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Abstract

Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-
characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we
present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output
range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly
constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo
and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to
create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of
synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors
(TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a
promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs)
to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene
networks that encode complex ‘‘multi-wire’’ logic functions.
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Introduction

Synthetic biology aims to use modular, well-characterised

biological parts to predictably construct novel genetic devices

and complex cell-based systems following engineering principles

[1]. This process has shown particular promise in Escherichia coli,

where many useful parts and devices have been described [2,3]

and a public-benefit facility (biofab.org) now exists to produce free-

to-access collections of standard biological parts [4]. Rationally

combining well-characterised parts and devices using modelling to

aid design has allowed complex systems to be produced, endowing

bacteria with novel abilities such as pattern formation [5], edge-

detection [6] and co-ordinated oscillation [7]. Key parts that

enable this advanced engineering include promoters, particularly

regulated promoters, as these control gene network logic and are

routinely used to provide nodes at which to combine devices [6].

Currently, there are a limited number of well-characterised

promoter systems in synthetic biology and this presents a

bottleneck to increasing the complexity of designs [8–10].

The budding yeast Saccharomyces cerevisiae has a long history of

use in biotechnology and has also emerged as a versatile chassis for

synthetic biology. Yeast cells have been previously engineered

using synthetic biology to exhibit a variety of useful properties that

include regulatory responses to light as an input, production of a

precursor of the anti-malarial drug artemisinin, and expression of

external cellulosome components that allow cellulose degradation

[11–14]. It has also been demonstrated that model-based

approaches can be used to investigate and produce predictable

behaviours in synthetic gene networks in yeast [15,16]. Further-

more, recent ground-breaking work placing synthetic re-factored

chromosomal arms into living cells indicates great promise for the

future construction of large, modular synthetic biology systems in

yeast [17]. Yet, to accelerate yeast to a chassis for advanced

synthetic biology on par with E. coli, there is still a need for more

fundamental parts and devices, particularly as multiple re-use of

the same biological parts in Saccharomyces poses problems due to the

cell’s natural ability to recombine long stretches of homologous

DNA [18]. An attractive strategy to tackle this lack of parts is to

diversify simple, well-characterised natural parts to obtain new

synthetic ones with desired properties. Previous work has

demonstrated that yeast promoters are suited to diversification

[16,19–22] and given their fundamental importance in synthetic

biology, schemes to rationally modify promoters for new

regulation properties and fine-tuned output are valuable for

advancing research and applications.

While synthetic gene networks with predictable behaviour have

been realised in S. cerevisiae [15,16,23], the complexity of such

devices is likely to be limited by the number of available promoters

that can be independently regulated. The majority of natural

promoters in yeast are regulated by the cell’s own transcription
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factors, and so to establish predictable synthetic gene networks

within this requires new transcription factors that control gene

expression independently, effectively acting as new insulated wires

between parts. In synthetic biology, this property is typically called

‘orthogonality’ [24]. Orthogonality primarily provides related yet

independent parts for synthetic networks thus avoiding network

cross-talk in engineered systems. It also offers a further benefit by

theoretically reducing interactions with endogenous networks

within the host cell. The recent discovery and exploitation of

transcription activator-like (TAL) effectors, found in plant

pathogenic bacteria to positively regulate host gene expression,

has allowed the rational design and construction of modular

transcription factors that bind to specified DNA sequences [25–

28]. These have been customised to perform genome editing in

cells and to activate mammalian and plant gene expression but

have yet to have been demonstrated as orthogonal repressors [29].

This new technology, combined with methods to diversify

promoters to create synthetic libraries, offers the possibility of a

scalable strategy for delivering fine-tuned and orthogonally-

regulated promoters essential for yeast synthetic biology.

In this work we demonstrate our strategy by using available

bioinformatics and in vivo characterisation to identify a short,

simple promoter native to S. cerevisiae that can be rationally

diversified to deliver new parts. We generate a synthetic promoter

library by randomising core promoter sequences and then recode

the promoter to be regulated by TetR, allowing construction of an

inducible inverter device. Finally, we demonstrate that Transcrip-

tion Activator-Like (TAL) proteins can be rationally constructed to

bind independently to wild-type and recoded core promoters thus

yielding user-defined orthogonal regulation by repression.

Results

Identification of a Candidate Constitutive Promoter
In order to obtain a yeast promoter suitable for rational

reengineering, we sought to identify constitutive promoters with

the minimal amount of natural regulation. To do this we took a

bioinformatics approach, making use of a large number of datasets

from published microarray experiments to identify candidate

promoters whose output rarely varied despite different perturba-

tions. To generate an initial shortlist of candidate genes,

quantitative microarray expression data were taken from an

industrially-relevant study conducted by Daran-Lapujade et al.

where cells were grown in different carbon sources in a chemostat

[30]. The average expression level of all genes across all conditions

in this study was 271.2 and to eliminate genes with expression

levels that may be too low to detect in synthetic devices, or that

may stress the cell during overproduction, genes with average

expression values lower than 200 or higher than 2000 were

removed. Also removed were genes with no assigned function. The

reduced list of 1163 genes was then ranked by coefficient of

variation (CV) across the conditions and the 12 genes with the

lowest values composed the shortlist of candidates. This shortlist

comprised of ALA1, ARA1, DBP5, GIM5, HRT1, MDH3, PFY1,

RPL6A, RPN6, VMA6, YKT6 and YSA1.

A total of 20 experimental microarray datasets from the Serial

Pattern of Expression Levels Locator (SPELL) database were

selected for their relevance to synthetic biology and encompassed

multiple carbon sources, nitrogen sources, nutrient limitation,

stress response, protein overexpression, fermentation, peroxisome

induction, cell cycle and cell aging conditions [12,31–44].

Expression data was collected from these datasets for each of the

shortlisted genes using the YeastMine tool of the Saccharomyces

Genome Database (yeastmine.yeastgenome.org) [45,46]. In total

there were 415 values, each corresponding to the normalised

average expression level under a particular experimental condi-

tion. The distribution of expression levels was very similar for all of

the candidate genes, with standard deviation (SD) across all the

conditions ranging from 0.354 for YSA1 to 0.708 for RPL6A,

indicating that all of the genes are expressed to very similar levels

under a wide variety of conditions (Fig. 1A). As all of the

shortlisted genes showed robust expression, the promoter sequence

chosen was that of the Profilin encoding gene PFY1, as this

promoter has a relatively short sequence with minimal regulatory

elements, had the fourth lowest standard deviation between the

experimental conditions (0.407) and of the shortlisted genes had

the most well-characterised promoter [47,48].

To test the suitability of the PFY1 promoter (PFY1p) as a

promoter for synthetic biology, 5 other promoters were selected to

characterise in vivo alongside it. The promoters chosen were the

well-characterised ADH1p and CYC1p as well as BIO2p, CHO1p

and CIT2p. SPELL-database analysis of the expression levels of

the corresponding genes, using the same methodology as above,

showed these promoters to represent a fairly large range of

variability in expression, with SD values ranging from 0.440 for

CHO1 to 1.28 for CYC1 (Fig. 1B).

Characterisation of Yeast Promoters in a Synthetic
Biology Context

To characterise the selected promoters in vivo, each was cloned

into a pRS406 derived vector upstream of an expression cassette

consisting of a short 59 untranslated region (UTR), a yeast-

enhanced Green Fluorescent Protein (yEGFP) coding sequence

and a CYC1 terminator. This generated the yeast integrative

plasmids pSV-ADH1p, pSV-BIO2p, pSV-CHO1p, pSV-CIT2p,

pSV-CYC1p and pSV-PFY1p. As the only difference between these

is in the promoter sequence, any variation due to context is

minimised. A single copy of each was integrated into the YPH500

haploid strain genome [49] at the URA3 locus of chromosome V.

In triplicate, each promoter strain was then grown over a 24 hour

time course in YPD and in synthetic complete (SC) media with

different carbon sources at 2%, namely glucose, galactose, glycerol

and glucose plus 2% ethanol. Single cell fluorescence levels were

measured by flow cytometry at 4 and 6 hours, when the cultures

were all displaying exponential growth and at 24 hours, when all

of the cultures were at stationary phase (Fig. 2). The resultant data

show that PFY1p has a moderate output under all conditions with

a CV between all replicates of all conditions of 0.326. The only

promoter tested with less variation was ADH1p, which had a CV

of 0.293 but has been previously shown to be down-regulated

under certain circumstances such as low oxygen conditions [50].

Of the other promoters characterised, all had CV values higher

than 0.5 with BIO2p displaying high reproducibility between

replicates but high variation between media types, CHO1p and

CYC1p showing poor reproducibility between replicates and

CIT2p having very weak output.

Creation of a PFY1p-based Synthetic Promoter Library
Previous work has described the PFY1 promoter as a minimal

constitutive promoter that does not use a TATA-box mediated

regulation mechanism and has no sequence-specific binding over

its ,100 bp core sequence. Immediately upstream of the core

sequence it contains an rDNA enhancer-binding protein (Reb1P)

binding site and a poly-dT element that are thought to maintain a

constant bend in the PFY1p DNA that allows constitutive access

for RNA polymerase complexes to initiate transcription [47]. As is

typical of eukaryotic constitutive promoters, the transcriptional
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start site location appears to be variable across a 20 bp sequence at

the end of the promoter [48,51–54].

Whilst the Reb1P binding site and poly-dT elements of PFY1p

are important to maintain stable and constitutive expression, other

sequences in the core promoter region theoretically can be

changed to generate promoters with different transcriptional

properties. Directed mutation in this region will give DNA

sequences that have altered melting characteristics and form

different interactions with the RNA polymerase pre-initiation

complex. This will lead to different transcription initiation

efficiencies and thus with appropriate selection it is possible to

generate promoter libraries that have a range of expression

outputs.

To generate a PFY1p-based promoter library with 48 bp of the

core promoter region randomised, we followed the synthetic

promoter library method [55,56], modifying it to include circular

polymerase extension cloning (CPEC) [57] into the pSV-PFY1p

plasmid. Following integration into the URA3 locus and

subsequent screening of colonies for fluorescence output by flow

cytometry, we selected a clone with a null output and then a

further 36 clones that expressed yEGFP with a graded-range of

outputs. These promoters were sequenced, verified as single-

integrants and characterised for expression output by flow

cytometry measurement of yEGFP after 4 hours growth in SD

media without uracil (Fig. 3 and Fig 4). The library members

characterised range in output from 91% of PFY1p output down to

11% of PFY1p output. The promoter outputs are distributed fairly

evenly so that when ranked by output, the biggest difference

between neighbouring promoters is between PFY1p.01 (91% of

PFY1p output) and PFY1p.02 (70% of PFY1p output) and the

mean difference in output between neighbouring promoters is less

than 2.5% of PFY1p output.

Engineering TetR-Mediated Repression into PFY1p
Following the demonstration that major changes can be made

to the PFY1p core sequence while maintaining measurable output,

Figure 1. Analysis of existing S. cerevisiae expression data to identify constitutive promoters. Frequency of normalised expression values
in selected microarray datasets taken from the SPELL database. (A) shows overlaid curves representing distribution of gene expression values (log2)
across all of the selected datasets for all of the initial 12 candidate genes, a brief description of function and standard deviation (SD) of gene
expression across the datasets is given for each gene individually. (B) shows the distribution of gene expression values and standard deviation across
the datasets for the 6 genes with promoters that were experimentally characterised.
doi:10.1371/journal.pone.0033279.g001
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we next sought to rationally engineer regulation. In addition to

fine control of output, the engineering of regulatory sites into a

promoter is desirable for the construction of synthetic gene

networks. The introduction of such sites into yeast promoters has

been previously achieved, giving regulated promoter parts that

enable the construction of logic functions [16,19]. PFY1p was

modified to display repression by TetR by introducing tandem

TetR operator sequences at the core promoter region. The

modified promoter, designed to be subjected to TetR-based

inhibition was named iPFY1p and was hosted in integrative

Figure 2. Characterisation of PFY1p against 5 other yeast promoters. Fluorescence output of chromosomal single-copy yEGFP under the
control of ADH1p, BIO2p, CHO1p, CIT2p, CYC1p and PFY1p as determined by flow cytometry in triplicate. Fluorescence is displayed in arbitrary
fluorescence units (AFU) and represents the mean average of the geometric mean values of three replicate cultures. Media types are YPD, and SC
media with 2% glucose (Glu), galactose (Gal), glycerol (Gly) or glucose and ethanol (GE) as added carbon sources. Coefficient of variation (CV) is
calculated using geometric mean values from each replicate under each media condition at each time point.
doi:10.1371/journal.pone.0033279.g002

Figure 3. Characterisation of a PFY1p synthetic promoter library. Fluorescence output of synthetic library promoters driving expression of a
single chromosomal copy of yEGFP as determined by flow cytometry in triplicate. Fluorescence is displayed in relative fluorescence units (RFU) and
represents the mean average of geometric mean values as a proportion of a PFY1p control value. Error bars represent 1 standard deviation from the
mean. The inlaid genetic circuit diagram shows the structure and context of the library promoters.
doi:10.1371/journal.pone.0033279.g003
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Figure 4. Overview of engineered promoter sequences. (A) shows the natural context and core promoter region sequence of PFY1p. Bases in
bold represent the start codon. (B) shows PFY1p and iPFY1p core promoter region sequences in the context of the yEGFP expression cassette used for
promoter characterisation. A vertical black line within the sequence represents a SpeI restriction enzyme cleavage site. P-TALOR and S-TALOR binding
regions are highlighted with black boxes and tetO2 operator sequences are denoted by a horizontal black line above the sequences. (C) shows the
variable sequence regions of members of the synthetic promoter library along with relative fluorescence unit (RFU) output and standard deviation
(SD) values. Dashed horizontal lines denote sequence identity among library members.
doi:10.1371/journal.pone.0033279.g004
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plasmid pSV-iPFY1p. In order to test this promoter and create a

PFY1p-based inverter device, an expression cassette consisting of

TEF1p-tetR-ADH1 terminator was assembled and inserted into

pSV-iPFY1p upstream of the iPFY1p-yEGFP-CYC1 terminator

cassette. The integrative plasmid hosting the device was named

pINV1. Following pINV1 integration into the URA3 locus, the

device was characterised by flow cytometry after 6 hours of growth

in SD glucose media without uracil and with 0 to 250 ngml21

anhydrotetracycline (ATc) added (Fig. 5). The presence of TetR in

the system represses the output of iPFY1p down to less than 5% of

PFY1p output and the addition of ATc to saturating concentra-

tions de-represses iPFY1p with the output reaching around 75% of

PFY1p output. The inverter device has a dose-response to ATc

which closely resembles a Hill function indicating the expected

cooperative binding.

Synthetic Orthogonal Repression of PFY1p using TAL
Technology

TetR is a well-characterised, non-native transcriptional regula-

tor suitable for yeast synthetic biology, but only offers one wire for

gene network engineering. The inverter device characterised here,

for example, could not function independently in cells already

engineered with timer systems that utilise TetR [16]. For a scalable

number of wires allowing orthogonal synthetic biology, new

customisable transcriptional regulators are required that can

themselves be re-engineered repeatedly to bind different DNA

sequences. The recently-determined modularity of designer TAL

effector (dTALE) proteins offers an attractive route to this as the

DNA-binding motif of these proteins can be rationally and

repeatedly re-programmed following simple motif-to-base recog-

nition rules [29,58].

In order to test whether TAL technology can be used to design

and build custom transcriptional regulators that can orthogonally

repress a promoter of choice, TAL proteins were designed to bind

directly and specifically to the two different core promoter regions

of PFY1p and iPFY1p. When choosing targets, similar sequences

existing within the S. cerevisiae genome were identified and the

binding scores of the dTALEs to these regions as well as to their

targets were assessed. The dTALE targeting PFY1p had a target

binding score of 3.37 and the highest affinity off-target site

identified in the yeast genome, excluding the native PFY1p, was a

sequence within BAG7 with a score of 17.1. For iPFY1p these

scores were 4.20 and 22.22 respectively with the highest affinity

off-target site found being 213 bp 59 of ARR2. As a further

measure of orthogonality, a third TAL protein with a scrambled

targeting sequence was also designed. To generate these dTALE

transcriptional repressor proteins, we customised the modular

TALE assembly kit [59] to yield modified TAL proteins whose

expression is induced by the addition of galactose. The sequences

generated using this system encode TAL proteins that lack the

native activation domain and have both the native C-terminal,

and an additional N-terminal, nuclear localisation signals. The

TAL orthogonal repressors (TALORs) generated using the

customised TALE kit encoded a PFY1p binding protein, P-

TALOR, an iPFY1p binding protein, I-TALOR, and a scrambled

DNA-binding protein, S-TALOR. The assembled TALOR-

containing plasmids were each transformed into two yeast strains;

one with pSV-PFY1p integrated at the URA3 locus and one with

pSV-iPFY1p at the URA3 locus.

Each TALOR-plasmid containing strain was characterised by

flow cytometry after growth in 2% glucose or 2% galactose SD

media without uracil and histidine for 16 hours (Fig. 6). With

galactose induction, the two promoter-specific TALORs, P-

TALOR and I-TALOR repressed their targeted promoter’s

output by 74% and 84% respectively, compared to identical

strains with no TALOR plasmid. The control S-TALOR did not

affect expression, as expected. Despite their target recognition

sequences sharing a 9 bp homologous region (Fig. 4), these two

TALORs only showed repression of the specific promoters that

they had been targeted to. This work therefore demonstrates

custom-targeted regulation by TALORs that are orthogonal to

one another.

Figure 5. Response of iPFY1p-based inverter to anhydrotetracycline. Fluorescence output of iPFY1p in the pINV1 inverter as determined by
flow cytometry in triplicate after 6 hours growth following induction with varied concentrations of anhydrotetracycline (ATc). Fluorescence is
displayed in relative fluorescence units (RFU) and represents the mean average of geometric mean values as a proportion of a PFY1p control value.
Error bars represent 1 standard deviation from the mean. The inlaid genetic circuit diagram shows the layout and function of the inverter.
doi:10.1371/journal.pone.0033279.g005

Promoter Diversification for Synthetic Biology

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33279



Discussion

Characterisation of PFY1p, by both in vivo and in silico methods,

has shown here that it has a stable constitutive output and that it is

amenable to both random and designed sequence changes that

alter the output strength and the regulation of the promoter. For

these reasons, PFY1p could be described as an engineerable

backbone biological part, suitable for rational customisation and

rapid diversification to yield essential new biological parts. The

promoter has a compact size, minimal natural regulation and a

physiologically-relevant output that makes it useful for a variety of

synthetic biology applications.

The generation of a PFY1p-derived synthetic promoter library

yielded a set of constitutive promoters displaying a wide range of

output levels (Fig. 3). A previous constitutive promoter library

based on the TEF1p displayed a greater range of outputs, due to

the native promoter being very strong. However this library, made

through mutagenic PCR, delivers promoters longer than 400 base

pairs in length that have on average greater than 95% sequence

homology to the natural promoter [21]. Multiple use of members

of this library within the same cell would pose a concern given

yeast’s proficiency in homologous recombination of similar DNA

sequences. Members of our library, in contrast, are less than

200 bp in length and have less than 75% sequence homology

(Fig. 4). Other synthetic promoter libraries described in yeast have

been TATA-box based regulated promoters, containing specific

elements such as sequences that promote transcription of glycolytic

genes [20] or sequences that give expression only in the presence

of galactose [16]. The ability to select a promoter with a

predictable tuned output that is as close as possible to a desired

value is extremely important in the design and construction of

synthetic gene circuits [16] so all of these libraries provide valuable

tools for synthetic biology. As with all such promoter libraries,

validation of selected promoters in the intended genetic context is

recommended prior to use to account for any context-related

issues that may affect function.

A new class of user-targeted transcriptional repressors has been

made available to synthetic biology by the demonstration that

dTALEs can be designed and constructed to bind to and repress

the output of promoters (Fig. 6). Although the TALORs generated

in this work already repress transcription from their targeted

promoter by around 80%, this repression could be further

enhanced by designing two TALORs per promoter, possibly

enabling co-operative binding. Fusion of functional protein

domains that aid repression, such as DNA methylation domains,

histone recruitment domains or the Krüppel-associated box

repressor domain [60] may also be a promising way of increasing

repression efficiency.

The use of TALORs targeted to promoters identical in

sequence to those in the host cell raises potential problems in

achieving regulation that does not affect native cellular processes

that rely on the promoter in question. Although no phenotypic

effects were observed when expressing P-TALOR in YPH500

cells, it is likely that PFY1 expression will have been affected as P-

TALOR can bind directly to its core promoter. For this reason

TALORs with a high affinity for off-target sequences within the

host genome or an introduced synthetic network should be

avoided. As the characterisation of binding efficiencies of TAL

proteins to different sequences continues, aided by recent

structural studies that elucidate their DNA-recognition mecha-

Figure 6. The effect of TALOR expression on promoter output. Fluorescence outputs of PFY1p and iPFY1p with and without induction of the
expression of scrambled sequence-targeted S-TALOR, PFY1p-targeted P-TALOR and iPFY1p-targeted I-TALOR. Fluorescence is displayed in relative
fluorescence units (RFU) and represents the mean average of geometric mean values as a proportion of a PFY1p control value for PFY1p output
measurements (shown on the left graph) and as a proportion of an iPFY1p control value for iPFY1p output measurements (shown on the right graph).
Error bars represent 1 standard deviation from the mean. GAL represents cells grown in galactose-containing media in which TALOR expression is
induced and GLU represents cells grown in glucose-containing media in which TALOR expression is repressed. The gene circuit diagrams show the
interaction between P-TALOR expression constructs and the yEGFP expression constructs.
doi:10.1371/journal.pone.0033279.g006
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nisms [61,62], there may in future be additional criteria for what

constitutes a desirable or undesirable target sequence. The

coupling of TALORs with synthetic promoters, such as iPFY1p

or promoters from a synthetic library, is therefore advantageous as

it provides a variety of sequences from which to choose a target site

and increases the orthogonality of the system by reducing the

chance of TALORs targeting natural sequences and affecting

endogenous gene expression.

The large amount of existing high-quality data relating to

natural biology in S. cerevisiae is a valuable resource for identifying

parts suitable for synthetic biology. While others have used such

data to identify regulatory parts for use in synthetic networks, we

used these data here to instead select promoters with constitutive

behaviour into which we could rationally engineer synthetic

regulation through repression. The well-characterised TetR

regulator provides a sequence-specific, non-native part that

represses transcription initiation through tight binding at the core

promoter. With this we were able to create a new inverter device,

giving the Boolean function NOT (Fig. 5). This part is valuable for

further design of logic devices such as memory switches and

counters, but the use of TetR as a wire in this design complicates

interfacing it with existing or future devices and systems that also

use TetR. As an answer to this problem, TALORs offer

orthogonal repression that can be repeatedly reprogrammed,

and in theory offer a limitless number of wires. Already designs

exist for synthetic systems that would require multiple wires, such

as adaptive learning systems that require multiple memory

switches [63] and theoretical even-number repressilators [64].

The strategy presented here gives multiple synthetic promoters

with diverse core sequences and, if the TALOR system proves to

be scalable, the technology to regulate each independently.

Therefore, with the combination of the synthetic promoter

libraries and TALORs, any limits on the complexity of synthetic

networks due to the lack of orthogonal regulated promoters would

be effectively removed.

With projects such as the commercialisation of yeast-derived

artemisinic acid and the synthesis of re-factored yeast chromo-

somal arms having a high impact in both the synthetic biology and

wider communities it is clear that synthetic biology in yeast is

growing in importance [12,17,65,66]. The techniques used here to

engineer regulation and tunable expression into PFY1p show that

the strategy of diversifying and re-engineering existing parts to

provide new functions is a valid and useful way to expand the

toolbox for yeast synthetic biology.

Materials and Methods

Strains and Growth Conditions
The bacterial strain used for cloning was E. coli DH10B (Life

Technologies). The yeast strain used for promoter characterisation

was S. cerevisiae YPH500 [49]. DH10B was grown shaking at

200 rpm at 37uC in Luria Bertani broth. Ampicillin was added to

media for selection where appropriate to a final concentration of

100 mgml21. YPH500 was grown shaking at 200 rpm at 30uC in

YPD broth, synthetic complete (SC) broth or synthetic drop-out

(SD) broth lacking uracil, histidine or both [67]. Oligonucleotides

were purchased from Integrated DNA Technologies and enzymes

were purchased from New England BioLabs.

Plasmid and Strain Construction
1. Construction of pSV-PFY1p. A cassette of the yEGFP

coding sequence, along with 7 bp of the 59 UTR (Kozak sequence)

and a 225 bp 39 CYC1 terminator sequence followed by a PvuII

site, was PCR amplified from the previously described pTVGI

[16] using primers SV004 (59- AACTACTAGTTATTAAAA-

TGTCTAAAGGTGAAGAATTATTC-39) and SV005 (59-

CCGCGCGTTGGCCGATTC -39) to add a 59 SpeI restriction

site. The 189 bp region upstream of the PFY1 CDS, from the

2200 to the 212 position relative to the translational start site, has

previously been shown to give maximum expression and was

amplified from the S. cerevisiae YPH500 genome by colony PCR

[47]. The amplification was performed using primers SV001 (59-

CAGCTGAATTCTGTGTGGGAGGTTTTACCATG-39) and

SV002 (59- CTTCACCTTTAGACATTTTAATAACTAGT-

AGTTGGGTTTATGTTGTGTATG-39), which added 59 PvuII

and EcoRI sites, and a 39 29 bp homology to the 59 end of the

yEGFP PCR amplification product. The two PCR products were

gel purified and fused by overlap extension PCR (OE-PCR) [68]

with primers SV001 and SV005 to produce an 1183 bp product

which was cloned into the yeast integration vector pRS406 as a

PvuII fragment to construct pSV-PFY1p [49].

2. Construction of pSV-ADH1p, pSV-BIO2p, pSV-CHO1p,

pSV-CIT2p and pSV-CYC1p. Promoter regions were amplified

from YPH500 genomic DNA by colony PCR with primers that

added a 59 SpeI restriction site and a 39 EcoRI restriction site to

each amplified sequence. The amplified DNA was then cloned

into pSV-PFY1p as a SpeI/EcoRI fragment, replacing PFY1p. The

ADH1p sequence used was the 712 bp region 59 of the ADH1

CDS, from the 2720 to the 29 position relative to the

translational start site and was amplified using primers SV014

(59- GCCGCCGAATTCGATATCCTTTTGTTGTTTCCG-39)

and SV015 (59- GCCGCCACTAGTAGATAGTTGATTG-

TATGCTTGGT -39). This region contains the 2664 Rap1

UAS but not the 1006 Zap1 binding site, which is involved in

promoter repression [69].

The BIO2p sequence used was the 383 bp region 59 of the BIO2

CDS, from the 2391 to the 29 position relative to the

translational start site as this region encompasses the known

regulatory sites of the promoter [70]. The primers used to amplify

BIO2p were SV006 (59-GTTAGAGAATTCTAGTCATGTC-

GAGATGACTCG-39) and SV007 (59-GCCGCCACTAGTAA-

ATTGAAAATAATCGGCTAAG-39). The CHO1p sequence

used was the 260 bp region 59 of the CHO1 CDS, from the

2268 to the 29 position relative to the translational start site and

was amplified using primers SV008 (59-GCCGCCGAATTC-

CACTCCTTCTCAATGTGTG-39) and SV009 (59-GCCGCC-

ACTAGTATATAGTTTTATTTTTGTTT-39). This sequence

has been shown to contain the two UAS regions required for

promoter regulation [71]. The CIT2p sequence used corresponds

to the largest promoter sequence used in a previous study of CIT2

regulation and consisted of the 992 bp region 59 of the CIT2 CDS,

from the 21000 to the 29 position relative to the translational

start site [72]. The primers used to amplify this region were SV010

(59-GCCGCCGAATTCGACCAATGTTAATGA-39) and

SV011 (59-GCCGCCACTAGTTTACTAGTATTATTAAAA-

CA-39). The CYC1p sequence used was the 420 bp 59 of the

CYC1 CDS, from the 2432 to the 213 position relative to the

translational start site. Previous studies indicate that this region

contains all known regulatory elements of CYC1p [73,74]. The

primers used to amplify CYC1p were pSV016 (59-ATTCAG-

GAATTCGGTAACAGTATTGATGTAAT-39) and pSV017

(59-GCCGCCACTAGTGTGTGTATTTGTGTTTGTG-39).

3. Construction of the PFY1p Synthetic Promoter

Library. The PFY1p synthetic library was generated using a

modified version of the synthetic promoter library technique

[55,56]. Partially-overlapping complementary oligonucleotides

TES01 (59-GCTCAGTTGACCCTTTCTCNNNNNNNNNNN-

NNNNNNNNNNNNNNNNCCTTGAGAAAAGAT-39) and
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TES02 (59-GACATTTTAATAACTAGTAGTTGGGNNNN-

NNNNNNNNNNNNNNNNNATCTTTTCTCAAGG-39) were

annealed and extended using Klenow polymerase to obtain

106 bp double-stranded DNA fragments. This library was

inserted into the core promoter in the pSV-PFY1p plasmid using

the CPEC method as previously described [57], with

oligonucleotides TES11 (59-GAGAAAGGGTCAACTGAGC-39)

and TES12 (59-CCCAACTACTAGTTATTAAAATGTC-39)

being used to amplify the pSV vector. Resulting bacterial

colonies from a single LB agar plate were pooled and plasmid

DNA was extracted and integrated into the URA3 locus of

YPH500. Eight selected yeast colonies were screened for green

fluorescence by flow cytometry to identify a single null-output

promoter mutant. The null-output promoter was amplified by

colony PCR using oligonucleotides SV001 and TES14 (59

CGGTACCAAGCTTACTCGAG-39). This was sequenced and

incorporated into the pSV vector using restriction enzyme cloning

to yield pSV-PFY1p.null. The synthetic promoter library

technique method using CPEC and integrating into yeast as

described above was then repeated at a larger scale and using the

pSV-PFY1p.null plasmid as the template vector. This gave ,105

bacterial colonies over 16 LB Amp agar plates and then ,103

yeast colonies over 12 SD minus uracil agar plates. 275 colonies

were picked and used to inoculate YPD media in 96-well plates,

with growth and flow cytometry measurement of yEGFP

expression of these cells performed as described below. 48

colonies that gave yEGFP expression over a graded-range were

confirmed as single-integrations into the URA3 locus and were

sequenced following colony PCR using oligonucleotides SV001

and TES14. From this pool, 36 were selected for the final

promoter library and were re-characterised in triplicate as

described below.

4. Construction of pSV-iPFY1p and pINV1. The promoter

region of the PFY1p sequence of pSV-PFY1p was altered to

introduce tandem Tn10 Tet operator sites (tetO2) within the core

sequence using oligonucleotides TES05 (59- CATTCCCTT-

CTTAAAACAACTGTCCCTATCAGTGATAGAGATCTC-

CCTATCAGTGA-39 and TES06 (59- TAGACATTTTAATAA-

CTAGTAGTTGGGTTCTCTATCACTGATAGGGAGATC-

TCTATCA-39). These partially-overlapping complementary

oligonucleotides were annealed and extended using Klenow

polymerase as above. The CPEC method was then utilised

again to rapidly produce pSV-iPFYp, with amplification of the

vector performed using TES07 (59- CAGTTGTTTTAAGAA-

GGGAATG-3)9 and TES08 (59-ACCCAACTACTAGTTAT-

TAAAATGTCTA-39). Plasmid pINV1 was constructed using

the Gibson method [75] to assemble three sections into an ordered

plasmid; TEF1p was amplified from pTVGI [16] using TES18 (59-

CTAATCTAGACATTTTAATAACCTAGGAAACTTAGAT-

TAGATTGCTATGCTTTC-39) and TES19 (59-CGATTCAT-

TAATGCAGCTGGAATTCCACACCATAGCTTCAAAATG-

TTTCTAC-39), TetR plus the ADH1 terminator was amplified

from pTVGI using TES16 (59-CATGGTAAAACCTCC-

CACACACCCGGGAATTGGAGCGACCTCATGCTATA-

CC-39) and TES17 (59-GCAATCTAATCTAAGTTTCCTA-

GGTTATTAAAATGTCTAGATTAGATAAAAG-39), and

pSV-iPFY1p was linearised using TES15 (59-CATGAGGTCGC-

TCCAATTCCCGGGTGTGTGGGAGGTTTTACCATGAT-

TTTTGG-39) and TES20 (59-CATTTTGAAGCTATGGTG-

TGGAATTCCAGCTGCATTAATGAATCGGCCAACGCG-

39).

5. Construction of TALORs. Custom TALORs were

constructed using the TALE-NT kit (Addgene) [59] and a new

destination plasmid (which we have named pTAL5) which was

modified from the pTAL3 plasmid supplied. The pTAL5 plasmid

was constructed using the Gibson method to assemble four

sections into an ordered plasmid; GAL1p* [76] was amplified from

pTVGI [16] using TES22 (59-CTTACCGCGGAGACA-

TATCGATGAATTCGAAGTACGGATTAGAAGCCGCCG-39)

and TES23 (59-GGAGGAAGCCATTGTTGAACCTAGG-

CGGGTTTTTTCTCCTTGACGTTAAAGTATAG-39), the

TALEN destination protein coding sequence minus the FokI

domain was amplified from pTAL3 [59] using TES24 (59-

CGTCAAGGAGAAAAAACCCGCCTAGGTTCAACAATG-

GCTTCCTCCCCTCC-39) and TES25 (59-CGAAGAATTG-

TTAATTAAGAGCTCTTATTAAGATATCGGATCCGGGA-

GGCCGCC-39), the ADH1 terminator was amplified from

pTVGI using TES26 (59-CCGGATCCGATATCTTAATA-

AGAGCTCTTAATTAACAATTCTTCGCCAGAGG-39) and

TES27 (59-GGAAATTGTAAGCGTTAATCCCCGGGAAT-

TGGAGCGACCTCATGCTATACCTGAG-39), and the pTAL3

vector backbone was linearised using TES28 (59-GCATGA-

GGTCGCTCCAATTCCCGGGGATTAACGCTTACAATTT-

CCTGATGC-39) and TES21 (59-CTTCTAATCCGTACTTC-

GAATTCATCGATATGTCTCCGCGGTAAGTTCGTACG-39).

To design PFY1p- and iPFY1p-binding TALORs, the core

promoter sequence of each (from the Reb1P-binding site to the

59UTR) was entered into the single TALE targeter tool (http://

boglab.plp.iastate.edu/node/add/single-tale/) [59] to derive pre-

dicted high affinity target sites and their corresponding RVD

sequences (Fig. 6). The selected DNA site specific to PFY1p was 59-

ACACAACATAAACCCAACT-39 and is bound by the TALE

RVD arrangement NI-HD-NI-HD-NI-NI-HD-NI-NG-NI-NI-NI-

HD-HD-HD-NI-NI-HD-NG. This sequence was assembled as

previously described [45], but using pTAL5 as the destination

plasmid in order to yield galactose-inducible P-TALOR. The

selected DNA site for iPFY1p was 59-AGAGAACCCAACTACT-

39 and is bound by NI-NN-NI-NN-NI-NI-HD-HD-HD-NI-NI-

HD-NG-NI-HD-NG which was constructed as I-TALOR. The

TALE targeter tool assigned each TALOR a binding affinity score

and the Tal Effector Site Finder tool (https://boglab.plp.iastate.

edu/node/add/talef) [59] was also used to assess the binding

affinity to off-target genomic regions of similar sequences identified

by BLASTn (http://blast.ncbi.nlm.nih.gov) [77]. A scrambled

arrangement of RVDs was used to construct the control S-

TALOR, which has an RVD order of NI-HD-NG-NN-HD-NI-

NI-HD-NG-NI-NI-NN-NI-NN-NI-NI-HD-HD-NG and would

target 59-ACTRCAACTAARARAACCT-39, a sequence which

does not occur in the complete GenBank database. Plasmids were

transformed into YPH500-derived strains via the lithium acetate/

single-stranded carrier DNA/polyethylene glycol method [78].

Chromosomal Integration of pSV plasmids into the URA3
Locus of YPH500

For each plasmid to be integrated into the YPH500 genome,

200 ng of plasmid DNA was linearised into blunt ended fragments

by restriction digest with StuI, cleaving 437 bp into the 803 bp

URA3 CDS and purified using a PCR purification kit (Qiagen).

The DNA was then transformed into the yeast cells via the lithium

acetate/single-stranded carrier DNA/polyethylene glycol method

[78]. Chromosomal integrants were isolated by selection on SD

uracil-free media to enrich colonies in which URA3 had been

restored. Single integration events were confirmed by colony PCR

screening amplifications using primers SV018 (59-CAGATTG-

TACTGAGAGTGCA-39) and SV019 (59-TCCTTACG-

CATCTGTGCGGT-39) to indentify multiple integrants

(1172 bp band), and primers SV001 and TES14 (59-CGGTAC-

CAAGCTTACTCGAG-39) to confirm integration of all con-

Promoter Diversification for Synthetic Biology

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e33279



structs with PFY1-based promoters and the yEGFP sequence. All

integrant strains used were confirmed as having a single

integration event at the URA3 locus.

Characterisation of Promoters by Flow Cytometry
Yeast cultures with expression constructs integrated at the URA3

locus were grown in triplicate overnight in appropriate media and

measured for optical density at 600 nm (OD600) using a

POLARstar Omega plate reader (BMG). A volume of 1 ml was

taken from each culture, spun down in a 5424 centrifuge

(Eppendorf) and the pellet was re-suspended in SC media without

a carbon source to a volume that normalised the OD600 to 2. In

Costar flat-bottomed 96 well assay plates (Corning), each culture

was used to inoculate appropriate media 1 in 10 up to a final

volume of 200 ml. Plates were sealed with a Breathe-Easy sealing

membrane (Sigma-Aldridge) and incubated in a Microtron

incubator (Infors HT) at 30uC shaking at 710 rpm.

At appropriate time points, 20 ml samples were taken from each

well and transferred to a separate microplate where distilled water

was added up to a volume of 200 ml. Cells were measured using a

FACscan flow cytometer (Becton Dickinson) with a 96-Well

Automated Micro-Sampler (Cytek). Data was acquired using

CellQuest software (Becton Dickinson) with wells being sampled

on high flow rate for 20 seconds. Data was analysed using Cyflogic

software (CyFlo) with a tight forward scatter/side scatter gate

being applied to ensure a homogenous population size. Fluores-

cence values given represent the mean value of the geometric

mean expression values of each replicate for that time point and

standard deviation is also calculated from the replicate geometric

mean values. Where coefficient of variation values are given for a

promoter they represent the standard deviation of all replicate

values divided by the mean of all replicate values. Where units of

fluorescence are given as relative fluorescence units (RFU), values

have had the fluorescence value of YPH500 control calls

subtracted and are given as a proportion of PFY1p control cell

fluorescence. All controls were grown in triplicate under the same

conditions (except with the addition of uracil and/or histidine to

SD media where appropriate to allow growth) and had

fluorescence values measured on the same plates as the assayed

cells.
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