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Abstract

Acute tubular necrosis (ATN) caused by ischemia/reperfusion (I/R) during renal transplantation delays allograft function.
Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We
studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 a), using in vitro and in vivo
experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 a is stabilized in proximal
tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to
gene expression in vitro and in vivo. In vitro interference of HIF-1 a promoted cell death and in vivo interference exacerbated
tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 a was expressed only in proximal tubules
which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using
experimental models and human biopsies, we identified a novel HIF-1 a induction during reperfusion with a potential
critical role in renal transplant.
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Introduction

Ischemia is one of the most frequent causes of acute renal failure

[1], chronic kidney disease and also occurs during kidney

transplantation. Indeed, development of ATN significantly

contributes to renal allograft function delay [2]. In spite of the

advances in the immunosuppressive therapy, there is little

improvement in ATN recovery during renal transplant.

HIF-1 a is the master regulator of cell response to hypoxia since

it leads to the expression of several genes involved in adaptation to

decreased oxygen availability [3]. HIF is a heterodimeric protein

including an oxygen-regulated alpha subunit and a constitutive

expressed beta subunit. Alpha subunits are degraded during

normoxia mainly through a proteasome-dependent pathway after

hydroxylation of two proline residues by prolyl-hydroxilases

(PHDs). During hypoxia, PHDs are inhibited and HIF-1 a
subunit accumulates, dimerizes with HIF-1b and drive expression

of HIF target genes which include genes involved in angiogenesis

and tissue repair such as vascular endothelial growth factor

(VEGF) or erythropoietin (EPO) and prolilhydroxilases (PHDs)

genes, among others.

Knowledge about mechanisms involved in normoxic HIF-1 a
induction is just beginning to emerge. It has been shown that HIF-

1 a can be up-regulated through the PI3k/Akt-mTOR pathway in

response to growth factors [4,5]. Impairment in HIF-1 a
degradation can also contribute to the induction of this factor in

normoxia [6]. Evidence regarding the critical role of HIF-1 a in

the cell response to stimuli independently of oxygen restriction is

increasing [7].

A reno-protective role of HIF against ischemic injury in I/R

models [8] and toxic nephropathies has been already described

[9]. Moreover, the use of PHDs inhibitors such as iron-chelators in

renal transplant models indicates that HIF induction protects

tubular cells from ischemic injury [10]. These investigations prove

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33258



the beneficial role of HIF-1 a stabilization before or during

ischemia. However, data describing non-oxygen regulated HIF-1

a expression during reperfusion after ischemia and its potential

implications in renal injury outcome are scarce.

In this work, using an in vitro model of oxygen and nutrient

alterations in the human proximal epithelial cell line HK-2 [12],

an in vivo model of I/R [11] in rats and a set of human allograft

biopsies exhibiting ATN, we have studied the expression,

regulation and the potential role of HIF-1 a in the tubular

response during I/R. Our results identify HIF-1 a accumulated

during reperfusion as a putative target for intervention to

accelerate ATN recovery after renal transplants.

Results

HIF-1 a is bi-phasically induced during hypoxia/
reoxygenation in proximal tubule cells

We had established and characterized in our laboratory an in

vitro model of oxygen and nutrient deprivation/replenishment [11]

in the human proximal epithelial cells HK-2 called hypoxia/

reoxygenation (H/R) (figure 1A), which closely reproduce the

stimuli and the effects of renal ischemia/reperfusion (I/R) in

proximal epithelial tubule cells. Using this model, we determined

HIF-1 a expression by inmunoblot (figure 1B). HIF-1 a has a

biphasic pattern of induction: after hypoxia and during reox-

ygenation (1–3 h).

To assess whether these HIF-1 a inductions are the result of

protein stabilization, qRT-PCR to estimate HIF-1 a mRNA levels

was performed. No significant changes in HIF-1 a mRNA were

observed (fig. 1C), indicating that in our model, HIF-1 a is

regulated mainly at protein level.

These results indicate that HIF-1 a is accumulated during

hypoxia but unexpectedly also during reperfusion.

Akt/mTOR signalling is responsible for HIF-1 a
accumulation during reoxygenation

Although Akt/mTOR signalling pathway is not required for

hypoxia-induced HIF-1 a [13,14], activation of Akt/mTOR

pathway has been proposed as one of the mechanisms responsible

for HIF-1 a stabilization in normoxia.

Therefore, we determined pAkt (Ser437) levels, by immunoblot,

finding that Akt is not activated during hypoxia but is transiently

activated during reoxygenation (15 min-3 h), when HIF-1 a
induction is observed (figure 1D). Moreover, the use of PI3K

specific inhibitor LY 294002 during reoxygenation efficiently

reduced HIF-1 a expression (figure 1E), indicating that Akt

activation is responsible for HIF-1 a stabilization during this

period. Conversely, the use of LY did not affect HIF-1 a induction

during hypoxia. LY294002 exhibited high efficiency inhibiting Akt

phosphorylation (figure 1F).

Additionally, the mTOR inhibitor rapamycin was used during

reoxygenation to assess mTOR implication in HIF-1 a induction

(figure 1G). Inhibition of mTOR prevents HIF-1 a stabilization.

These findings demonstrate that the Akt/mTOR signalling

pathway activation is responsible for HIF-1 a induction during

reoxygenation, among others.

To determine whether HIF-1 a could accumulate indepen-

dently of low oxygen levels, we set up a new protocol including

changes in nutrients but not in oxygen tension, called depletion/

replenishment (D/R) (figure 2A). This protocol leads exclusively to

the second HIF-1 a induction although it accumulates earlier

(figure 2B). Importantly Akt is also activated during D/R protocol

(figure 2C). Both results demonstrate that HIF-1 a induction

during reoxygenation is not due to low oxygen tension, but rather

involves Akt activation.

Both HIF-1 a inductions promote gene expression
To study whether HIF-1 a accumulations resulted in an

increased activity of this factor we evaluated HIF-1 a -dependent

gene expression in HK2 cells during H/R.

We first determined the transcriptional activity of both HIF-1 a
inductions by performing luciferase assays in transiently transfect-

ed HK-2 cells with the 9xHRE-luc reporter [15] (figure 3A). Both

HIF-1 a inductions increase luciferase activity compared to

control cells, indicating that both HIF-1 a inductions promote

gene expression. D/R protocol also induced 9xHRE-luc activity,

demonstrating that the normoxic HIF-1 a induction by itself

promotes gene expression.

Next, we estimated the expression of HIF-1 a target genes such

as EPO, VEGF and PHD3, by qRT-PCR (figure 3B). PHD3 and

VEGF were markedly induced during hypoxia and both mRNAs

remained elevated during reoxygenation. In contrast, EPO

mRNA was expressed mainly during reoxygenation, when the

second HIF-1 a induction was taking place. Interestingly and

correlating with the luciferase assay results, EPO, VEGF and

PHD3 mRNA were also up-regulated during D/R protocol,

demonstrating that the normoxic HIF-1 a stabilization also led to

gene expression.

HIF-1 a is induced after ischemia and during reperfusion
in vivo

To study HIF-1 a in vivo, we have characterized the expression

pattern and activity of HIF-1 a in a model of I/R in Sprague

Dawley (SD) rats. We have also assessed the oxygen availability

during I/R in renal tissue using pimonidazole.

Immunohistochemistry in renal tissue demonstrated HIF-1 a
expression in the nucleus of proximal tubule cells after ischemia,

and, unexpectedly during reperfusion, between days 3 and 7

(figure 4A). As expected, pimonidazole staining revealed tissue

hypoxia after ischemia, but it was negative at 5 days of reperfusion,

indicating that tissue oxygen levels are not compromised at this

moment even though HIF-1 a accumulates (figure 4B).

To determine the functionality of both HIF-1 a inductions in

vivo, we measured the mRNA of HIF-1 a target genes including

PHD3, VEGF and EPO (figure 5). All these genes are induced

after ischemia and also during reperfusion. Notably, EPO mRNA

is the most up-regulated during reperfusion.

These results demonstrated that HIF-1 a accumulates in vivo

during reperfusion after renal ischemia and promotes gene

expression, correlating with in vitro findings. The HIF-1 a
induction observed during reperfusion is not due to low oxygen

levels in the renal parenchyma.

HIF-1 a mediates proximal tubule cells survival and
recovery in response to I/R in vitro and in vivo

Next, we investigated the biological significance of both HIF-1 a
inductions using, in vitro, siRNAs for HIF-1 a and YC-1, a

pharmacological inhibitor of HIF-1 a. By PI staining and flow

cytometry, H/R and D/R protocol did not induce cell death. The

use of HIF-1 Æ siRNA (figure 6A) or YC-1 (figure 6B) in both

protocols provoked significant cell death at 24 h.

Both approaches efficiently reduced HIF-1 a levels in our model

(Figure 6C, 6D, 6E). YC-1 was used because siRNA does not

prevent each HIF-1 a inductions separately. Notably, neither

siRNA for HIF-1 a nor YC-1 affected Akt activation during

reperfusion (Figure 6F).

HIF-1a Promotes Tubule Repair after I/R
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Figure 1. HIF-1 a expression in an in vitro model mimicking I/R. Akt/mTOR signaling mediates HIF-1 a induction during
reoxygenation. (a) Scheme of in vitro protocol of Hypoxia/Reoxygenation (H/R) HK-2 cells were subjected to H/R protocol which includes oxygen
and nutrients deprivation and replenishment. (b) HIF-1a protein expression was determined by western blot. Actin expression was used as loading
control. Representative western blot are shown. (c) qRT-PCR analysis of HIF-1 a mRNA, expressed as mean 6SEM of HIF-1a levels using b-actin mRNA
as internal control. No significant alterations on mRNA levels of HIF-1 a during H/R were found in four different experiments. (d) Activation of Akt
estimated by western blot of 473Ser phosporylation in HK2 cells subjected to H/R. Total Akt expression was used as control. (e) Effect of LY294002 on
HIF-1 a inductions: 50 mM LY294002 applied during hypoxia (+h) did not have any effect but during reoxygenation (+r) it reduced HIF-1a expression.
Representative western blots are shown. (f) Control of Akt inhibition by LY294002. 50 mM of LY294002 efficiently inhibits Akt phosphorylation when
added during reoxygenation (+r). (g) Effect on the HIF-1a inductions of 20 nM rapamycin applied during reoxygenation, estimated by western blot.
Phosphorylation of p70S6K was used as control of rapamycin efficiency.
doi:10.1371/journal.pone.0033258.g001

HIF-1a Promotes Tubule Repair after I/R
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These results demonstrated that HIF-1 a promotes proximal

tubule epithelial cell survival during I/R-mimicking conditions.

Outstandingly, HIF-1 a induction during reoxygenation is also

critical for avoiding cell death.

Next, the I/R model was used to elucidate the role of HIF-1 a
during I/R in vivo by means of HIF-1 a interference. The protocol

and interference efficiency in vivo are shown by measuring HIF-1 a
mRNA levels in total renal lysates in figure 7. HIF-1 a interference

in rats and analysis of renal histology by PAS staining and renal

function by urea and creatinine levels in serum are shown in

figure 8A and 8B.

HIF-1 a interference during reperfusion dramatically increases

proximal tubule damage after 3 to 5 days, compared to scramble.

Tubular alterations, mainly dilation and epithelial denudation are

more evident in the interfered animals. Accordingly, renal function

is worsened in interfered animals at 3 days of reperfusion.

However, renal function is almost similar between scramble and

interfered conditions later during reperfusion (5 days), correlating

with the well known dichotomy between recovery of renal

structure and creatinine/urea levels in this model.

These results demonstrate that HIF-1 a induction during

reperfusion is an essential requirement for proximal tubule cell

survival and consequently earlier recovery after renal ischemia.

HIF-1 a expression in proximal tubules of human renal
allograft correlates with less extended ATN

Our data from the experimental in vitro and in vivo models

strongly suggested that HIF-1 a has a protective role against

ischemic injury. Therefore we have used post-transplant human

biopsies were ischemic damage is observed to confirm this

observation.

Thus, we have assessed HIF-1 a expression in a set of 15 human

renal biopsies with different ischemic ATN severity, obtained

mostly between days 7 to 15 after transplantation. The

characteristics of the biopsies are presented in table 1.

Representative images of PAS staining and HIF-1 a immuno-

staining are presented in figure 9A. Biopsies number 6 and 14

exhibited extensive ATN development with marked alterations in

proximal tubules: loss of microvilli, loss of epithelium integrity and

tubule denudation. Both expressed HIF-1 a. Biopsy number 4

exhibits less ATN with normal epithelium structure and

morphology, presence of microvilli and proximal cell proliferation

(for repair of denudated tubules). Interestingly, this biopsy showed

strong HIF-1 a expression. ATN development vs recovery

estimation following histopathological criteria as well as quantifi-

cation of HIF-1 a expression in the biopsies is shown in table 2.

Additionally, significant negative correlation by Rho Spearman

analysis was found between HIF expression and ATN severity

(figure 9B).

All these findings demonstrate that HIF-1 a is expressed during

the post-transplant period in proximal tubules which exhibit minor

ATN and recovered morphology, strongly suggesting that HIF-1 a
stabilized during reperfusion is required for proximal tubule

survival and repair after ischemic damage.

Discussion

We demonstrate that HIF-1 a is accumulated after renal

ischemia and unexpectedly, also in reperfusion. This induction is

observed in human proximal tubule cells after H/R, in rat kidneys

after I/R and in human biopsies post-transplant. HIF-1 a
induction during reperfusion is crucial for proximal tubule

epithelial cell survival and recovery after I/R as the interference

approaches in vitro and in vivo demonstrated. Indeed, HIF-1 a
drives target genes expression, including genes involved in tissue

repair such as EPO or VEGF. Our data in human biopsies

strongly suggested that HIF-1 a is essential in ATN recovery and

might play a critical role in allograft outcome. In vivo and in vitro

approaches demonstrated that this HIF-1 a accumulation is not

related to low oxygen tension, but rather to Akt/mTOR pathway

activation.

HIF-1 a induction during renal ischemia has been extensively

studied [16]. However, HIF-1 a induction during in vivo

reperfusion has not been previously described although stabiliza-

tion of this factor during reoxygenation in endothelial cells has

been reported [17]. In humans, HIF-1 a expression in renal

allograft several weeks after transplantation was suggested to be

probably related to a chronic hypoxia caused by hyperfiltration,

hyperthrophy, calcineurin inhibitor-induced toxicity or combina-

tion of them [18]. Our results using pimonidazole in rats strongly

support that HIF-1 a induction during reperfusion is not the

consequence of low oxygen tension in the renal parenchyma.

Accordingly, using an in vitro model which mimics the proximal

tubule damage and repair induced by I/R in vivo [12] we

demonstrate that HIF-1 a is induced also during the reoxygena-

Figure 2. In vitro, HIF-1 a induction during reoxygenation is not due to low oxygen levels. (a) Scheme of in vitro protocol of Depletion/
Replenishment (D/R). HK-2 cells were subjected to D/R which only includes nutrients deprivation and replenishment, maintaining normal oxygen
tension. (b) Expression of HIF-1 a during H/R and D/R protocol, estimated by western blot. (c) Akt is also activated (p473Ser) during D/R protocol.
doi:10.1371/journal.pone.0033258.g002

HIF-1a Promotes Tubule Repair after I/R
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Figure 3. Hypoxia/reoxygenation and nutrient replenishment all induced HIF-1 a activity, promoting HIF-1 a target genes
expression. (a) Luciferase reporter assays in HK2 cells subjected to H/R (grey bars) or D/R (striped bars), by transfecting 800 ng/well of 9xHRE-luc
reporter and 4 ng/well of renilla-luc reporter. Data are represented as mean 6SEM of the ratio firefly/renilla luciferase of six independent
experiments, relative to control condition (ratio = 1). (b) qRT-PCR to estimate mRNA expression of HIF-1a target genes EPO, PHD3, and VEGF during H/
R (black bars) or D/R protocols (striped bars). Data are represented as mean 6SEM of three independent experiments, using 28 s mRNA levels as
internal control. All the genes are induced during reoxygenation in both protocols. Statistical significance was found in comparison to control (H/R),
p#0.05.
doi:10.1371/journal.pone.0033258.g003

HIF-1a Promotes Tubule Repair after I/R
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tion period. Moreover, an in vitro protocol of depletion/

replenishment of nutrients, where oxygen tension is not modified,

also reproduced the second HIF-1 a induction, confirming that

HIF-1 a is also induced during reperfusion/reoxygenation in an

O2-independent manner.

HIF-1 a protein is significantly accumulated during reperfusion

as the result of protein synthesis, since mRNA levels did not

change significantly. HIF-1 a can be detected in normoxia in

response to growth factors, hormones or cytokines [19]. Activation

of PI3K/Akt/mTOR signalling pathways leading to increase in

protein translation has been described as the main mechanism of

normoxic-HIF-1 a accumulation [5]. Our findings demonstrate

that Akt is activated early during reoxygenation followed by HIF-1

a induction. Moreover, LY 292004 and rapamycin prevents HIF-

1 a induction during reoxygenation, suggesting that, in our system,

the Akt/mTOR pathway might affect HIF-1 a levels by

promoting protein translation as previously described [20]. We

also observed Akt activation in the in vitro protocol of D/R,

correlating with HIF-1 a protein induction. Moreover, previous

works of our laboratory demonstrated that Akt is activated during

reperfusion in our model of I/R [11].

Akt activation by I/R in several organs including kidney has

been already reported [21]. In vitro, in a model of H/R which did

not include nutrient alterations Kwon et al., 2006 [22] described

PI3K/Akt and ERK1/2 activation during reoxygenation. In our

H/R protocol, Akt is probably activated through growth factors

and might involve Ras, which is also activated in our H/R

protocol, as previous works of our laboratory reported [23]. It is

well established that Ras activation might lead to p70S6K

phosphorylation through ERK, contributing also to promote

translation [20]. On the other hand, it has been recently reported

that metabolic changes underlying cell adaptation to deprivation/

replenishement of nutrients can lead also to HIF-1 a stabilization,

by specific inhibition of PHDs [24]. Thus, alterations in metabolic

intermediaries could also contribute to the normoxic HIF-1 a
induction reported here.

Outstandingly, in human biopsies, HIF-1 a was exclusively

detected in proximal tubule cells which did not exhibit marked

ischemic damage or show regeneration features. Moreover, the

strongest expression of HIF-1 a was observed in the biopsies which

clearly exhibited tubule regeneration (biopsy nu4). Additionally, in

the in vivo I/R rat model, HIF-1 a is induced during reperfusion

when tubule repair is taking place and renal function is being

restored [25,9], strongly suggesting that HIF-1 a mediates

proximal cell survival/regeneration during I/R. Proving this

hypothesis, our in vitro findings show that both HIF-1 a inductions

are critical for HK2 cells survival during H/R. Indeed, inhibition

of both HIF-1 a inductions by specific siRNA or YC-1, lead to cell

death. Notably, neither siRNA nor YC-1 affects Akt activation

during reoxygenation.

HIF-1 a mediates proximal tubule cell survival in response to

hypoxia as the result of cell adaptation to low oxygen tension.

Figure 4. HIF-1 a is induced unexpectedly during reperfusion in rat kidney, with normal oxygen levels in renal parenchyma. (a)
Immunohistochemitry to determine HIF-1 a expression in paraffin-embedded renal tissue sections from SD rats during I/R. Ischemia of 45 min and
different times of reperfusion: 24 hours or 3, 5 or 7 days (R-24h, R-3d, R-5d, R-7d). HIF-1 a is detected in the nucleus of proximal tubule cells after
ischemia and in reperfusion (3-5-7days). Magnification:6400 (b) Immunostaining for pimonidazol-protein and HIF-1a adducts in renal tissue sections
of rats during I/R. Ischemia of 45 min and 5 days of reperfusion. Notice positive pimonidazole immunostaining exclusively after ischemia.
Magnification: 6200.
doi:10.1371/journal.pone.0033258.g004

HIF-1a Promotes Tubule Repair after I/R
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Indeed, promotion of HIF-1 a previous to hypoxia/ischemia in in

vivo models inhibited proximal tubule cell death and reduced renal

damage [10]. By contrast, the lack of HIF-1 a stabilization

promoted cell death after ischemia [9,26]. Hypoxia-induced HIF-

1 a is also at the base of the beneficial effects of ischemic

preconditioning [27]. Until now, no research has considered HIF-

1 a induction during reperfusion as a crucial factor for proximal

epithelial cell regeneration during I/R, which our results strongly

suggest.

Both HIF-1 a protein inductions lead to target gene expression

as luciferase assays showed which most probably mediates HIF-1 a
effects. PHD3 induction was the most prominent induced gene

during hypoxia as previously demonstrated [28]. Both PHD3 and

VEGF remained elevated during reoxygenation might be due to

second HIF-1 a induction, as the D/R protocol suggested.

Maintained PHD3 levels until 3–6 h of reoxygenation could

contribute to further degradation of the normoxic HIF-1 a
stabilization. Notably, EPO mRNA expression showed a robust

induction at 3 h of reoxygenation suggesting a main regulation of

this gene during reperfusion. Thus it is conceivable that the two

HIF-1 a inductions might result in differential gene expression

related to different roles of HIF-1 a in the proximal tubule cell

response to I/R. Indeed, the first HIF-1 a induction might control

the cell adaptation response to hypoxia and the second induction

during reperfusion might mediate proximal tubule repair.

The HIF-1 a target genes EPO and VEGF, which were

markedly expressed during reoxygenation in vitro, would be

involved in proximal tubule regeneration in vivo as previously

suggested [29,30,31]. This hypothesis is supported by our qRT-

PCR findings in rats. Related to this, we demonstrated a

significant negative correlation between HIF-1 a expression and

ATN development. Accordingly, it was proposed that the

expression of HIF-1 a in human allograft biopsies could

contribute to ameliorate renal damage associated with re-flow

and improve renal allograft outcome [18]. On the other hand, it

is important to note that the long sustained expression of HIF-1 a
and VEGF has been also related with immunological renal

allograft rejection as well as fibrosis development [32]. Therefore,

further studies on long term human allograft biopsies are required

to assess this issue.

Remarkably in our work and consistent with the human

biopsies, interference of reperfusion-induced HIF-1 a in rats

aggravates renal damage in structure and function, demonstrating

that this normoxic HIF-1 a induction by itself is crucial for renal

outcome after I/R. Although creatinine and urea return to normal

levels in both scramble and siRNA rats, kidney structure is

impaired for longer in interfered rats. It is well known that even if

creatinine and urea normalize, renal function, in terms of ions re-

absorption and volume regulation could be still affected [33,34].

Thus, HIF-1 a induction during reperfusion would be a

requirement for renal structure and function recovery after

ischemic damage. In this regard, our laboratory recently

demonstrated that BN rats which recover faster from I/R-induced

renal damage, present higher levels of HIF-1 a and some of its

target genes [11]. Moreover, current studies of our lab indicate

that HIF-1a could contribute to renal tissue repair after I/R by

regulating the inflammatory response, including IL-1b expression,

among other mechanisms.

In summary, we are reporting here a novel HIF-1 a induction in

reperfusion after renal ischemia. This accumulation is critical for

epithelial cell survival and repair, promoting tissue repair genes

expression. Interventions based on HIF-1 a during reperfusion in

the post-transplant period could be an efficient therapy strategy to

improve renal allograft outcome.

Figure 5. HIF-1a is transcriptionaly active in vivo promoting gene expression. PHD3, VEGF and EPO mRNAs levels were determined by qRT-
PCR in total renal tissue lysates and 28 mRNA levels were used as internal control. Statistical significance was found in comparison to sham condition.
doi:10.1371/journal.pone.0033258.g005

HIF-1a Promotes Tubule Repair after I/R
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Figure 6. HIF-1a is required for proximal epithelial cell survival in response to oxygen and nutrient alterations. Quantification of cell
death, by propidium iodide staining and flow cytometry in HK2 cells subjected to H/R and D/R, (a) previously transfected with specific HIF-1a siRNA
(100 nM) and scramble (100 nM) or (b) treated with 10 mM YC-1 added during hypoxia (hyp) or during reoxygenation (reox). Statistical significance
was found in comparison to scramble or control respectively, p#0.05. (c) 100 nM of siRNA (sc-44225) efficiently prevents both HIF-1a inductions
(hypoxia and R-3h). (d) 10 mM YC-1 inhibits HIF-1a inductions when added during hypoxia and reoxygenation or (e) added separately during hypoxia

HIF-1a Promotes Tubule Repair after I/R
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Materials and Methods

Renal biopsies collection: Ethics statment and
immunohistochemistry

This study was approved by the ethics committees of Hospital

Universitario Ramón y Cajal and Hospital La Paz. Tissue

extraction was performed as standard renal biopsy at Nephrology

Departments, after patient written approval and according to the

Spanish and European legislation. From 60 post-transplantation

biopsies that were performed between day 7 and day 15 due to

renal dysfunction, 15 anonymized biopsies showing ATN of

ischemic ethiology, as the only diagnosis, were selected for this

(+h) or reoxygenation (+r). Representative blots are shown and actin was used as control. (f) Akt activation in HK-2 cells subjected to H/R protocol, HK-
2 cells treated with 10 mM YC-1 or 100 nM siRNA for HIF-1a, all estimated by western blot of 473Ser phosphorylation.
doi:10.1371/journal.pone.0033258.g006

Figure 7. HIF-1a interference in vivo. (a) Scheme of siRNA and scramble treatments in vivo. SD Rats were injected with 100 nM of specific siRNA
against HIF-1a or scramble through the tail vein at indicated times. (b) Percentage of HIF-1a interference estimated by qRT-PCR in total renal lysates
from rats treated with HIF-1 a siRNA in comparison to rats treated with scramble in each condition.
doi:10.1371/journal.pone.0033258.g007

HIF-1a Promotes Tubule Repair after I/R
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Figure 8. HIF-1a interference in vivo exacerbates I/R-induced renal injury. (a) PAS staining in paraffin-embedded renal tissue sections from
SD rats during I/R, injected with scramble or with specific siRNA against HIF-1a. Note increased renal damage at 3 and 5 days of reperfusion in siRNA
treated rats. Representative images are shown. Magnification: 6200. (b) Renal function estimated by serum creatinine and urea levels. Statistical
significance was found compared to sham scramble condition, p#0.05.
doi:10.1371/journal.pone.0033258.g008
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study. Samples were fixed in formaldehyde, included in paraffin

and 4 mm slides were used for periodic acid-Schiff staining or for

immunohistochemistry. For biopsies, histopathologic evaluation

was performed in a blinded fashion by two independent observers.

Tissue sections were rated from (2) to (++++), scoring morpho-

logical alterations in proximal tubule cells, brush border loss,

detached and necrotic cells in proximal tubules and presence of

intraluminal casts and infiltrating cells.

Immunostaining was performed as previously described [23],

using as primary antibodies anti-HIF-1 a (Santa Cruz) 1:25. Slides

were observed with Nikon Eclipse 200T microscopy.

I/R model in rat: Ethics Statement. Pimonidazole
treatment and immunohistochemistry

Male Sprague-Dawley rats (180–200 g) from our own colony

were divided in groups of 5–7 animals for each condition. Animals

were treated according to the Spanish guidelines (RD 1201/2005)

that are in compliance with the EU Guide for the Care and Use of

Laboratory Animals. The experimental protocol was approved by

the Internal Committee for Animal Ethics of Hospital Universi-

tario Ramón y Cajal. Rats were anesthetized with an inhaled

anesthesia mixture of 2% isoflurane (Abbott Laboratories Ltd.,

Queenborough, Kent, England) and 1 l/min oxygen and placed

on a temperature-regulated table (37uC). Renal ischemia was

performed by clamping both renal pedicles during 45 min. Sham-

operated group underwent the same surgical procedure without

clamping. Animals were sacrificed at different times of reperfusion

and kidneys were harvested.

In the case of ischemia condition, 60 mg/Kg of pimonidazole

(Hydroxyprobe TM-1) was injected intraperitonealy 60 minutes

before clamping and animal were sacrificed after ischemia. In the

case of 5 days of reperfusion (R-5d), the same pimonidazole

concentration was injected 60 minutes before sacrifice.

Immunohistochemistry for HIF-1 a in kidney rat sections was

performed as described above for human biopsies. For pimonida-

zole staining Hydroxyprobe TM-1 Mab1 (monoclonal antibody

HRP conjugated) at 1:50 was used.

Cell culture, H/R and D/R in vitro protocol. Cell
treatments

HK-2 cells (ATCC) were cultured in DMEM/F12 containing

10% FBS, 1 g/l insulin, 0.55 g/l transferrin, 0.67 mg/l selenium

(Invitrogen), 2 mM glutamine, 100 U/ml penicillin and 100 mg/

ml streptomycin (Invitrogen), in a humidified atmosphere with 5%

CO2 at 37uC. Cells were cultured until confluence and then they

were serum deprived for 24 hours. Monolayers were cultured for

6 hours in HBSS (Invitrogen), in a hypoxic atmosphere containing

1% O2, 94% N2, 5% CO2 (Air Liquide). After hypoxia, cells were

maintained in complete medium and 21% O2 for reoxygenation

[12]. Serum-starved cells following 6 h in HBSS were used as

Control. For depletion/replenishment (D/R) protocol, cells were

subjected to all changes of media described above, but maintaining

standard 21% O2 (Figure 2A).

We used 10 mM YC-1 (3-(59-hydroxymethyl-29-furyl)-1-benzy-

lindazole) (Alexis Corporation), for HIF-1 a inhibition, 50 mM LY

294002 (Calbiochem) for Akt inhibition and 20 nM rapamycin

(Calbiochem) for mTOR inhibition.

Western blotting: Tissue and cell lysates
Western blotting in tissue and cells were performed as

previously described [11]. We used 1/250 for anti-human anti-

HIF-1 a (BD Transduction Laboratories); 1/1000 for p-AKT (Cell

Signalling), for total Akt (Cell Signalling) and for total actin (Santa

Cruz); 1/500 for p-S6Kp70 (Cell Signalling).

HIF-1 a siRNA transfection in vitro and in vivo
HK2 at 70% of confluence were transfected with 100 nM of

4 different HIF-1 a siRNAs (Customized Silencer Select

siRNAs: S225214, S225215, S225216 Ambion; siRNA sc-

44225, Santa Cruz Biotechnologies) and scramble siRNA (sc-

Table 1. Human postransplant Renal Biopsies features.

Biopsy
ID

Recipient
Gender

Recipient
Age

Date of
Transplantation

Type of
Transplantation

Date of
Biopsy
(Days)

Indication
of biopsy

Immunosupression
treatment at biopsy

1 Female 50 22/05/08 Cadaveric 7 Graft dysfunction Steroids/Basiliximab/Tacrolimus/MMF

2 Male 53 23/5/08 Cadaveric 15 Graft dysfunction Tacrolimus

3 Male 62 21/01/08 Cadaveric 11 Graft dysfunction Steroids/Tacrolimus/MMF

4** Male 25 31/01/08 Cadaveric 12 Graft dysfunction Steroids/Basiliximab/Tacrolimus/MMF

5 Female 48 22/01/08 Cadaveric 8 Graft Dysfuncion Steroids/Tacrolimus/MMF

6** Male 23 14/6/08 Cadaveric 24 Graft Dysfuncion Steroids/CyA/MMF/Basiliximab

7 Male 73 21/6/07 Cadaveric 10 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

8 Male 67 23/4/08 Cadaveric 9 Graft Dysfuncion Steroids/Tacrolimus/Basiliximab

9 Male 62 28/1/08 Cadaveric 11 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

10 Male 29 5/4/07 Cadaveric 7 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

11 Male 53 7/7/06 Cadaveric 25 Graft Dysfuncion Steroids/CyA/MMF/Basiliximab

12 Male 43 22/3/08 Cadaveric 5 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

13 Male 23 14/6/08 Cadaveric 10 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

14** Male 73 21/6/07 Cadaveric 20 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

15 Male 52 13/5/08 Cadaveric 8 Graft Dysfuncion Steroids/Tacrolimus/MMF/Basiliximab

ATN: acute tubular necrosis estimation; CyA: cyclosporine A; MMF: mophetil-mycophenolate. Biopsies which representative images are shown in figure 9 are marked
with asterisks.
doi:10.1371/journal.pone.0033258.t001
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37007, Sta Cruz Biotechnologies), using Lipofectamine 2000

according to the manufacturer’s protocol. Transfected cells

were subjected to H/R after 48 h of transfection. siRNA sc-

44225 (Sta. Cruz) was selected for the in vitro experiments due

to its high efficiency.

In vivo, siRNA sc-44225 containing 3 sequences against 3

different HIF-1 a exons, was used for HIF-1 a inhibition. 75 mg/

kg body weight of siRNA mixed with Jetpei (Polyplus, Genycell)

following manufacturer’s instructions was injected to animals, by

the tail vein, 48 h or 72 h before sacrifice, as detailed in figure 7.

Figure 9. HIF-1a is expressed exclusively in non-damaged proximal tubules of human post-transplant renal biopsies. (a) PAS staining
for renal structure and immunohistochemistry for HIF-1a in paraffin-embedded human renal biopsies. HIF-1 a is expressed in non-damaged proximal
tubules (biopsy nu4). Images of representative biopsies are presented: severe ATN (biopsies nu6 and nu14) and ATN regeneration (biopsy nu4).
Magnification: 6400. (b) Spearman Rho-Correlation coefficient between ATN grade and HIF-1a expression in all biopsies, with statistical significance
p#0.01.
doi:10.1371/journal.pone.0033258.g009
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Cell death quantification
For each sample supernatants containing detached and death

cells were collected and attached cells were trypsinized. Cell

suspensions were stained with 50 mg/ml propidium iodide (PI) in

PBS containing 0.1% NP40.

Cell cycle distribution was determined using a Beckton

Dickinson FACScan flow cytometer, analysing 20.000 cells per

sample. The percentage of cells in sub-G1 phase (apoptotic cells)

was estimated using Modfit 2.0 software (Beckton Dickinson).

Quantitative RT-PCR
Cells or renal tissue were lysed into 1 ml of Tri-Reagent

(Ambion). Total RNA was extracted and quantified. cDNA was

obtained from 1 mg of total RNA from each sample (Improm-II

reverse transcriptase, Promega) and 1 ml of cDNA sample was

used as template for PCR with LC Fast Start DNA master SYBR

Green I kit (Roche Applied Science) following the manufacturer’s

instructions. PCR were carried out in Lightcycler 480 equipment

(Roche). For each sample and experiment, triplicates were made

and normalized by 28S mRNA levels. Primer pairs used are shown

in table 3.

Luciferase assays
HK-2 cells seeded on 24-well plates were transiently transfected

with 9xHRE-luc-PGLN3 (prolactin minimum promoter) [15]

(800 ng/well) and renillaluc-pSRLV40 (0,4 ng/well) using Lipo-

fectamine 2000 (Invitrogen). After 24 h of transfection, cells were

subjected to H/R. Cells were lysed and luciferase activity was

estimated using Promega Dual Luciferase Kit (Promega). Results

were expressed as the ratio firefly luciferase/renilla luciferase

counts. All data are expressed as mean 6 SEM.

Statistical analysis
Data are presented as mean 6 SEM. After the Levene test of

homogeneity of variance, the Kruskal-Wallis test was used for

group comparison. A p,0.05 was considered significant. In case of

significant differences, intergroup differences were analyzed by

post-hoc Mann-Whitney U tests with the Bonferroni correction.

Spearman Rho correlation coefficient was used for analysis in

human biopsies. Statistical analysis was carried out with Statistical

Package for the Social Sciences (SPSS) version 15.0.
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7. Dehne N, Brüne B (2009) HIF-1 in the inflammatory microenvironment. Exp

Cell Res 315(11): 1791–7.

8. Hill P, Shukla D, Tran MG, Aragones J, Cook HT, et al. (2008) Inhibition of

hypoxia inducible factor hydroxylases protects against renal ischemia-reperfu-

sion injury. J Am Soc Nephrol 19(1): 39–46.

9. Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, et al. (2008)

HIF activation protects from acute kidney injury. J Am Soc Nephrol 19(3):

486–94.

10. Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, et al. (2009)

Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and

prolongs survival in an allogenic kidney transplant model. Proc Natl Acad
Sci U S A 15;106(50): 21276–81.
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