies, a birth death prior for trees, and a birth death prior

for the species tree. Each was run for 10 million iterations,

sampling every 1,000 iterations with a burn-in of 1,000 trees.

Results

Simulated RAD sequencing
The number of RAD sequences obtained from each species and

restriction enzyme are summarized in Table 1. The number of

RAD site sequences (RAD loci) harvested per species per read

length was: 1,500–5,300 (Drosophila), 9,000–33,000 (mammals),

and 7,000–10,000 (yeasts). These matrices ranged in total length

from 100 bp to 538,058 bp.

Orthology estimation
The performance of UCLUST in clustering orthologous

sequences of Drosophila, as measured by the proportion of clusters

consisting entirely of orthologs from the aligned reference

genomes, is summarized in Table S2. Predictably, higher similarity

values in clustering yielded better recovery of orthologous

sequences. At the lowest value of similarity (50%), the proportion

of orthologous clusters ranged from 0% (restriction enzyme = NotI,

read length = 50 bp, min. taxa = 9) to 60% (restriction enzy-

me = SbfI, read length = 100 bp, min. taxa = 9), with a mean of

27%. For the highest value of similarity (95%), the mean

percentage of clusters that were completely orthologous was

87%. Figs. 2, S1, S2, and S3 show patterns of orthology in the

complete concatenated data matrix for one replicate of clustering

from each parameter set.

Across all parameter combinations, the average proportion of

completely orthologous clusters for which the MUSCLE align-

ment of the RAD clusters matched the original genome alignment

was 45%. This ratio ranged from 0–100% and was generally

higher at higher clustering similarities (10% for matrices with

cluster similarity = 50% and 66% for matrices with cluster

similarity = 95%).

Filtering clusters by taxonomic coverage
Removal of clusters with more than one sequence per taxon,

and with fewer than a threshold number of taxa (min. taxa),

yielded data sets that varied in total aligned length and in the

proportion of missing data. For Drosophila, matrices ranged in total

length from 100 bp (restriction enzyme = SbfI, read

length = 50 bp, min. taxa = 9, cluster similarity = 90 and 95%;

only two loci met this stringent criterion) to 299,761 bp (restriction

enzyme = SbfI, read length = 100 bp, min. taxa = 4, cluster simi-

larity = 55%; 2,844 RAD loci; Table S2). The proportion of

missing data ranged from 6%–67% (Table S2). Applying higher

values of clustering similarity and minimum taxa tended to reduce

the total proportion of missing data, but decreased the overall

concatenated matrix length. For mammals, concatenated align-

ments ranged in length from 26,840 bp (read length = 100 bp,

min. taxa = 6, cluster similarity = 90%; 266 RAD loci) to

538,058 bp (read length = 100 bp, min. taxa 4, cluster similari-

ty = 55%; 4,916 RAD loci) with between 38% and 59% missing

data (Table S3). Lengths of concatenated alignments for yeast

ranged from 1,063 bp (read length = 50 bp, min. taxa = 5, cluster

similarity = 90%; 20 RAD loci) to 111,721 bp (read

length = 100 bp, min. taxa = 4, cluster similarity = 50%; 935

RAD loci) with 21–38% missing data (Table S4).

Certain parameter sets produced incomplete matrices, in which

data were entirely lacking for one or more taxa. For Drosophila,

these conditions were: read length = 100 bp and cluster similar-

ity = 90% or 95%, for all values of min. taxa (15 incomplete

matrices using min. taxa = 9; 9 using min. taxa = 6; and 4 using

min. taxa = 4). In general, incomplete matrices were more likely

using high values of both clustering similarity and min. taxa (Table

S2). We did not infer trees in these cases. Figure 2 shows patterns

of missing data in one set of Drosophila clusters obtained using

100 bp reads, restriction enzyme SbfI, and all min. taxa used;

patterns for other combinations of sequence length and restriction

enzyme are shown in Figures S1, S2, and S3. For yeasts, the

parameter sets that led to incomplete matrices were as follows:

read length = 100 bp, min. taxa = 5, clustering similarity = 90%;

read length = 50 bp, min. taxa = 5, clustering similarity = 70%,

80%, and 90%.

Sequence input order had little effect on the number of clusters

that were assembled into a supermatrix for a given analysis.

Randomized replicates of a given parameter set yielded differences

in cluster number #98 (out of approximately 2,500 clusters; 3.8%

of maximum number of clusters; restriction enzyme = SbfI, 100 bp

reads, min. taxa = 4, cluster similarity = 50%). Within each set of

five replicates, the proportional difference of the number of

clusters between replicates (1 – n/m, where n is the minimum

number of clusters and m is the maximum number) was always less

than 6% with min. taxa = 4. For all parameter combinations with

read length = 100 bp, the proportional difference of clusters was
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25% or less. The largest proportional difference was 66%

(restriction enzyme = NotI, 50 bp reads, min. taxa = 9, cluster

similarity = 50%). In general, more moderate values of sequence

similarity (55%–85%) produced less variation in the number of

clusters across replicates.

Across all parameter combinations, invariant clusters (i.e.,

composed of identical sequences) were rare, never exceeding

3.5% of all clusters with read length = 100 bp, and 16% of all

clusters with read length = 50 bp (Table S2). However, the

number of variable sites within clusters did decrease with

increasing values of cluster similarity.

Phylogenetic accuracy
Drosophila. The benchmark maximum likelihood trees for

Drosophila reconstructed from data sets of known orthology and

alignment (12 matrices) were topologically accurate for all nodes

with only one exception: the analysis using restriction enzyme NotI,

read length = 50 bp, and min. taxa = 4 had one incorrect node

(Drosophila virilis sister to D. grimshawi instead of D. mojavensis), but

this clade received little bootstrap support (26%). The

concatenated alignments ranged from 2,700 bp to 259,000 bp in

length, containing 681 to 46,342 variable sites and 380 to 16,836

parsimony informative sites, respectively. At least eight out of the

nine nodes in every tree were supported by bootstrap values

greater than 70%. Benchmark trees reconstructed from SbfI

datasets were topologically accurate and had high support at all

nine nodes (Table S1).

For data sets in which orthology was estimated, topological

accuracy varied according to which clustering and filtering

parameters were used. Figure 3 summarizes these results. In

general, longer reads and lower values of clustering similarity and

minimum taxa yielded larger concatenated matrices and more

Figure 1. Reference phylogenies of each study group. All branch lengths are arbitrary and do not indicate evolutionary distance. A) Drosophila
phylogeny modified from [4]. The inset shows the two alternative topologies commonly supported by individual gene trees in [32]. B) Reference
mammal phylogeny from [20]. C) Reference yeast phylogeny from [3].
doi:10.1371/journal.pone.0033394.g001
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accurate topologies. Out of 572 phylogenetic analyses (120

parameter combinations each replicated five times, excluding 28

replicates yielding incomplete matrices), 195 (34%) produced

completely accurate topologies, and 263 (46%) produced topolo-

gies with only one incorrect node (of nine total).

Matrices consisting of only orthologous clusters yielded

phylogenies as accurate as full matrices in 345 cases, more

accurate in 166 cases, and less accurate in 61 cases. Non-

orthologous matrices produced phylogenies that were more as

accurate as the full matrices 161 times, more accurate in 52 cases,

and less accurate in 359 cases (Table S2).

Bootstrap support was not a consistent indicator of node

accuracy (Fig. 3). Our analyses of Drosophila yielded 572 trees,

representing 5,148 nodes. Most of these nodes (4,446; 86%) were

correct and of these, 3,758 (85%) were supported with bootstrap

values of 70% or greater. Among the 702 incorrect nodes, 218

(31%) were supported with bootstrap values of 70% or greater.

Overall, the mean bootstrap support was 50% for incorrect nodes

and 88% for correct nodes. This difference was highly significant

(Mann-Whitney test: U = 2.26107, P,2.2610216).

We similarly compared bootstrap support between correct and

incorrect nodes across all trees based on each individual parameter

(17 subsets of trees: two for restriction enzymes, two for read

lengths, three for min. taxa, and 10 for clustering similarities;

Table S5). In these analyses, two nodes in the Drosophila phylogeny

often did not have significantly higher bootstrap support than

Figure 2. The orthology of one replicate of the 100 bp SbfI Drosophila matrices based on the concatenated alignment (701-
299,470 bp) of all 12 genomes after restriction cutting and clustering without prior knowledge of orthology. Each column of square
pixels bounded by white lines represents a single cluster (locus) produced by a given set of parameters. Each row within these clusters represents a
single taxon. Therefore, between each pair of horizontal white lines is a grid where rows are taxa and columns are clusters. The order of taxa from top
to bottom of each cluster is: D. simulans, D. sechellia, D. melanogaster, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D.
virilis, D. mojavensis, and D. grimshawi. The area in the white box is blown up in the inset to show detail. Within a cluster, black indicates that a taxon
did not have a sequence in that cluster. Colors in a cluster represent orthologous sequences. For example, the top right cluster (or last column in the
top row) in the expanded portion contains orthologous sequences from D. simulans and D. sechellia (yellow), and orthologous sequences from D.
melanogaster, D. yakuba, and D. erecta (green), though sequences from the two groups are not orthologous. The cluster immediately to the left
contains orthologous sequences from D.pseudoobscura, D. persimilis, D. mojavensis, and D. grimshawi. The values of similarity used for clustering the
sequences in each matrix are indicated on the left and the minimum threshold number of taxa (min. taxa) is indicated by the plots on the right. These
plots are exactly as in Fig. 3. Note that many parameter combinations yield matrices that span several lines. The boundaries between matrix
representations are indicated on the left.
doi:10.1371/journal.pone.0033394.g002

Figure 3. Accuracy of the RAD method for inferring Drosophila phylogeny. Proportions are indicated on the left axis. The x-axis shows the
percent similarity used for clustering, the three rows show each minimum cluster size, and the read lengths and restriction sites used are indicated by
column. Gray bars represent total matrix length as represented on the right axis. Black points are the mean proportion of correct nodes in a tree (out
of a total of 9), blue points are the mean proportion of correct nodes with bootstrap support greater than 70%, and red points are the mean
proportion of incorrect nodes with bootstrap support greater than 70%. Purple points are the proportion of clusters that are orthologous and yellow
points are the proportion of invariant sites within clusters. Results from every set of parameters are shown. Points represent the mean 6 SE of the five
replicates of clustering, filtering, and tree inference for each set of parameters with randomized input order of sequences into UCLUST. However, not
all parameters produced five usable matrices (one or more taxa with all empty sequence). The number of successful replicates is shown in Table S2.
doi:10.1371/journal.pone.0033394.g003
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incorrect nodes (Node 3 and Node 9 in Table S5). The support for

one of these nodes (ingroup taxa: D. yakuba and D. erecta; Node 3 in

Table S5) was not significantly higher than the support for all

incorrect nodes for 13 subsets of trees and was significantly lower

than incorrect node support in one case (trees with clustering

similarity = 75%). The second node that often had low support

(ingroup taxa: D. virilis and D. mojavensis; Node 9 in Table S5) had

significantly lower support than the incorrect nodes among trees

with clustering similarities = 80% and 85%. Support for this node

was not significantly different than support for incorrect nodes in

six additional cases. The results of all of these tests are shown in

Table S5. Although most correct nodes are better supported on

average than incorrect nodes, 41 incorrect nodes had 100%

bootstrap support.

The amount of missing data varied across parameter combina-

tions but D. willistoni, D. grimshawi, D. virilis, and D. mojavensis all had

more missing data than the eight other taxa in 518 of 572 matrices

(91%). These taxa were also represented by fewer parsimony

informative sites than all other taxa in 558 of 572 matrices (98%).

The lack of phylogenetically informative data may explain cases of

topological inaccuracies and low bootstrap support within the clade

containing D. grimshawi, D. virilis, and D. mojavensis (Fig. 1; Table S2).

Sequence input order had a detectable effect on phylogeny

reconstruction, with randomized replicates producing different

results in some cases. Only 13 (11%) of the 120 parameter

combinations produced exactly the same topology in all replicates

(N = 5). However, 49 (41%) of the 120 parameter combinations

yielded topologies that, among the five replicates, were either

completely correct or incorrect at only a single node.

For all clustering similarities and two sets of read length,

restriction enzyme, and minimum taxa (restriction enzyme = SbfI,

100 bp reads, min. taxa = 4 and restriction enzyme = NotI, 50 bp

reads, min. taxa = 9) we performed 100 additional randomized

replicates (Table S6). The phylogenies resulting from each

parameter set tended to converge to a particular level of accuracy

with this number of replicates. Combinations with restriction

enzyme = SbfI, 100 bp reads, and min. taxa = 4 tended to converge

to perfect topologies, and combinations with restriction enzy-

me = NotI, 50 bp reads, and min. taxa = 9 converged to eight

correct nodes (out of nine). Those parameter combinations in the

subset tested that yielded less correct phylogenies produced wider

distributions of phylogenetic accuracy (Table S6).

Mammals and yeasts. For mammals, all trees had a

minimum of four correct nodes (out of 8 total) but none

completely matched the reference topology (Fig. 1; Table S3).

Only the youngest nodes were consistently inferred correctly.

Mouse and rat were always inferred as sister species, and the

relationships among primates were correct in all 20 trees. The

relationships between cow, horse, and dog were only correct for

two sets of parameters (100 bp reads, clustering similarity = 90%,

min. taxa = 4 and 6) but it is important to note that these

relationships are not well supported by bootstrapping in the

reference phylogeny [20].

For yeasts, only four of 20 parameter sets yielded completely

accurate topologies (Fig. 1; Table S4): read length = 100 bp,

clustering similarity = 60% or 70%, and min. taxa = 4 or 5.

Relationships of the three most closely related taxa (S. cerevisiae, S.

paradoxus, S. mikatae) were correctly reconstructed (S. cerevisiae and S.

paradoxus sister to S. mikatae) for all parameter combinations with

read length = 100 bp.

Species tree estimation for Drosophila
The large number of loci, and limits of computer memory,

precluded *BEAST analyses for many parameter combinations. In

our tests, an 8-core Mac Pro with 8 GB of RAM could run *BEAST

on datasets with up to approximately 700 loci. This included all

parameter combinations where min. taxa = 9 (3–89 loci: 300–

3706 bp). The largest of these matrices (100 bp reads, restriction

enzyme = SbfI, clustering similarity = 60%) had 9,457 characters

and ran in 4.2 hours. In contrast, the largest matrix used for

maximum likelihood analysis (100 bp reads, restriction enzy-

me = SbfI, min. taxa = 4, clustering similarity = 55%) had almost

300,000 characters and the analysis was completed in 1.2 hours.

Some *BEAST runs yielded 50% maximum clade credibility tree

topologies that were different than the topologies from the

concatenated analyses based on the same data, but overall accuracy

was comparable, as measured by the number of correct nodes

inferred with posterior support .70% (Table S2). The topological

accuracy of *BEAST results differed from that of concatenated

analyses by more than two nodes for only two sets of parameters

(50 bp reads, restriction enzyme = SbfI, min. taxa = 9, clustering

similarity = 80%; and 100 bp reads, restriction enzyme = SbfI, min.

taxa 9, clustering similarity = 50%). For two sets of parameters,

*BEAST recovered the same topology as the concatenated analyses

of the same data. For twelve sets of parameters, concatenated

analyses yielded trees that each had at least one more correct node

than the corresponding *BEAST tree, while the converse was true

for five sets of parameters. The differences in accuracy between the

*BEAST and total evidence phylogenies were not strongly

associated with particular sets of parameters.

Discussion

Orthology estimation
Without a reference genome, the most substantial obstacle to

using RAD sequences for phylogenetics is determining orthology.

We show here that clustering by sequence similarity is generally

effective at grouping orthologous sequences (Figs. 2, S1, S2, S3;

Table S2). Higher values of similarity increased the proportion of

orthologous clusters in filtered datasets but reduced the total

amount of data and the number of informative sites. Drosophila

trees reconstructed from exclusively orthologous RAD sequences

almost always matched the reference topology (Fig. 1), which

suggests that in the absence of orthology estimation errors, RAD

sequences contain useful phylogenetic signal. However, it also

seems that errors in orthology estimation are not the primary

cause of phylogenetic inaccuracy in our workflow. In many cases,

even when the proportion of completely orthologous clusters was

very low, the correct topology was inferred with moderate to high

support (Fig. 3; Table S2). Clusters that are not completely

orthologous often contain substantial amounts of phylogenetic

signal, as shown by the moderate to high accuracy of trees

reconstructed from only non-orthologous clusters, i.e., clusters that

contain at least one non-orthologous sequence relative to the other

sequences (Table S2).

The performance of clustering at recovering orthologous

sequences is non-random with respect to phylogeny, and degrades

with evolutionary divergence time. Deep divergences are prob-

lematic for two reasons: first, restriction sites change over time,

with losses favored over gains, leading to a reduction in the

number of orthologs retained across divergent taxa; second,

evolutionary divergence of orthologous RAD sequences compro-

mises the ability to infer their orthology based on sequence

similarity. Consequently, taxa that are phylogenetically isolated on

long branches are less likely to retain orthologous restriction sites,

and the RAD sequences they do retain will be more divergent,

diminishing their representation in clusters. Species of Drosophila

without close relatives in our analysis (D. ananassae, D. grimshawi, D.
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mojavensis, D. persimilis, D. pseudoobscura, D. virilis, and D. willistoni)

were represented in fewer clusters compared with the others (Fig. 2,

S1, S2, S3). This systematic pattern to missing data is an important

potential source of error in the design of phylogenetic studies using

RAD sequences, and should be considered in the interpretation of

inferred trees.

Accuracy and clade age
Our workflow of clustering, filtering, and concatenation

(Table 2) was able to accurately infer phylogenetic relationships

for Drosophila, but was less successful for yeasts and mammals,

although within each of these groups the phylogenetic relation-

ships of closely related taxa were often accurate. This suggests that

clade age and divergence times of lineages are important

determinants of the success of the RAD method. Saccharomyces

and Candida diverged approximately 300 million years ago (Mya)

[24]. Among mammals, the Euarchontoglires (primates+rodents)

diverged from the Laurasiatheria (cow+horse+dog) approximately

100 Mya [25]. By contrast, the crown age of the Drosophila species

analyzed here is 40–60 Mya [26–28].

As noted previously, deep divergences reduce the amount of

recoverable RAD loci between taxa. We consistently recovered

accurate relationships within younger groups (#40–60 Mya)

including Drosophila over a broad range of matrix assembly

parameters. In mammals, these clades included primates (approx-

imately 22 Mya; [29]), and Mus+Rattus (approximately 10–30 Mya;

[30,31]). In yeasts, longer read lengths consistently yielded accurate

relationships of the more recently diverged species (S. cerevisiae+S.

paradoxus sister to S. mikatae), and correctly recovered the entire tree

at low values of clustering similarity (60% and 70%). It appears that

with longer read lengths, deeper divergences may be tractable with

RAD sequences. The performance of RAD sequencing for

phylogenetics is thus likely to improve as high-throughput

sequencing technologies advance and yield longer reads.

Phylogenetic signal and gene tree incongruence in
Drosophila

We judged phylogenetic accuracy by comparing the inferred

phylogenies to a single reference topology for each clade.

However, within Drosophila, incomplete lineage sorting has led to

widespread gene tree incongruence in the relationships between D.

erecta, D. yakuba, and the D. melanogaster clade (D. melanogaster sister to

D. sechellia+D. simulans; [32]). In the maximum likelihood Drosophila

phylogeny (the one used as the reference here), D. yakuba+D. erecta

form a clade sister to the D. melanogaster clade but this topology is

not universally supported. Pollard and colleagues [32] analyzed

more than 380,000 informative nucleotide changes in over 9,400

genes in the Drosophila genomes, and found that 55.3% of these

changes support trees which differ from the reference topology in

having either D. yakuba sister to D. erecta+the melanogaster clade, or

D. erecta sister to D. yakuba+the melanogaster clade (Fig. 1). Similarly,

42.2% of genes support these alternative topologies with higher

likelihood than the reference topology. The presence of one of these

alternative nodes in the reconstructed trees is shown in Table S2.

Table 2. A workflow for phylogenetic inference using RAD sequences.

Steps to determine if the species your wish to study are appropriate for RAD phylogenetics

How much evolutionary divergence time do you expect between taxa? RAD appears to work well for #50 million year divergences by consistently fails at $100
million years.

Collect samples

High quality genomic DNA is the required input. It is better if there is a continuum of relatedness between taxa so that each species has at least some close relatives
included in the analysis.

Prep and sequence DNA

This can either be done in house or by sending samples to a sequencing facility [8]. The basic procedure is to cut genomic DNA with the specified restriction enzyme,
randomly fragment the resulting pieces, barcode the samples for increased cost-efficiency, and sequence.

Filter sequences and call consensus loci

Som sequence reads will be ambiguous or of low quality. These should be discarded. High coverage of loci allows for probabilistic analyses of the most likely base at
each position [12–15].

Cluster sequences (Step 1 from Methods)

A variety of clustering similarities should be tried to test the consistency and believability of results. UCLUST [16] is fast and effective at finding homologous
sequences.

Choose minimum taxa cluster sizes (Step 2)

Small minimum taxa cluster sizes tend to produce the best topologies but larger values may be useful with very large datasets. Any cluster smaller than the chosen
minimum taxa cluster size is excluded as are clusters with samples represented by multiple sequences.

Align clusters of sequences (Step 3)

Each cluster of sequences should be individually aligned using an automated alignment program. The volume of data precludes manual alignment.

Concatenate clusters (Step 3)

All clusters should be concatenated, filling in missing sequences from each cluster with gaps. There will be many missing sequences.

Reconstruct phylogeny

RAxML [19] is fast, can handle matrices even millions of base pairs long and can reconstruct accurate topologies from this type of data but other methods can be
used.

Compare results from different parameters

Different sets of reasonably chosen parameters should produce similar topologies. Although low clustering similarities were successful in our study, higher similarities
may be more useful for more recently divergent taxa. Low clustering thresholds may allow for more data, but more data may also be discarded if multiple sequences
from a single species more often end up clustering together.

doi:10.1371/journal.pone.0033394.t002
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We surmise that gene tree incongruence in the Drosophila

genomes had a significant effect on our total-evidence reconstruc-

tions of phylogeny. Of the 572 phylogenies inferred across the

range of clustering and filtering parameter values, 195 (34%)

exactly matched the reference topology, implying that the

remaining 377 phylogenies were incorrect. However, of these

377, 119 (32%) matched one of the two likely alternative

topologies [32]. Overall, 314 (55%) of the total inferred

phylogenies exactly matched one of the three topologies that are

each supported by large portions of the genome. Of the 13

parameter combinations that produced the same topology across

input-order replicates, 12 recovered either the perfect topology or

one of the alternative topologies. Consistency across input-order

replicates may therefore be a useful way of choosing parameter

sets when analyzing real world RAD data.

The influence of gene tree incongruence on our ability to infer

the Drosophila phylogeny shows that even these vast quantities of

data can yield misleading results. RAD data are not resistant to the

problems typically encountered in genome level molecular

phylogenetics [33]. These potential pitfalls should be carefully

considered when interpreting results.

Missing data, accuracy, and support
In this study we had the benefit of reference phylogenies, against

which we could compare the trees inferred from different

combinations of data matrix assembly parameters. In practice,

however, reference topologies are unlikely to be generally

available. In that case, how much confidence should one have in

a tree inferred from RAD sequences? Our results show that, while

correct nodes are more likely in general to be strongly supported,

incorrect nodes can also have high bootstrap values, although this

is not unique to RAD phylogenetics [34–36]. This suggests that

bootstrap support alone is not a sufficient measure of confidence,

and consideration should be given to other factors, such as

consistency across input-order replicates. Our success at accurately

inferring phylogenies from data matrices with vast amounts of

missing data suggests that missing data per se is not problematic for

reconstructing phylogenies; rather, inaccuracy may arise more

from phylogenetically misleading data and lack of informative data

[33,37–40]. Taxa with the fewest informative characters were

more frequently placed incorrectly in the phylogeny, suggesting

that the distribution of data across taxa is an important

consideration. Moreover, our preliminary investigations indicate

that for RAD matrices, the ratio of parsimony compatible sites to

incompatible sites at each node may provide useful measures of

confidence in tree topology. This also explains the trend towards

more accurate trees when more data are available.

Species tree estimation
Perhaps the greatest advantage of using RAD sequences for

phylogeny reconstruction, as opposed to the traditional approach

of using one to several genes, is that the RAD method samples

data from many loci across the entire genome. This suggests that

RAD sequence alignments could be profitably applied to methods

for multilocus species tree estimation, an active area of current

research that emphasizes the use of coalescent models to account

for gene tree incongruence [41,42]. Unfortunately, many multi-

locus methods (e.g., BUCKy; [21]) currently require complete data

matrices, i.e., that all loci have been sequenced for all taxa.

Interspecific RAD data sets do not fit this criterion, for reasons

discussed previously. Other methods for reconstructing species

trees from gene trees are prohibitively slow on large data sets

(BEST; [43]), or have not been tested on data sets consisting of

large amounts of missing data (*BEAST, STEM; [22,23]). Our

experiments running *BEAST with the Drosophila data met with

limited success, but nevertheless held some hope about the

prospects of species tree inference from RAD sequences. These

inferences would potentially be more successful with the inclusion

of multiple individuals per species, allowing for more useful

analyses of coalescence. As with the concatenation approach,

*BEAST trees were most accurate when based on long sequence

read lengths. This suggests that as second generation sequencing

methods begin to produce longer reads, the accuracy of using the

RAD method for phylogenetics will improve.

The future of species tree estimation from RAD sequences likely

does not lie in current methods that are based on coalescence and

reconciliation of gene trees. Rather, it may be necessary to design

phylogenetic inference methods specifically for RAD sequencing,

due to the fact that individual RAD loci generally do not have

sufficient variation to reconstruct completely resolved gene trees,

and are expected to have phylogenetically structured patterns of

missing data. Bryant and colleagues [44] describe a promising

method for estimating phylogenetic trees from SNP and AFLP

(presence-absence) data that is being implemented in the

development version of BEAST. Continued development of these

methods will surely increase the usefulness of RAD sequencing for

phylogeny estimation.

RAD sequencing in practice
Our analyses of Drosophila reveal some general patterns in how

sequence read length, clustering and filtering parameters influence

phylogenetic accuracy. As might be expected, longer sequences

perform better. We found that values of clustering similarity in the

range of 55–70% generally produced the most accurate topologies,

possibly because these produced matrices with more informative

sites than at higher values of clustering similarity. However, this

result may be taxon-specific and exploring a range of clustering

similarity values is generally advisable. If UCLUST is used for

clustering, we also suggest conducting replicate analyses in which

the input order of sequences is randomized. Consistency across

large numbers of replicates may indicate appropriate parameter

values (Table S6). Regarding filtering for minimum number of

taxa in a cluster, there appears to be little reason to use any value

other than four, as higher proportions of missing data did not

adversely affect the accuracy of inferred trees; an exception to this

might arise if computer memory was limited, and smaller matrices

were desired for that reason (e.g., for *BEAST analyses).

Our finding that topological accuracy is generally high across a

wide range of clustering and filtering parameters suggests that

phylogenetic inference using RAD data should be robust to a

variety of read lengths, restriction enzymes, minimum cluster sizes,

and clustering similarity values. Phylogenetic consistency across

replicates of particular parameters tends to indicate that the

resulting topology is correct. Our experiments used restriction

enzymes that produced relatively few reads, but less selective

enzymes would produce larger amounts of data that could further

increase the quality and robustness of phylogenetic inference. In

general, longer and more GC-rich restriction sites will be more

conserved across taxa and will yield fewer RAD sequences

compared with shorter restriction sites. Clearly, there is a more

or less direct relationship between the number of loci that are

sequenced and the performance of phylogenetic analysis. The

availability of software tools such as UCLUST, which can rapidly

cluster millions of sequences on a desktop computer, facilitates the

management and analysis of large data sets.

We show that it is possible to use RAD sequence data to

accurately reconstruct phylogenies, but our in silico experiments

omitted several steps that would be required in applying the

RAD Phylogenetics

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e33394



method in practice to a given set of non-model species. Most

importantly, we did not consider the problem of generating

consensus sequences of RAD loci for each taxon, which requires

accounting for the error rate in Illumina sequencing (currently

about 1%, increasing toward the ends of reads). Likelihood-based

methods for this step have been developed (e.g. [12–15]). To date,

RAD sequencing has not been done using the SOLiD platform,

which has a lower error rate than Illumina [45].

It would be theoretically possible to use a longer read

technology, such as 454, to obtain RAD data with more data

per locus. Our preliminary analyses suggest that this increase in

data does not significantly improve phylogenetic accuracy, but

could help resolve the placement of taxa otherwise under-

represented in the data matrix. However, large numbers of reads

per sample are necessary to call consensus sequences for each

locus, and the longer read technologies would require more runs to

obtain the same coverage across many samples and loci. The

comparatively high cost per sequence of longer read technologies

make them ineffective for RAD phylogenetics at this point in time.

Further developments in both sequencing technologies and

computational tools will continue to improve the utility of RAD

sequencing.
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Figure S1 As in Figure 2 except showing a replicate of
each matrix constructed from 50 bp reads and the
restriction enzyme SbfI.
(TIF)

Figure S2 As in Figure 2 except showing a replicate of
each matrix constructed from 100 bp reads and the
restriction enzyme NotI.
(TIF)

Figure S3 As in Figure 2 except showing a replicate of
each matrix constructed from 50 bp reads and the
restriction enzyme NotI.
(TIF)

Table S1 Accuracy of Drosophila trees reconstructed
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Table S3 Details of the data and the accuracy of the
resulting trees for every supermatrix of mammal
sequences.
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Table S4 Details of the data and the accuracy of the
resulting trees for every supermatrix of fungus sequenc-
es.
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Table S5 Results of Mann-Whitney tests for differences
in bootstrap support between correct and incorrect
nodes.
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replicates of a subset of parameters.
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