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Abstract

Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum
is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain
and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing
control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by
learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our
hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for
cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain
adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could
reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje
cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest
that the cerebellum may use a single computational mechanism to control gain and timing simultaneously.
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Introduction

Smooth and coordinated movements are achieved by control-

ling movements of different body parts precisely in both space and

time. The spatial information—the amplitude or velocity of

movements—is technically called ‘‘gain’’, whereas the temporal

information—the initiation and termination of movements—is

called ‘‘timing’’. Our daily movements are thus executed under

precise gain and timing control. The cerebellum seems to play an

essential role in the acquisition and maintenance of this gain and

timing information, because patients with cerebellar diseases very

often show dysmetria or delays in movement onsets. The

cerebellar mechanisms for gain and timing control have typically

been studied independently using two different experimental

paradigms, i.e., gain adaptation of the vestibulo-ocular reflex

(VOR) or optokinetic response (OKR) eye movements (e.g., [1,2]),

and timing learning in the Pavlovian delay eyeblink conditioning

(e.g., [3,4]). Correspondingly, a number of computational models

of the cerebellum have been proposed independently for either

VOR/OKR adaptation [5–12] or eyeblink conditioning [13–27].

Few models, however, can address both of these. Microzones and

microcomplexes, which are homogeneous structures within the

cerebellum, are supposed to be the basic functional unit of the

cerebellum [1]. Therefore, it would be expected that the

cerebellum uses the same computational principle for simulta-

neous gain and timing control.

In the previous study, we have proposed a cerebellar model for

timing control [24]. Here, we extend the model to propose a single

computational mechanism to unify gain and timing control. Figure 1

illustrates the hypothetical mechanism. In delay eyeblink condi-

tioning (Fig. 1A), mossy and climbing fibers (MFs and CFs) convey

respectively conditioned and unconditioned stimuli (CS and US).

When a CS is presented, different populations of granule cells

become active one by one sequentially and thereby representing the

passage of time from the CS onset. At the US onset, long-term

depression (LTD) occurs by correlated firing of the active parallel

fibers (PFs) with the CF, by which the efficacy of signal transmission

from the active PFs to the innervated Purkinje cells, referred as

‘‘synaptic weight’’ in this study, is decreased. Because the active PFs

at the US onset is determined uniquely, and the synaptic weight

only for the PFs is decreased, Purkinje cells gradually learn to pause

around the US onset [28]. In OKR adaptation (Fig. 1B), MFs and

CFs convey retinal slip information, which oscillates sinusoidally in

time. From the start of a cycle of the sinusoidal oscillation, different

populations of granule cells become active one by one sequentially.

LTD shapes the spatial distribution of PF-Purkinje cell synapses

sinusoidally, so that Purkinje cells’ response gradually increases the

depth of the sinusoidal modulation [29]. In this way, gain and

timing control could be unified if Purkinje cells learn not the scalar

information such as gain or timing but the complete waveform

instructed by the CFs.

In order to justify our hypothesis, we adopted our large-scale

spiking network model for delay eyeblink conditioning [25] to

OKR adaptation, and conducted computer simulations. Our

model was able to reproduce some of the electrophysiological

findings in OKR adaptation experiments.
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Results

Granule cell dynamics in response to sinusoidally
oscillating MF signals

First, we examined how the granular layer generates a sequence

of populations of granule cells in response to temporally oscillating,

not temporally constant, MF inputs as in Figure 1B. To do so, we

fed Poisson spikes that oscillate sinusoidally at 0.5 Hz to MFs as

retinal slip signals exerted in OKR adaptation experiments [29],

and examined the spike patterns of granule cells in response to the

temporally oscillating MF inputs. The top panel of Figure 2A shows

the spike patterns of 1,000 out of 102,400 granule cells in response

to the sinusoidally oscillating MF signals at 0.5 Hz. At the beginning

and end of a cycle of MF signal oscillation, where the firing rate of

MFs is low, granule cells elicit spikes uniformly at random. As the

firing rate of MFs increases, granule cells tend to sustain spike

emission. The total activity of the granule cells is basically in

proportional to the MF firing rate as shown in the bottom panel of

Figure 2A, suggesting that the granule cells transmit the amplitude

information of MFs to Purkinje cells. Yet, the waveform differs from

that of MFs. The total activity rapidly increases during the first 0.3 s,

and reaches the plateau where only 7% of the cells elicit spikes at

each 10 ms bin. The plateau sustains for 0.7 s. Thereafter, the total

activity slowly decreases towards the end of a cycle.

On the other hand, owing to the random recurrent connections

between granule and Golgi cells, individual granule cells reveal a

variety of temporal spike patterns as in Figure 2B, which depicts

the spike patterns of 5 representative granule cells during 100

cycles of sinusoidally oscillating MF signals. The first two granule

cells elicit spikes sinusoidally modulated with the same and the

opposite phases, respectively. The next three granule cells exhibit

more complex spike patterns: a pause for about 0.5 s starting from

0.4 s, 0.8 s and 1.0 s. Our previous computer simulations have

demonstrated that temporally-fluctuating spike patterns of granule

cells are generated in response to constant MF signals [25,27]. The

present study demonstrates that similar spike patterns are

generated even by sinusoidally oscillating MF signals at 0.5 Hz.

These results imply that the population of active granule cells

gradually changes in time. To confirm this property, we calculated

the similarity index between active granule-cell populations

separated Dt by according to Eq. (7) and plotted in Figure 2C.

The similarity decreases monotonically as Dt increases, suggesting

that the temporal change is nonrecurrent. This result guarantees

the one-to-one correspondence between an active granule cell

population and a time step from the beginning of a cycle of MF

signal oscillation. In other words, a non-recurrent sequence of

active granule-cell populations is generated as in Figure 1B.

Furthermore, Figure 2B implies that the generation of the

temporally-fluctuating spike patterns are reproducible across

cycles of MF signal oscillation. To confirm the reproducibility,

we calculated the reproducibility index between two spike patterns

for all granule cells for two consecutive cycles according to Eq. (9),

Figure 1. Hypothetical computational mechanism for (A) Pavlovian delay eyeblink conditioning and (B) gain adaptation of
optokinetic response (OKR) eye movement. (A) In delay eyeblink conditioning, different populations of granule cells (numbered circles) become
active one by one sequentially in response to a conditioned stimulus (CS) conveyed by mossy fibers (MFs). At the onset of an unconditioned stimulus
(US) conveyed by a climbing fiber (CF), long-term depression (LTD) occurs only at the active parallel fiber (PF) synapses (synapses of granule-cell
populations 3 and 4). Here, we depict the synapses as triangles at the end of PFs, and the size of them represents the efficacy of signal transmission
from the PFs referred as ‘‘synaptic weights’’. Consequently, the net input to a Purkinje cell (gray circle) decreases around the US onset, which causes a
‘‘pause’’ of the Purkinje cell’s response. (B) In OKR adaptation, different populations of granule cells become active one by one sequentially in
response to sinusoidally oscillating MF signals representing retinal slip information. LTD occurs by correlated firing of PFs and a CF, so that the spatial
distribution of PF synaptic weights becomes sinusoidal. Therefore, the Purkinje cell’s response modulates sinusoidally in time in a mirror-symmetric
manner with the CF inputs.
doi:10.1371/journal.pone.0033319.g001

Cerebellar Gain and Timing Control Model
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and plotted it in Figure 2D. At 0.5 s within a cycle, the correlation

is as high as 0.9, and then decreases almost monotonically towards

0.8, suggesting high reproducibility of the spike patterns across

cycles. In general, the dynamics of a recurrent network depends on

both the external inputs and the initial state of the network. The

internal state needs to be reset at the beginning of each cycle so as

to generate the same spike patterns across cycles. We will discuss

how the sinusoidally oscillating MF signals reset the internal state

of the granular layer in Discussion.

Learned change of Purkinje cell and nuclear neuron
responses

Next, we examined how Purkinje cells change their activities

and modify the activity of a neuron in the vestibular nucleus (VN)

by learning. Figure 3A plots the firing of a Purkinje cell out of 16

Purkinje cells in the present model at the 1st, 100th, 200th, and

300th cycles of MF signal oscillation. As the cycle number

increases, the maximal firing rate changes moderately from 89 to

75 spikes/s, whereas the minimal firing rate decreases largely from

83 to 27 spikes/s. Hence, the modulation of the cell’s firing, which

is defined as the maximal minus minimal firing rates divided by 2,

gradually increases across cycles from 3 to 24 spikes/s. This

dynamics, in which the increase of the modulation of Purkinje

cells’ firing is mainly caused by the decrease of the minimal firing

rate, is consistent with the change of Purkinje cells’ simple spike

firing in OKR experiments [29].

Figure 3B plots the firing of a neuron in VN, which is

innervated by all 16 Purkinje cells in the model, at the same cycles.

Because the inhibition exerted by the Purkinje cells modulates out-

of-phase, the modulation of the VN neuron’s firing becomes in-

phase with MF signal oscillation, and increases gradually across

cycles from 21 to 33 spikes/s. We conducted the simulation for

800 cycles and plotted the gain ratio (modulation of the VN

neuron’s firing at each cycle divided by that at the 1st cycle) in

Figure 3C. Owing to the inhibition of the inferior olive (IO)

exerted by VN, we found that learning is saturated by the first 300

cycles of MF signal oscillation, and the gain ratio converges to

1.57. Therefore, we limited further analysis to the first 300 cycles.

Figure 3D plots the distribution of synaptic weights of active

granule cells at each time step after 300 cycles of MF signal

oscillation. Synaptic weights of active granule cells at the

beginning and end of a cycle are uniformly distributed within

0.15 to 1.0. Around the middle of a cycle, where the amplitude of

MF and CF signals is the largest, the distribution is localized

between 0.15 to 0.5, and only a very small fraction of active

granule cells have large synaptic weights. Thus, the temporal

distribution of synaptic weights sinusoidally modulates out-of-

phase with MF and CF signal oscillation, as we hypothesized in

Figure 2. Dynamics of the granule cells in response to
sinusoidally oscillating MF signals at 0.5 Hz. (A) Top panel, spike
patterns of 1,000 out of 102,400 granule cells during a cycle of MF
signal oscillation (2.0 s = 0.5 Hz). Black dots indicate spike discharges. At
the beginning and end of a cycle where the firing rate of MFs is low,
granule cells elicit spikes uniformly at random. At the middle of a cycle
where the firing rate of MFs is high, spike patterns exhibit a variety of
temporal profiles. Bottom panel, the ratio of active granule cells, which
plots the number of active granule cells in each 10 ms bin divided by
the total number of granule cells ( = 102,400). (B) Spike patterns of 5
representative granule cells across 100 cycles of MF signal oscillation.

Black dots and grey lines in each panel show spike discharges in each
cycle and the averaged spike density histogram, respectively. The
granular layer modeled as a random recurrent network generates a
variety of discharge patterns of granule cells, which can be used to
produce a sequence of active granule-cell populations. (C) Similarity
index S(Dt) defined by Eq. (7) for the spike patterns shown in Figure 2A.
The index monotonically decreases from 1 at Dt = 0 to 0.58 as Dt
increases, suggesting that the active granule-cell population gradually
changes into another, uncorrelated population over time. Therefore, a
non-recurrent sequence of active granule-cell populations is generated.
(D) Reproducibility index R(t) defined by Eq. (9) for 10 pairs of spike
patterns for all granule cells across two successive cycles of MF signal
oscillation. The reproducibility increases towards 0.9 at the beginning of
a cycle, and then linearly decreases towards 0.8, suggesting that the
spike patterns of granule cells are highly reproducible across cycles.
doi:10.1371/journal.pone.0033319.g002

Cerebellar Gain and Timing Control Model
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Figure 1B. In other words, the distribution of the synaptic weights

represents the complete waveform of the CF signals in upside

down. On the other hand, we observed that blocking feedforward

inhibitory inputs to Purkinje cells exerted by basket cells resulted in

in-phase modulation of Purkinje cells’ firing, which is consistent

with experiments [30]. This result suggests that the out-of-phase

modulation of Purkinje cells’ firing is caused by the spatial

distribution of PF-Purkinje cell synaptic weights as well as the

feedforward inhibition by basket cells.

We also carried out the same simulations for 300 cycles by

varying the peak firing rate of MFs at 25, 30 (default), 35 and 40

spikes/s while setting that of CFs at 3 (default) spikes/s, and by

varying the peak firing rate of CFs at 2, 3 (default), 4 and 5 spikes

while setting that of MFs at 30 (default) spikes/s. Figure 3E and 3F

plot the modulation of a VN neuron with respect to the firing rate

of MFs (Fig. 3E) and CFs (Fig. 3F). The modulation of the VN

neuron increases as their firing rates increase, which corresponds

to that both the MF and CF inputs represent retinal slip

information in OKR in the present model. Specifically, by

increasing the peak firing rate of MFs, the excitatory inputs to a

VN neuron become stronger, whereas the inhibitory inputs do not

change largely because the Purkinje cells’ activity is regulated by

both the PFs and inhibitory interneuons. Therefore in Figure 3E,

the modulation of a VN neuron at zero cycle is proportional to the

peak firing rates of MFs. On the other hand, in Figure 3F, by

increasing the peak firing rate of CFs, the inhibitory inputs

through Purkinje cells become weaker owing to LTD, whereas the

excitatory inputs through MFs remains the same. Thereby, the

modulation of a VN neuron increases proportionally with the peak

firing rate of CFs, whereas the modulation at zero cycle is the

same. Moreover, larger firing rate of CFs induces more LTD,

resulting in more remarkable increases of the modulation of a VN

neuron.

Frequency-dependent increase of nuclear neuron firing
Previous experiments for OKR adaptation in rodents and VOR

adaptation in monkeys and rodents consistently demonstrated

frequency-dependent gain increase [31–33]. In the experiments of

OKR gain adaptation, continuous screen oscillation at a fixed

frequency is used for training. The gain increase is found to be the

largest at the oscillation frequency which was used for training,

whereas a small gain increase is still observed for other frequencies.

The underlying neural mechanisms of such frequency-dependent

gain increase, however, are not well known.

To investigate whether our model shows similar frequency-

dependent gain increase, we conducted a computer simulation for

300 cycles of MF signal oscillation with the training frequency of

0.5 Hz while saving the learned information, namely the synaptic

weights at PF-Purkinje cell synapses to a storage. Then, we

conducted additional simulations with different test frequencies

(0.25 Hz, 0.33 Hz, 0.5 Hz and 1 Hz) using the stored synaptic

weights at the 100, 200 and 300th cycle during the training as the

initial synaptic weight. We measured the modulation of a VN

neuron’s firing and calculated the gain ratio in Figure 4A. The

gain ratio increases as the cycle number increases irrespective of

the test frequencies, but the ratio is the largest at the test frequency

of 0.5 Hz. Therefore, our network model reproduces the

frequency-dependent generalization of VN neuron firing.

What computational mechanism underlies the frequency

dependence? We hypothesized that the granular layer plays an

essential role, and further examined the spike patterns of granule

cells in response to MF signals oscillating at these four test

frequencies. We normalized the spike patterns by rescaling the

duration of a cycle to 2.0 s ( = 0.5 Hz). Then, we calculated the

reproducibility index between the original spike patterns for all

granule cells at 0.5 Hz of MF signal oscillation and a normalized

spike patterns generated at different test frequencies. Figure 4B

Figure 3. Simulation of OKR adaptation. (A and B) Learning-
induced change of the firing of (A) a Purkinje cell and (B) a VN neuron at
the 1st, 100th, 200th, and 300th cycles of MF signal oscillation (black to
gray, respectively). The Purkinje cell increases the modulation from 3 to
24 spikes/s by decreasing the minimum firing frequency from 83 to 27
spikes/s. The maximal firing frequency changes modelately (from 89 to
75 spikes/s). The VN neuron increases the modulation from 21 to 33
spikes/s by increasing the maximal firing frequency from 63 to 121
spikes/s. The minimal firing frequency changes from 22 to 41 spikes/s.
(C) Gain change with respect to the number of cycles. Gain ratio was
defined by the modulation of a VN neuron at each 10 cycles divided by
the modulation at the 1st cycle. The gain ratio gradually increases and
converges to 1.57 by 300 cycles. (D) The distribution of synaptic weights
between active granule cells and Purkinje cells after 300 cycles of MF
signal oscillation. The synaptic weights of active granule cells at the
beginning and end of a cycle are uniformly distributed between 0.15
and 1, whereas these around the middle of a cycle are narrowly
distributed between 0.15 and 0.5. Thus, the temporal change is
reversely correlated with the waveform of the CF signal as in Figure 1B.
(E and F) Modulation of a VN neuron by 300 cycles of MF signal
oscillation with different peak firing rates of (E) MFs at 25, 30, 35 and 40
spikes/s while setting that of CFs at 3 spikes/s, and (F) CFs at 2, 3, 4 and
5 spikes/s while setting that of MFs at 30 spikes/s (black to gray). In
both cases, the modulation increases as their peak firing rates increase.
doi:10.1371/journal.pone.0033319.g003

Cerebellar Gain and Timing Control Model
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shows the result. The reproducibility is still high irrespective of the

test frequencies. The best reproducibility, however, is obtained

when the test frequency is equal to the training frequency (i.e.,

0.5 Hz). This observation implies that the high reproducibility at

all test frequencies causes the general increase of the gain ratio,

whereas the frequency-dependent reproducibility results in the

frequency-dependent increase of the gain ratio. We also plotted

the spike patterns of the representative 5 granule cells shown in

Figure 2B in response to MF signal oscillation with these different

frequencies across 100 cycles in Figure 5. These spike patterns

show similar temporally-fluctuating profiles of the firing, except for

that the spike patterns are temporally expanded or compressed

depending on the frequency. These observations imply that the

granular layer generated the same spike pattern in response to MF

signals while temporally compressing or expanding the spike

pattern for different frequencies. In sum, we suggest that the

frequency dependence of gain increase emerges from the network

dynamics of the granular layer rather than the training frequency

selective channels [31].

Discussion

In the present study, we proposed a computational mechanism

to unify the cerebellar gain and timing control. Specifically, we

demonstrated that a class of cerebellar timing control models, in

which a recurrent network as a model of the granular layer

generates a non-recurrent sequence of active granule-cell popu-

lations that can represent a passage of time, can be adopted also

for gain control. The first theoretical model of this class was

proposed by Buonomano and Mauk (1994) [17], and later more

elaborated model was implemented by Medina et al. (2000) [20] so

as to compare the simulation results quantitatively with their

experimental data for Pavlovian delay eyelid conditioning. We

formulated the recurrent network, and theoretically and numer-

ically analyzed its dynamics [24]. Later, we implemented our

theoretical model into a large-scale spiking network, which can act

as a general supervised learning machine known as a liquid state

machine [25,27,34]. In the present study, we adopted the spiking

network model to OKR adaptation and succesfully reproduced the

learning-induced change of simple spike firing of Purkinje cells,

learning-induced gain increase, and frequency-dependent gain

increase.

Properties of the sequence generation of active granule-
cell populations

A key assumption of the present model is that the granular layer,

modeled as a recurrent inhibitory network composed of granule

and Golgi cells, generates a nonrecurrent sequence of active

granule-cell populations. In our previous modeling study [25], we

reported that such a sequence could be generated in response to

sustained MF inputs in which the firing rate is constant at 30

spikes/s. In the present study, we suggested that a similar sequence

can be generated even for the sinusoidally oscillating MF inputs at

0.5 Hz (Fig. 2). The granular layer has to generate the same

sequence of active granule-cell populations across different trials or

cycles to reliably transmit MF information. Because the dynamics

of a recurrent network depends on the external inputs as well as

the initial state of the network, the granular layer has to reset its

internal state at the beginning of each trial or cycle for this

purpose. In our previous simulations for delay eyeblink condi-

tioning [25], we provided a brief strong input (200 spikes/s for

5 ms) at the CS onset, which should activate most granule cells

instanteneously, thereby resetting the internal state of the granular

layer. In the present study, we did not provide such strong inputs.

Rather, we demonstrated that slowly increasing MF signals may

be enough to reset the internal state, as shown by the

reproducibility index in Figure 2D. The reset mechanism could

be explained as follows. Figure 2B shows that the rising phase of

granule cells’ activity sustains for 0.3 s at the beginning of each

Figure 4. Frequency-dependence of gain change in OKR
adaptation. (A) The gain ratio defined as in Figure 3C at the test
frequencies of 1 Hz, 0.5 Hz ( = training frequency), 0.33 Hz and 0.25 Hz
at the 100th, 200th and 300th cycle (black to gray, respectively). The gain
ratio increases as the cycle number increases. The ratio is the largest
when the test frequency is equal to the training frequency, suggesting
frequency-dependent change of OKR gain. (B) Reproducibility indices
between 10 pairs of spike patterns for all granule cells in response to
MF signal oscillation with the frequency of 0.5 Hz and those with the
frequencies of 1 Hz, 0.5 Hz, 0.33 Hz and 0.25 Hz (black, dotted, gray,
and pale gray lines, respectively). Spike patterns are normalized in
length to 2 s ( = 0.5 Hz) by renumbering the time step. The
reproducibility indices for non-training oscillation frequency are lower
than that for training oscillation frequency, suggesting worse repro-
ducibility of spike patterns in response to MF signal oscillation with
non-training oscillation frequencies.
doi:10.1371/journal.pone.0033319.g004

Figure 5. Spike patterns of 5 representative granule cells shown in Figure 2B for 100 cycles of MF signal oscillation with frequencies
of 1 Hz, 0.5 Hz (default), 0.33 Hz and 0.25 Hz (top to bottom, respectively). Abscissa represents the duration of a cycle, so that the duration
varies at 1, 2, 3 and 4 s, respectively. Throughout the test frequencies, similar spike patterns are generated while temporally expanded or
compressed.
doi:10.1371/journal.pone.0033319.g005

Cerebellar Gain and Timing Control Model
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cycle. In this phase, increase of excitatory MF inputs to granule

cells advances temporally that of feedback inhibition exerted by

Golgi cells. The dominance of excitation produces a situation in

which most of the granule cells are activated uniformly. This

uniformly-activated state may serve as a default internal state that

occurs at the beginning of each cycle. Therefore, slowly increasing

excitatory inputs are sufficient to reset the network dynamics. In

VOR, Barmack and Yakhnista (2008) have reported the presence

of phasic components of MF signals at the onset of the head

rotation [35]. Such phasic components may exist in OKR as well.

Recently, Jirenhed and Hesslow (2011) have reported that in the

preparations of fully conditioned decerebrated ferrets, a brief CS

consisting of only one or two impluses in MFs is sufficient to elicit a

pause in 4 out of 7 Purkinje cells recorded [36]. Because such a

brief CS seems to be unable to evoke a sequential activation of

granule-cell populations, they suggest that a traditional view of the

cerebellar timing mechanisms including ours, in which different

parallel fibers are activated with different temporal patterns [14–

17,19–22,24,25,27], may be unlikely. However, in brainstem-

cerebellum preparations of turtles, a brief stimulation of MFs

evokes long-lasting excitatory postsynaptic potentials (EPSPs) that

sustain up to 800 ms in Purkinje cells [37]. Importantly, these

EPSPs are blocked by the bath application of DL-2-amino-5-

phosphonvalerate, indicating the contribution of N-methyl-D-

aspartate receptors (NMDARs) at MF-granule cell synapses [37].

We have suggested that NMDARs at MF-granule cell synapses are

indispensable for the generation of a sequence of active granule-

cell populations [25,27]. These results imply that even a brief

stimulation of MFs could evoke sustained activity of granule cells,

thereby generating a sequential activation of granule-cell popula-

tions. We will extend the present model to incorporte these

findings in future.

Electrophysiological studies have shown that granule cells excite

Golgi cells, which in turn inhibit granule cells, thereby constituting

a recurrent network. Yet, whether such a network actually works

as a random recurrent network that generates a non-recurrent

sequence of granule-cell populations remains unknown. Detailed

analysis of neural activity of the granular layer and reproduction in

a computer simulation would be necessary to clarify this issue.

Mechanism underlying the stimulus-frequency
dependency of adaptation

We also observed that in response to MF inputs with different

oscillation frequencies, similar spike patterns of granule cells are

generated while being expanded or compressed temporally as

shown in Figure 5. Because the granular layer is modeled as a

random recurrent network that generates spike patterns in a highly

nonlinear manner, the network could generate very different spike

patterns in response to oscillatory MF inputs with different

frequencies. Therefore, generation of the temporally expanded/

compressed spike patterns is not trivial. We consider that this

property may result in the frequency-dependent gain increase

observed in experiments [31–33]. Furthermore, this result implies

that the internal representation of a passage of time by the

sequential activation of granule-cell populations can be sped up or

slowed down adaptively depending on the frequency or the

amplitude of MF inputs. Experiments of delay eyeblink condi-

tioning have shown that the learned CR can be elicited earlier or

later than the trained timing, when the amplitude of a CS is

respectively increased or decreased, suggesting that the learned

timing may be expressed adaptively depending on the amplitude

of MF inputs [38]. We hypothesize that the adaptive change of the

learned timing is caused by the adaptive speed up/slow down of

the internal representation of a passage of time.

Comparison of model granule cells’ activity with
experimental data

The present model assumes that individual granule cells elicit

spikes in random and intermitted manner so as to generate a

nonrecurrent sequence of active granule-cell populations (Fig. 2B).

Unfortunately, recent experiments of in-vivo granule cell record-

ing report that granule cells elicit spikes regularly and faithfully in

response to peripheral or direct MF stimulation. Here, we would

like to interpret this discrepancy. Some studies [35,39–41] used

ketamine for anesthesia, which is a blocker of NMDARs ([42] and

references therein). As already mentioned, long decay time

constants of NMDAR-mediated EPSPs are indispensable for the

generation of a sequence of active granule-cell populations. Two

studies [39,40] used very brief sensory stimulation that sustains for

50 ms. In delay eyeblink conditioning, the inter-stimulus interval

(ISI) should be .100 ms to generate robust CRs [3], suggesting

that the sensory stimulation used in their experiments were too

brief to observe the spatiotemporal dynamics of granule-cell

activity proposed in the present model. The other studies using

awake animals [43,44] displayed granule-cell activity in peristi-

mulus time histograms using a relative large bin size, so that the

fine temporal structure within the granule-cell activity might be

hidden. Single-unit recordings of granule cells from awake animals

in finer temporal resolution may be helpful to examine the activity

of granule cells suggested in the present study.

Unification of gain control and timing control models
The present model for OKR adaptation has inhibitory

projection from VN to IO, although such inhibitory projection

has not been demonstrated experimentally. This inconsistency is

due to that the present model is adopted from our previous model

for delay eyeblink conditioning [25], in which inhibitory projection

from the cerebellar nuclei to IO has been reported [45]. We would

like to consider why the inhibitory projection exists from cerebellar

nuclei to IO, which does not from vestibular nuclei to IO, from a

functional point of view. In the case of delay eyeblink conditioning,

the US is fed forcibly by an experimenter. In other words, ‘‘error’’

signal always comes into IO from the peripheral no matter how

long the training proceeds. This may cause overtraining, but the

inhibitory projection from the nuclei to IO can work to suppress it

(Fig. 3C). On the other hand, in the case of VOR/OKR

adaptation, retinal slip would gradually decreases during the

training, suggesting that error signal naturally diminishes without

any external mechanisms. Therefore, the inhibitory projection

would be no longer necessary and become very small.

Comparison with other models
Adaptive filter models of the cerebellum are another candidate

for simultaneous gain and timing control (e.g., [46]). In the phase

converter model [5] for VOR and OKR adaptation, the activity of

individual granule cells are oscillated with different phases in

response to sinusoidally modulating MF signals. The phase

converter model assumes that the phase differences of granule

cells’ activity are generated by the sum of the MF signal and the

inhibition exerted by the Golgi cell acting as an integrator. The

oscillator model for the delay eyeblink conditioning [14] extends

this assumption, therein the activity of individual granule cells are

oscillated with different frequencies and phases in response to

constant MF signals. The computation of these two models is

mathematically equivalent to the Fourier series expansion, which

represents a given waveform by a combination of sinusoids.

Another variant of adaptive filter models [11], in which individual

granule cells are activated one-by-one sequentially as in the tapped
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delayline model [47], has been proposed and adopted to VOR

adaptation. Throughout these three adaptive filter models,

individual granule cells are regarded as as a set of temporal

‘‘filters’’. Two differences are noted between adaptive filter models

and our model. First, adaptive filter models assume that individual

granule cells encode the information conveyed by MFs. On the

other hand, our model assumes that populations of granule cells,

not individual cells, encode the information. Second, adaptive

filter models do not explain how these filters are implemented

biologically within the recurrent network of the granular layer. A

calculation shows that granule cells in the phase converter model

could exhibit only temporally-constant activities in response to

constant MF signals, and the latter two models [11,14] assume that

the filters are given a priori. On the other hand, our model

employs an identical granular layer network to generate

temporally-fluctuating spike patterns of granule cells for both

sinusoidally modulating and constant MF signals. Summarizing,

the difference between the adaptive filter models and our model is

the modeling of the granular layer.

The Marr-Albus-Ito’s model of a simple perceptron provides a

general theory of cerebellar computation [1,48,49]. In their model,

external input signals are represented sparsely and combinatorially

by MFs (codon representation) and/or granule cells (expansion

recoding), so that a variety of input patterns can be encoded

efficiently. In our model, spatiotemporal information conveyed by

MFs are recoded into sparse spatiotemporal spike patterns in

much higher dimensions by a large number of granule cells.

Therefore, our model can be regarded as a natural extention of

their model into temporal domain. Theoretically, the present

model can aquire the relationship between arbitrary spatiotem-

poral signals fed by MFs and CFs as ‘‘context’’ and ‘‘desired’’

signals, respectively. This ability to learn and replay arbitrary

desired signals in response to given contextual information may be

essential for acquiring ‘‘internal models’’ that simulate the

dynamics of a diversity of physical and mental objects [50].

In sum, we proposed a computational mechanism that unifies

gain and timing control mediated by the cerebellum. We carried

out large scale computer simulations of a spiking network model of

the cerebellum to justify our hypothesis. This study may shed light

on a universal computational principle employed by the

cerebellum.

Materials and Methods

Implementation of the present cerebellar model
Network structure. Figure 6A illustrates a schematic of the

neural circuit involved in horizontal OKR adaptation [51]. Visual

motion information is transmitted from the retina to both the

horizontal eye movement zone of the flocculus and VN via the

pretectum and nucleus reticularis tegmenti pontis (NRTP) through

MFs. Visual motion information is also transmitted to the flocculus

through CFs via the IO, which receives inputs from the pretectum.

The flocculus inhibits the VN, which in turn drives the extraocular

muscle motor neurons. In the present study, we modeled the

cerebellar cortex (flocculus), VN, IO, and MFs to focus on the

dynamics of the flocculus and VN.

The model cerebellar cortex (Fig. 6B) is composed of the model

granular layer with 320|320 model granule cells and 32|32

model Golgi cells aligned on two-dimensional grids, 16 model

Purkinje cells and the same number of model basket cells aligned

parasagittally [25]. Each model granule cell has 4 dendrites,

receives excitatory inputs from MFs and receives inhibitory inputs

from model Golgi cells via simulated glomeruli (Fig. 6C). A model

granule cell contacts the 4 nearest simulated glomeruli resulting

in a nested structure of the granular layer due to the square

arrangement of model granule cells: 10|10 model granule cells

contact the same simulated glomeruli, resulting in ‘‘granule-cell

clusters’’ (Fig. 6D). Thus, 100 model granule cells in a cluster

share the same excitatory and inhibitory inputs. A simulated

glomerulus receives inhibitory inputs from 9|9 nearby model

Golgi cells with probability 0.025, so that, on average, 2 model

Golgi cell axons innervate a simulated glomerulus. Hence, a

model granule cell receives, on average, 8 inhibitory inputs

through 4 dendrites. A glomerulus also receives an MF input, so

that model granule cells contacting the same glomerulus should

receive a common excitatory signal. However, to simulate the

stochastic variability of synaptic transmission from a glomerulus

to granule cells, we modeled individual granule cells contacting

the same glomerulus to receive different Poisson spikes with the

same firing frequency (see ‘‘Stimulus’’ section for details). On the

other hand, a model Golgi cell receives inputs from 700|700

model granule cells, namely 7|7 granule-cell clusters with

probability 0.05.

A model Purkinje cell and a model basket cell receive PF inputs

from 9|32 granule-cell clusters. A model Purkinje cell also

receives inhibitory inputs from 3 nearby model basket cells and CF

inputs from a model IO. A model VN neuron receives excitatory

inputs from 100 MFs as well as inhibitory inputs from all model

Purkinje cells, and issues the final output of the model cerebellum

while inhibiting the model IO neuron. Although inhibitory

projection from VN to IO has not been demonstrated experi-

mentally, our model incorporates this projection, because this

model is based on our previous model for the delay eyeblink

conditioning, in which inhitory projection from the cerebellar

nuclei to IO has been reported [45]. The model IO neuron

provides CF inputs to model Purkinje cells, which trigger

simulated plasticity at PF-Purkinje cell synapses. The present

model does not consider CF collateral inputs to the VN, because

they are not present in all animal species [52].

Neuron model. Neurons are modeled as conductance-based

leaky integrate-and-fire units [53]:

C
dV

dt
~{gleak(V (t){Eleak){gex:AMPA(t)(V (t){Eex)

{gex:NMDA(t)(V (t){Eex){ginh(t)(V (t){Einh)

{gahp(t{t̂t)(V (t){Eahp)zIspont,

ð1Þ

where V(t) and C are the membrane potential at time t and the

capacitance, respectively. The membrane potential is determined

by six types of currents specified by Eq. (1); namely, leak, AMPAR

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor)-

mediated currents, NMDAR-mediated currents, GABAAR (c-

aminobutyric acid type A receptor)-mediated currents, the current

for emulation of the after-hyperpolarization, and the external

current for simulating spontaneous discharge. For each type c M
{leak, ex:AMPA, ex:NMDA, inh, ahp}, the current at a given time

is calculated with conductance gc and reversal potential Ec . The

conductance is calculated by the convolution of the exponential

function a(t) and the spike event dj(t) of presynaptic neuron j at

time t as follows:

gc tð Þ~�ggc

X
j

wj

ðt

{?
a t{sð Þdj sð Þds, ð2Þ

where �ggc represents the maximum conductance and wj the efficacy

of signal transmission referred as synaptic weight from the
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presynaptic neuron j. The exponential functions are defined for

each current and each neuron type with different time constants.

When the membrane potential of a neuron exceeds the threshold

h, the neuron elicits a spike, which is followed by the after-

hyperpolarization that determines a refractory period. The

conductance for the after-hyperpolarization is given by

gahp t{t̂tð Þ~exp { t{t̂tð Þ
�

tahp

� �
, ð3Þ

where tahp represents the time constant of the after-

hyperpolarization, and t̂t is the last firing time of the neuron

Figure 6. Schematics of the neural circuitry for horizontal OKR adaptation in rabbits (A), the structure of the model cerebellum (B,
C, D). (A) The VN receives the visual motion information through MFs via the pretectum and NRTP, and drives the extraocular muscles (AN and ON)
to evoke OKR. The cerebellar cortex (specifially, horizontal eye movement zone of the flocculus) receives the visual motion information through MFs
and CFs, and inhibits the VN. The VN also inhibits the IO which sends CFs to the cerebellar cortex. (B) MF inputs are fed to model granule cells in the
model granular layer of the cerebellar cortex and the model VN neuron. Model granule cells excite nearby model Golgi cells, which in turn inhibit
nearby model granule cells. The model granule cell activity is fed to model Purkinje cells and basket cells via PFs. Model basket cells inhibit nearby
model Purkinje cells, and all Purkinje cells inhibit the model VN. Model Purkinje cells also receive CFs. The model VN issues the final output, and
inhibits the model IO. (C) Spatial arrangement of model Golgi cells (circles), glomeruli (hexagons) and granule cells (dots). Shaded rectangles in pale
and dark grey represent, respectively, the dendritic and the axonal arborization of the model Golgi cell at the center. (D) Spatial arrangement of
model glomeruli (hexagons) and granule cells (dots) in detail. The rectangle in pale grey represents the dendritic arborization of model granule cell at
the center (white dot). For example, 100 model granule cells in the grey box (black dots) contact the four simulated glomeruli surrounding these
model granule cells (filled hexagons). Panels C and D are taken from [25]. Abbreviations: AN, abducens nucleus; BS, basket cell; CF, climbing fiber; GO,
Golgi cell; GR, granule cell; IO, inferior olive; LR, lateral rectus muscle; MF, mossy fiber; MR, medial rectus muscle; NRTP, nucleus reticularis tegmentis
ponti; ON, oculomotor nucleus; PF, parallel fiber; PKJ, Purkinje cell; VN, vestibular nucleus.
doi:10.1371/journal.pone.0033319.g006
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[53]. The external current for simulating spontaneous discharge

(Ispont) is fed to only model Purkinje cells and a VN neuron,

because these neurons are known to maintain relatively high

spontaneous discharge rates [54–57]. Parameter values were

adopted from known physiological data (Tables 1 and 2) as in our

previous model [25], except for the cell parameters for model

basket cells, the exponential function representing inhibitory

postsynaptic potentials (IPSPs) at model Purkinje cells, and the

external currents.

Stimulus. We used a fictious sinusoidal oscillation of check-

patterned screen at 0.5 Hz (one cycle) to simulate visual stimulus,

by referring to the experiments of OKR adaptation (e.g., [50]). We

assumed that model NRTP neurons elicit spikes in response to the

sinusoidal fictious screen oscillation with spontaneous and

maximum firing rates of 15 and 30 spikes/s, by referring to data

in rabbits [58]. We modeled MF signals as Poisson spike trains

whose probability distribution modulates sinusoidally at 0.5 Hz

with the mean and maximum amplitudes of 15 and 30 spikes/s,

respectively. We neglected the gradual decrease of MF signals

induced by learning, because sufficient retinal slip still remains

even after the end of OKR training under the relatively fast

(0.5 Hz) screen oscillation. This means that all the simulations

conducted in the present study are open loop. We also modeled

CF signals as sinusoidally modulating spike trains with the mean

and maximum amplitudes of 1.5 and 3 spikes/s, respectively. To

obtain such spike patterns, we fed Poisson spike trains that

modulates sinusoidally with the equivalent mean and maximum

amplitude to the IO. We neglected the gradual decrease of CF

signals induced by learning as well. These values for MFs and CFs

are consistent with data in rabbits [29].

Because the input to IO means retinal slip information in OKR,

first we fed to the IO the same Poisson spikes as MFs with the peak

firing rate of 30 spikes/s. We, however, realized that it was

impossible to obtain the peak firing rate of CFs as low as 3 spikes/s

by the input. Eventually, we decided to decrease the peak firing

rate of the input to 3 spikes/s so as to obtain the 3-spikes/s peak

firing rate of CFs. Several reasons would exist for the low firing

rate of CFs. Electrophysiological studies have shown that neurons

in IO are electrically coupled and oscillates at about 10 Hz under

the threshold. The subthreshold oscillation could work as a

temporal filter by which input signal to IO are passed to Purkinje

cells only when the signal comes into IO at the same timing that

the oscillation reaches the peak [59]. This mechanism could

reduce the firing rate of CF dramatically.

Synaptic weights. Synaptic weights incorporated in Eq. (2)

are set identically as in our previous model [25], except for those

related to Purkinje cells and basket cells that were missing in the

previous model. Criteria for setting parameters are described in

[25], but briefly, the parameters are set so as to achieve a maximal

firing rate near 100 spikes/s for each model neuron. We found

that the present model is able to reproduce similar results within a

wide range of parameters, suggesting that careful parameter

settings are not necessary. The parameter values we used in the

present study are shown in Table 3.

Plasticity. The plasticity rule for PF-Purkinje cell synapses

are the same as in our previous study [25]. The synaptic weight

between model granule cell j to model Purkinje cell i at time t,

denoted by wPKJi rPFj (t), is updated as follows:

wPKJi/PFj(tz1)~wPKJi/PFj(t)z0:0005(winit{wPKJi/PFj(t))PFj(t)

{0:005wPKJi/PFj(t)
X50

Dt~0

CF(t)PFj(t{Dt),
ð4Þ

where PFj (t) and CF(t) take 1 if PFj or CF elicited a spike at time t ,

and 0 otherwise. The 2nd term on the right-hand side simulates

long-term potentiation (LTP) [60–62] by PF stimulation only,

whereas the 3rd term LTD [63] by conjunctive activation of a CF

and a PF that are active 0–50 ms earlier than the CF activation.

The constant denoted by winit represents the initial synaptic weight

and was set at 1.0. We have tested a larger time window up to

250 ms according to slice experiments [64], and still obtained

similar results by setting the coefficient for LTP at a larger value.

Analysis of the spike patterns of granule cells
In order to study how the activity pattern of model granule-cell

clusters evolved over time, we defined several indices as in our

Table 1. Summary of cell parameters.

Cell parameters Cell type

GR GO PKJ BS VN IO

h(mV) {35:0 {52:0 {55:0 {55:0 {38:8 {50:0

C(pF) 3:1 28:0 107:0 107:0 122:3 10:0

gleak(nS) 0:43 2:3 2:32 2:32 1:63 0:67

Eleak(mV) {58:0 {55:0 {68:0 {68:0 {56:0 {60:0

�ggex:AMPA(nS) 0:18 45:5 0:7 0:7 50:0 1:0

�ggex:NMDA(nS) 0:025 30:0 2 2 25:8 2

Eex(mV) 0 0 0 0 0 0

�gginh(nS) 0:028 2 1.0 2 30:0 0:18

Einh(mV) {82:0 2 {75:0 2 {88:0 {75:0

�ggahp(nS) 1:0 20:0 0:1 0:1 50:0 1:0

Eahp(mV) {82:0 {72:7 {70:0 {70:0 {70:0 {75:0

tahp(msec) 5:0 5:0 5:0 2:5 2:5 10:0

Ispont (nA) 2 2 0.25 2 0.7 2

Abbreviations: GR, granule cell; GO, Golgi cell; PKJ, Purkinje cell; BS, basket cell; VN, vestibular nuclear neuron; IO, inferior olivary neuron; 2, nonexistent.
doi:10.1371/journal.pone.0033319.t001
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previous study [25]. First, we defined the population average

activity of model granule-cell cluster i at time t as

zi(t)~
1

tPKJ

Xt

s~0

exp({(t{s)=tPKJ)
1

Nc

XNc

j~1

dij(s)

 !
, ð5Þ

where Nc is the number of model granule cells in a cluster ( = 100),

di j (t) takes a value of 1 if granule cell j in the cluster i elicited a

spike at time t while a value of 0 otherwise, and tPKJ represents the

time constant of AMPAR-mediated EPSPs at PF-Purkinje cell

synapses ( = 8.3 ms). In other words, zi (t) represents the AMPAR-

mediated EPSPs at a model Purkinje cell evoked by the i th model

granule-cell cluster at t. We then defined the autocorrelation of the

activity pattern at times t and t +Dt as follows:

C(t,tzDt)~

P
i zi(t)zi(tzDt)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i z2
i (t)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i z2

i (tzDt)
q : ð6Þ

The numerator represents the inner product of population

vectors of model granule-cell clusters at times t and t + Dt, and

the denominator normalizes the vector lengths. Because zi (t)

takes only positive values, the correlation takes a value between

0 and 1. The correlation would be 1 if the population vectors

at time t and t + Dt are identical, and 0 if the vectors are

orthogonal, indicating that the active populations have no

overlap.

We then defined the similarity index S(Dt) as follows:

S(Dt)~
1

T

XT

t~0

C(t,tzDt), ð7Þ

where T represents the inverse of the oscillation frequency of MF

inputs ( = 2 s). This is the average of Eq. (6) with respect to t. This

index represents how two population vectors separated by Dt are

correlated, on average. For example, given a sequence of

populations of granule cells in which the same population appears

repeatedly in time, S(Dt) oscillates with respect to Dt, and vice

versa. Therefore, if the similarity index decreases monotonically as

Dt increases, then the sequence of granule-cell populations are not

periodic, indicating that an active population evolves with time

into uncorrelated populations.

We also studied the reproducibility of the activity pattern of

model granule-cell clusters across different cycles of MF signal

oscillation. First, we calculated the correlation of the activity

patterns at the k th and the successive cycles {zi
(k)(t)} and {zi

(k+1)(t)}

at time t:

C(k)(t)~

P
i zi

(k)(t)zi
(kz1)(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i z
(k)2
i (t)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i z

(kz1)2
i (t)

q : ð8Þ

We then defined the reproducibility index R(t), which indicates

how two activity patterns are differentiated in time, as the average

of the correlation with respect to successive K cycles follows:

R(t)~
2

KT

X
t

C(1)(t)zC(3)(t)z:::zC(K{1)(t)
� �

: ð9Þ

We typically used 10 pairs of successive cycles (K = 20) to calculate

R(t).

Simulation of OKR adaptation
For simulating OKR adaptation, we repeated 300 cycles of the

simulated screen oscillation to train the model cerebellar network.

That is, MF inputs and IO inputs are fed for 300 cycles, and at

each cycle, PF-Purkinje cell synaptic weights are updated

according to Eq. (4). After each cycle, we carried out 10 additional

cycles of the simulated screen oscillation separately and calculated

the firing rate of model Purkinje cells and a VN neuron. During

these 10 cycles, PF-Purkinje cell synaptic weights are not updated,

so as to avoid unnecessary learning.

Software
The program was written in C with GNU Scientific Library

(GSL). Differential equations were solved numerically using the

4th order Runge-Kutta method contained in GSL with a fixed

step time of 1 ms. Data analysis was performed by custom

software written in Ruby language. We will release the source

code upon acceptance at the public database Cerebellar Platform

[65].

Table 2. Summary of exponential functions.

GR aex:AMPA(t)~e{t=1:2

aex:NMDA(t)~e{t=52:0

ainh(t)~0:43|e{t=7:0z0:57|e{t=59:0

GO aex:AMPA(t)~e{t=1:5

aex:NMDA(t)~0:33|e{t=31:0z0:67|e{t=170:0

PKJ aex:AMPA(t)~e{t=8:3

ainh(t)~e{t=10:0

BS aex:AMPA(t)~e{t=8:3

VN aex:AMPA(t)~e{t=9:9

aex:NMDA(t)~e{t=30:6

ainh(t)~e{t=42:3

IO aex:AMPA(t)~e{t=10:0

ainh(t)~e{t=10:0

All units are in millisecond. Abbreviations: GR, granule cell; GO, Golgi cell; PKJ,
Purkinje cell; BS, basket cell; VN, vestibular nuclear neuron; IO, inferior olivary
neuron.
doi:10.1371/journal.pone.0033319.t002

Table 3. Summary of synaptic weights.

Postsynaptic neuron

Presynaptic
neuron MF GR GO PKJ BS VN IO

MF 2 4.0 2 2 2 0.002 2

GR 2 2 0.00004 0.003 0.003 2 2

GO 2 10.0 2 2 2 2 2

PKJ 2 2 2 2 2 0.008 2

BS 2 2 2 5.3 2 2 2

VN 2 2 2 2 2 2 5.0

IO 2 2 2 1.0 2 2 2

Abbreviations: GR, granule cell; GO, Golgi cell; PKJ, Purkinje cell; BS, basket cell;
VN, vestibular nuclear neuron; IO, inferior olivary neuron; 2, nonexistent.
doi:10.1371/journal.pone.0033319.t003
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39. Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in

cerebellar granule cells during sensory processing. Nature 428: 856–860.

40. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, et al. (2007) High-

fidelity transmission of sensory information by single cerebellar mossy fibre

boutons. Nature 450: 1245–1249.

41. Arenz A, Silver RA, Schaefer AT, Margrie TW (2007) The contribution of

single synapses to sensory representation in vivo. Science 321: 977–980.

42. Bengtsson F, Jörnntell H (2007) Ketamine and xylazine depress sensory-evoked

parallel fiber and climbing fiber responses. J Neurophysiol 98: 1697–1705.

43. Jörntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in

cerebellar granule cells in vivo. J Neurosci 26: 11786–97.

44. Bengtsson F, Jörntell H (2009) Sensory transmission in cerebellar granule cells

relies on similarly coded mossy fiber inputs. Proc Nat Acad Sci USA 106:

2389–2394.

45. De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals

in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7: 2322–2233.

46. Dean P, Porril J, Ekerot CF, Jörntell H (2010) The cerebellar microcircuit as an

adaptive filter: experimental and computational evidence. Nature Rev Neurosci

11: 30–43.

47. Moore JW, Desmond JE, Berthier NE (1989) Adaptively timed conditioned

responses and the cerebellum: a neural network approach. Biol Cybern 62:

17–28.

48. Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202: 437–470.

49. Albus JS (1971) A theory of cerebellar function. Math Biosci 10: 25–61.

50. Ito M (2008) Control of mental activities by internal models in the cerebellum.

Nat Rev Neurosci 9: 304–13.

51. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S (2006) Memory trace of

motor learning shifts transsynaptically from cerebellar cortex to nuclei for

consolidation. Neuroscience 139: 767–777.

52. Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional

organization of the cerebellar cortex: a study with combined aldolase C and

olivocerebellar labeling. J Neurosci 24: 8771–8785.

53. Gerstner W, Kistler WM (2002) Spiking Neuron Models Cambridge University

Press.

54. Thach W (1968) Discharge of Purkinje and cerebellar nuclear neurons during

rapidly alternating arm movements in the monkey. J Neurophysiol 31: 785–797.
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