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Abstract

Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view.
Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the
outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed
group within a dense social network can cause the entire network to quickly adopt the group’s opinion (in times scaling
logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population
(with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion
evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the
total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi
random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB)
consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-
state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate
at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase
transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For
the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function
of the distance from the critical point.
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Introduction

Since the seminal work of Gabriel Tarde [1] in the late 1800 s,

the shaping of public opinion through interpersonal influence and

conformity has been a subject of significant interest in sociology. This

topic is especially relevant today due to the preponderance of online

social media where individuals can influence and be influenced by

their numerous and geographically scattered contacts. Public opinion

on an issue is often shaped by the actions of groups that rigidly

advocate competing points of view. The most evident example of

such a process occurs during elections when multiple parties

campaign to influence and win over the majority of voters. In this

as well as other common scenarios, the predominant means of

influencing public opinion involves some form of broadcast outreach

such as television advertising, public demonstrations etc. However,

even though factors exogenous to the network may have a significant

effect on individuals becoming informed and engaged in particular

issues [2], there is reason to believe that large scale changes in

behavior or opinion are driven primarily through interpersonal

influence events occurring within the network. Specifically in the

context of rural campaigns, there is evidence that interpersonal

channels constitute the dominant pathways for effecting individual

behavior change, even when direct external influence is present [3].

Furthermore, with data on social networks becoming increasingly

accessible, there has been a surge of interest in understanding how

campaigns can be successfully won by leveraging pathways of social

influence within the network, thus diminishing the need for, or

complementing the effect of broadcast outreach.

Motivated by these observations, we study a simple model that

enables us to draw useful insights on the evolution of opinions on a

social network in the presence of two groups within the network

that are committed to distinct, competing opinions on an issue.

Within the limits of our model, one of the questions our work

answers is the following. Suppose the majority of individuals on a

social network subscribe to a particular opinion on a given issue,

and additionally some fraction of this majority are unshakeable in

their commitment to the opinion. Then, what should be the

minimal fractional size of a competing committed group in order

to effect a fast reversal in the majority opinion? In addition to

answering this question quantitatively, we show the existence of

two distinct types of phase transitions that can occur in the space of

committed fraction pair values.
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We model the dynamics of social influence using a two-opinion

variant of the Naming Game [4–6] which also corresponds to a

special case of the game introduced and studied in [7,8]. The same

model was referred to as the binary-agreement model in [9]. In

this model, at any time, a node possesses either one of the two

competing opinions (i.e. the node is in state A or state B), or both

opinions simultaneously (state AB). In a given time step, we choose

a node randomly, designate it as the speaker and choose one of its

neighbors randomly and designate it as the listener. The speaker

proceeds to convey its opinion to the listener (chosen randomly if it

possesses two) to the listener. If the listener possesses this opinion

already, both speaker and listener retain it while eliminating all

other opinions; otherwise, the listener adds the opinion to his list.

A table of possible interactions and outcomes between node-pairs

is provided in Table S1. We emphasize that each node interacts

and is influenced only by its neighbors on the network. There is no

element in our model that represents an external influence

mechanism such as the use of media, public demonstrations, or

door-to-door campaigns by members of the competing groups.

Except for their being un-influencable, the committed nodes are

assumed to be identical in all other respects to uncommitted nodes.

In particular, committed nodes do not influence their neighbors at

a different rate or with a higher strength than uncommitted nodes.

Opinion dynamics models involving committed individuals all

subscribing to a unique opinion have been studied previously in

[9–12]. The situation pertinent to this paper - that of two

competing committed groups - has received considerably greater

attention [11,13–16]. Mobilia et al. [14] studied how the presence

of zealots (equivalent to committed individuals) affected the

eventual distribution of opinions (stationary magnetization) in

the case of the voter model. They demonstrated that the

distribution for a finite sized network was Gaussian, with a width

inversely proportional to the square root of the number of zealots,

and centered at
zz{z{

zzzz{

where zz, z{, represent the fraction of

zealots in the two competing states. Similarly to [14], Yildiz et al.

[16] studied the properties of steady-state opinion distribution for

the voter model with stubborn agents, but additionally considered

the optimal placement of stubborn agents so as to maximally affect

the steady-state opinion on the network. Interestingly, unlike in the

model studied here, in the voter model, no transitions in steady-

state magnetization are observed as the committed fraction pair

values are smoothly varied. Biswas et al. [15] considered the effect

of having rigid individuals in a one-dimensional system of binary

opinion evolution, and demonstrated a power-law dependence for

the decay of steady-state magnetization on the fraction of rigid

individuals.The work done in [11,13] is similar in spirit to our

work here; however, an important difference is that these studies

only considered the infinite-network size limit for complete graphs.

We study finite networks, both complete and sparse, and provide

semi-analytical arguments regarding timescales that become

relevant when the network size is finite.

Analysis

First, we study the mean-field version of the model, also being

equivalent to the dynamics on the complete graph in the limit of

infinite system size. We designate the densities of uncommitted

agents in the states A, B and AB by nA, nB and nAB. We also

designate the fraction of nodes committed to state A, B by pA, pB

respectively. These quantities naturally obey the condition:

nAznBznABzpAzpB~1. In the asymptotic limit of network

size, and neglecting fluctuations and correlations, the system can

be described by the following mean-field equations, for given

values of the parameters pA and pB:

dnA

dt
~{nAnBzn2

ABznAnABz
3

2
pAnAB{pBnA

dnB

dt
~{nAnBzn2

ABznBnABz
3

2
pBnAB{pAnB ð1Þ

The evolution of nAB follows from the constraint on densities

defined above. In general, the evolution of the system depends on

the relative values of pA and pB. In the case of pAw0, pB~0 (or

equivalently, pBw0, pA~0) there is only a single group of

committed nodes in the network, all of whom subscribe to the

same opinion. This was the case studied in [9,11,12]. In this

scenario, a transition is observed when this committed group

constitutes a critical fraction of the total network. Specifically, the

transition point separates two dynamical scenarios in the phase

space, (nA,nB), of uncommitted node densities. Below the critical

value, the absorbing state (e.g., nA~1{pA, nB~nAB~0 when

pAw0,pB~0) coexists in phase space with a stable mixed steady-

state and an unstable fixed (‘‘saddle’’) point. At or above the

critical value, the latter non-absorbing steady-state and the saddle

point cease to exist. Consequently, for a finite system, reaching the

(all A) consensus state requires an exponentially long time when p
is less than the critical value. Beyond the critical value this time

grows only logarithmically with network size. Note that this critical

value or threshold is analogous to a spinodal point [17,18]

associated with an underlying first-order (or discontinuous)

transition in equilibrium systems.

In order to effectively characterize the behavior of the system

governed by Eqs. (1) for pA,pBw0, we systematically explore the

parameter space (pA,pB) by dividing it into a grid with a resolution

of 0:000125 along each dimension. We then numerically integrate

Eqs. (1) for each (pA,pB) pair on this grid, assuming two distinct

initial conditions, nA~1{pA{pB,nB~nAB~0 and nB~1{pA{
pB,nA~nAB~0, representing diagonally opposite extremes in

phase space. The results of this procedure reveal the picture shown

in Fig. 1 in different regions of parameter space. As is obvious,

with non-zero values for both pA,pB, consensus on a single opinion

can never be reached, and therefore all fixed points (steady-states)

are non-absorbing. With (pA,pB) values within the region denoted

as I which we refer to as the ‘‘beak’’ (borrowing terminology used

in [19]), the phase space contains two stable fixed points, separated

by a saddle point, while outside the beak, in region II , only a single

stable fixed point exists in phase space. In region I, one fixed point

corresponds to a state where opinion A is the majority opinion (A-

dominant) while the other fixed point corresponds to a state where

opinion B constitutes the majority opinion (B-dominant). Figure 1

shows representative trajectories and fixed points in phase space,

in different regions of parameter space. Similar phase diagrams

have been found in other two-parameter systems in different

contexts including chemical reactions [19] and genetic switches

[20].

In order to study the nature of the transitions that occur when

we cross the boundaries of the beak, we parametrize the system by

denoting pB~cpA where c is a real number. Then, we

systematically analyze the transitions occurring in two cases: (i)

c~1 and (ii) c=1. It can be shown that along the diagonal line

c~1 the system undergoes a cusp bifurcation at pA~pB~0:1623.

The movement of the fixed points as pA and pB are smoothly

varied along the diagonal line is shown in Figure S1. Henceforth,

we denote the value of pA and pB at the cusp as pc. As is well

known, at the cusp bifurcation two branches of a saddle-node (or

fold) bifurcation meet tangentially [21]. These two bifurcation

Opinion Evolution in Presence of Committed Groups
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curves form the boundary of the beak shown in Fig. 1. A detailed

analysis demonstrating that pA~pB~pc constitutes a cusp

bifurcation, as well as a semi- analytical derivation of the

bifurcation curves is provided in the Supporting Text S1 (Sections:

1, 2, 3). The cusp bifurcation point is analogous to a second-order

(or continuous) critical point seen in equilibrium systems, while

bifurcation curves are analogous to spinodal transition lines.

Next, we study the stochastic evolution of opinions on finite-

sized complete graphs through simulations. Here, we systemati-

cally vary c from 1 to 0 to obtain the right bifurcation curve, and

therefore by virtue of the A{B symmetry in the system, also

obtain the left bifurcation curve. In particular for a given value of c
we obtain the transition point by varying pA (with pB~cpA) and

measuring the quantity:

m~(nB{nA)=(1{pA{pB) ð2Þ

which we utilize as an order parameter. The above order

parameter is analogous to the ‘‘magnetization’’ in a spin system

as it captures the degree of dominance of opinion B over opinion

A and is conventionally used to characterize the nature of phase

transitions exhibited by such a system (see Figs. 2(a),(b)).

Another quantity, the Binder cumulant, defined as

UN~1{½ Sm4T
3Sm2T2

� ð3Þ

for a system of size N, is commonly used to distinguish between

different types of phase transitions [17]. The utility of the Binder

cumulant comes from the markedly different signatures we

expect it to produce along a spinodal trajectory (e.g. c~0:5) -

one that passes through the spinodal line - and one along a

trajectory that passes through the critical point (e.g., along the

diagonal, c~1). This difference arises from the following

distinction in the evolution of the distribution of m, P(m),

along these trajectories. Along a spinodal trajectory starting

from a point where pA~pB, an initially symmetric (about m~0),

bimodal P(m) becomes asymmetric and unimodal upon crossing

the spinodal line, with the single mode eventually becoming a

delta function. In contrast, along the diagonal trajectory in

parameter space, P(m) is initially a double-delta distribution (for

pA~pB%pc), symmetric about m~0, and it smoothly transitions

to a zero-centred gaussian distribution as the critical point is

crossed. The definition of UN indicates that UN~2=3 for a delta

function distribution (also for a symmetric, double-delta

distribution about m~0), while UN~0 for a zero-centered

Gaussian distribution, and thus readily yields the limiting UN

values at both extremes of the spinodal and diagonal trajectory.

As illustrated in Figs. 2(c) and (d), UN as a function of pA shows

distinct behaviors for c~1 and c~0:5, indicating the existence

of a second-order (or continuous) transition point at

pA~pB~pc(N) (Fig. 2(c)) and first-order (or discontinuous)

phase transition points (Fig. 2(d)) along off-diagonal trajectories

[17], respectively. The second-order critical point pc(N)
converges to the mean-field value, pc&0:1623, as N becomes

larger. The dip observed in UN along the off-diagonal trajectory

serves as an excellent estimator of the location of the first-order

(spinodal) transition for a finite network. Thus, to reiterate, for a

finite network, the second-order transition point and the first-

order transition (spinodal) lines are respective analogues of the

cusp bifurcation point and the saddle-node bifurcation curves

observed in the mean-field case.

Figure 1. Mean-field picture in parameter space. The phase diagram obtained by integrating the mean-field Eqs. (1). The two lines indicate
saddle-node bifurcation lines which form the boundary between two regions with markedly different behavior in phase space. For any values of
parameters within the beak, denoted as region I, the system has two stable fixed points separated by a saddle point. Outside of the beak, in region II,
the system has a single stable fixed point. The saddle-node bifurcation lines meet tangentially and terminate at a cusp bifurcation point.
doi:10.1371/journal.pone.0033215.g001
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Figure 2. Behavior of typical order parameters as a function of linear trajectories of slope c that pass through the origin, in
parameter space for a complete graph. (a)–(b) Steady-state magnetization m defined in the text, for successive pA,pB pairs along lines of slope
c~1 and c~0:5 respectively that pass through the origin. The c~1 line in parameter space passes through the cusp point and gives rise to a second-

Opinion Evolution in Presence of Committed Groups
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The fluctuations of the quantity m can also be used to identify a

transition point, particularly for the case of the second-order

transition. In particular, in formal analogy with methods employed

in the study of equilibrium spin systems, the scaled variance:

XN~NS(DmD{SDmDT)2T ð4Þ

serves as an excellent estimate for the second-order transition point

pc for a finite network. As shown in Fig. 2(e), XN peaks at a

particular value of pA, with the size of the peak growing with N

(and expected to diverge as N??). In the case of the spinodal

transition, one studies fluctuations of m (XN~NS(m{SmT)2T)

restricted to the metastable state [22,23] until the spinodal point

(Fig. 2(f)) at which the metastable state disappears, and fluctuations

of m in the unique stable state beyond the spinodal point (Fig. 2(f)).

Figure 3 shows the bifurcation (spinodal) lines obtained via

simulations of finite complete graphs by using the Binder cumulant

(Fig. 2(d))to identify the location of the spinodal phase transition,

and demonstrates that its agreement with the mean-field curves

improves as N grows. The cusp points shown here are identified in

simulations as the locations where XN reaches its peak value

(Fig. 2(e)).

In the region within the beak, the switching time between the

co-existing steady-states represents the longest time-scale of

relevance in the system. The switching time is defined as the time

the system takes to escape to a distinct co-existing steady-state,

after having been trapped in one of the steady-states. Figures 4(a)

and (b) show sample evolutions of the system, demonstrating

respectively, the switching between steady-states within the beak,

and the fluctuations about the single steady state outside the beak.

In stochastic systems exhibiting multistability or metastability, it is

well known that switching times increase exponentially with N for

large N (the weak-noise limit) [19,24–26] Furthermore, the

exponential growth rate of the switching time in such cases can

be determined using the eikonal approximation [19,27]. The basic

idea in the approximation involves (i) assuming an eikonal form for

the probability of occupying a state far from the steady-state and

(ii) smoothness of transition probabilities in the master equation of

the system. This allows the interpretation of fluctuational

trajectories as paths conforming to an auxilliary Hamilton-Jacobi

system. This in turn enables us to calculate the probability of

order phase transition, while the c~0:5 line passes through a point on the (right) bifurcation line giving rise to a first-order phase transition. Here 10
realizations of social influence dynamics were performed for each pA,pB pair, starting from the initial condition nA~0,nB~1{pA{pB, and the
magnetization was measured conditioned on the system remaining in the steady state that it initially converged to. (c)–(d) Binder cumulant UN

defined in the text for successive pA,pB pairs along lines of slope c~1 and c~0:5 respectively, that pass through the origin. (e)–(f) Scaled variance,
XN , defined in the text for successive pA,pB pairs along lines of slope c~1 and c~0:5 respectively, that pass through the origin. Data for (c),(d),(e)
and (f) were generated from 10 realizations of the social influence dynamics, per pA,pB pair, for each of two initial conditions: nA~1{pA{pB,nB~0
and nA~0,nB~1{pA{pB.
doi:10.1371/journal.pone.0033215.g002

Figure 3. Picture in parameter space for a complete graph obtained from analytical and simulation results. The bifurcation lines and
the cusp point in parameter space were obtained analytically from the mean field equations and are compared with those found using simulations
for finite-sized complete graphs. Analytical and simulation curves show excellent agreement as N increases. The location of the transition occurring
across the bifurcation curve was obtained using the Binder cumulant UN (Fig. 2(d)), while the location of the cusp point was obtained by using
variance of m (Fig. 2(e)). For both analytical and simulation results, the bifurcation curves are obtained by identifying the critical points that lie on
linear trajectories in parameter size described by pB~cpA. This process is carried out for different values of c between 0 and 1 at intervals of 0:1, and
for each value of c, pA is varied at a resolution of 0:002. In simulations, for each such combination of (pA,pB) obtained, we perform averages over 10
realizations of the social influence dynamics, for each of two initial conditions, nA~1{pA{pB, and nA~0, with nB~1{nA{pA{pB for each case.
doi:10.1371/journal.pone.0033215.g003
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escape allowing an optimal fluctuational path that takes the system

from the vicinity of the steady-state to the vicinity of the saddle

point of the deterministic system. The switching time is simply the

inverse of the probability of escape along this optimal fluctuational

path. We defer details of this procedure to Supporting Text S1:

Section 4. Using this approach we find that for the symmetric case,

pA~pB~pvpc, the exponential growth rate of the switching time

s*(pc{p)n with n&1:3 (Fig. 4 (c) ). Thus, along the portion of the

diagonal within the beak:

Tswitching* exp½(pc{p)nN� ð5Þ

Outside the beak, the time to get arbitrarily close to the sole

steady-state value grows logarithmically with N (not shown).

The results presented so far show that there exists a transition in

the time needed by a committed minority to influence the entire

population to adopt its opinion, even in the presence of a

committed opposition (i.e. in the case where both pA,pBw0), as

long as pA,pBvpc. (Note that the case pAw0,pB~0 was

considered in [9]). For example, assume that initially all the

uncommitted nodes adopt opinion B, and that pA~pBvpc. Then,

the steady-state that the system reaches in ln (N) time is the one in

which the majority of nodes hold opinion B. Despite the fact that

there exist committed agents in state A continuously proselytizing

their state, it takes an exponentially long time before a large

(spontaneous) fluctuation switches the system to the A-dominant

steady-state. For identical initial conditions, the picture is

qualitatively the same if we increase pA keeping pB fixed, as long

as (pA,pB) lies within the beak. However, when (pA,pB) lies on the

bifurcation curve or beyond, the B-dominant steady-state

vanishes, and with the same initial conditions - where B is the

initial majority - it takes the system only ln (N) time to reach the

A-dominant state (the only existing steady-state). Thus, for every

value of an existing committed fraction pB (vpc) of B nodes, there

exists a corresponding critical fraction of A nodes beyond which it

is guaranteed that the system will reach an A dominant state in

ln (N) time, irrespective of the initial conditions. However, for any

trajectory in the parameter space in a region where either pA or pB

is (or both are) greater than pc, no abrupt changes in dominance or

consensus times are observed. Instead, the dominance of A or B at

the single fixed point smoothly varies as the associated committed

fractions are varied. Moreover, the system always reaches this

single fixed point in ln (N) time.

Finally, we study how opinions evolve in the presence of

committed groups on sparse graphs, most relevant to social

networks. We study Erdös-Rényi (ER) random graphs [28] as well

as Barabási-Albert networks [29]. For each of these sparse

networks, we find the same qualitative behavior as found for the

complete graph. As shown in Figs. 5, 6, as the average degree of

the sparse networks increases, the bifurcation lines in parameter

space tend to approach their mean-field counterparts. Although

we do not study sparse networks analytically here, we note that in

another instance of a phase transition for a similar model studied

in [7], it was demonstrated using heterogeneous mean-field

equations that the behavior of sparse networks is qualitatively

similar to that of complete graphs. Figure 7 visually depicts typical

instances of the evolution of opinions on an ER random graph for

(pA,pB) values within and outside the beak.

Discussion

Using a simple model, we have explored and quantified possible

outcomes for the evolution of opinions on a social network in the

presence of groups committed to competing opinions. Broadly

speaking, our results indicate that as long as the fraction, pB, of

nodes committed to a given opinion B is held fixed at a value less

than a critical value pc, it is possible to induce the network to

quickly tip over to a state where it widely adopts a competing

opinion A, by introducing a fraction of nodes committed to

opinion A. The value of the competing committed fraction, pA, at

which this tipping point arises depends on the value of pB, and is

determined by the bifurcation curve (see Fig. 1). Importantly, for a

given value of pBvpc, the excess commitment pA{pB required

for the network to tip over to A is a decreasing function of pB that

reaches zero when pB~pc. While the critical value pc itself may

depend on the network structure and its size, the feature described

above holds for the three different classes of networks studied here.

A corollary to this feature is that if the committed fraction pB is

held fixed at a value greater than pc, increasing the competing

committed fraction pA only yields continuous incremental gains in

the adoption of A (i.e., no tipping point or discontinuous changes

in opinions exist). We analytically determine that pc~0:1623 for

infinite-sized complete graphs, which as observed from our

Figure 4. Evolution of order parameter m and the exponential
growth in switching time as a function of distance from the
second-order critical point. (a) Switches in the value of m as a
function of time t for a sample evolution (with initial transient removed)
of the system when pA~pB~0:154 (vpc). This reflects the system
repeatedly switching between the A-dominant steady-state (mw0) and
the B-dominant steady-state (mv0). (b) Sample evolution of the system
(with initial transient removed) for pA~pB~0:2 (wpc). The system
fluctuates randomly about the only existing steady-state in which
densities of A and B nodes are equal. (c) The dependence of s in the
exponential scaling Tswitching* exp (sN) when pA~pB~p (pvpc) as a
function of (pc{p), obtained using the eikonal approximation (see SI:
Section 4).
doi:10.1371/journal.pone.0033215.g004
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simulation results in Figs. 5, 6 appears to constitute a good upper

bound to the value of pc for sparse networks.

Our results could be of utility in situations where public opinion

is deadlocked due to the influence of competing committed

groups. Perhaps one example of such a situation is the observed

lack of consensus in the U.S. on the existence of human-induced

climate change. Indeed, there is evidence in this particular case

that the commitment of individuals to particular political

ideologies may have an effect on their opinions [30].

Another scenario to which our model could bear some

relevance is the adoption of competing industrial standards.

Particularly in situations where a network of entities collaborate or

are interdependent, there is a natural attempt at agreement in

standards or protocols between interacting members. A classic

example of this scenario is the case of the Sellers’ screw

manufacturing standard that proliferated despite competition

from the Whitworth standard [31]. A key factor responsible for

the eventual success of the Sellers standard was William Sellers’

leveraging of his connections to corporations and manufacturers

[32], whom he persuaded to become adopters of his standard.

Furthermore, the network of interdependencies between industries

at the dawn of the mass-manufacturing era played an important

role in the adoption of the standard becoming widespread. It

should be pointed out that in this case, the uncommitted members

of the population initially adhered to neither standard - this

situation can however be accommodated in our model by

Figure 5. Results for Erdös-Rényi random graphs. (a) The bifurcation lines and cusp point in parameter space obtained through simulations of
Erdös-Rényi random graphs of size N~5000 with different average degrees. The mean-field analytical curve is shown for comparison. For simulation
results, the bifurcation curves are obtained by identifying the critical points that lie on linear trajectories described by pB~cpA in parameter space.
This process is carried out for different values of c between 0 and 1 at intervals of 0:1, and for each value of c, pA is varied at a resolution of 0:002. For
each such combination of (pA,pB) obtained, we perform averages for quantities of interest over 10 realizations of networks (with a single realization
of the social influence dynamics per network), for each of two initial conditions, nA~1{pA{pB and nA~0 with nB~1{nA{pA{pB in each case.
(b)–(c) Steady-state magnetization for ER graphs with SkT~6 and different sizes N , as parameter pair values are varied successively along slope c~1
and slope c~0:5 lines in parameter space respectively.
doi:10.1371/journal.pone.0033215.g005

Figure 6. Results for Barabási-Albert networks. (a) The bifurcation lines and cusp point in parameter space obtained through simulations of
Barabási-Albert networks of size N~5000 with different average degrees. For simulation results, the bifurcation curves are obtained by a similar
method as described in the legend of Fig. 5(a). (b)–(c) Steady-state magnetization for BA networks with SkT~6 and different sizes N , as parameter
pair values are varied successively along slope c~1 and slope c~0:5 lines in parameter space respectively.
doi:10.1371/journal.pone.0033215.g006
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assigning each uncommitted his own unique ‘‘opinion’’ to begin

with in close analogy to initial conditions for the original Naming

Game [4,5].

A more recent example of such a scenario is the competition

between Flash and HTML5 in web-development. There is

speculation that Flash, which until recently was the predominant

platform for animated web content, is gradually ceding its

dominance to HTML5 as a result of the increasing market-share

of Apple’s mobile devices which exclusively support the latter [33].

A potential competition between DC fast charging standards is

also expected as electric vehicles become increasingly popular with

consumers. The front-runners in the mass manufacture of electric

vehicles have opted for the CHAdeMO standard, and charging

stations compatible with the standard have begun proliferating in

the US, Europe and Japan [34,35]. An alternative to CHAdeMO

currently being developed by the Society for Automotive

Engineers (SAE), which governs the development of standards in

the US automotive industry, is being touted by some car

manufacturers as more cost effective as well as technologically

superior. However, by the time the first cars employing the SAE

standard hit the market, CHAdeMO charging stations are

expected to be rather widespread, thus making a competition

between the two inevitable [34,36]. As new collaborations are

forged between car-makers especially in the area of electric vehicle

development [37,38] (in addition to collaborations with energy

suppliers), the outcome of this competition could be significantly

influenced by manufacturers who are already committed to one of

the two standards through their investment in them.

To conclude, we have presented results from a simple, abstract

model for understanding how opinions on a social network evolve

through social influence when there are multiple groups within the

network dedicated to competing opinions. Despite the simplicity of

our model, we believe the insights provided here form a useful

theoretical complement to data-driven studies [39] and random-

ized evaluations [40] aimed at understanding the spread of

opinions.

Note: Subsequent to this paper’s initial posting on arxiv.org on

12/31/2011 and its acceptance for publication with minor

revisions on 1/26/2012, S. Jolad sent us independent unpublished

results by D. Linford, P. Hochendoner, A. Reagan, and S. Jolad

addressing competing committed groups on the complete graph.

Supporting Information

Figure S1 Movement of fixed points as pA and pB are
smoothly varied along the diagonal line pA~pB. For

pA~pBvpc �& 0:1623 three fixed points exist, two of which are

stable, and the third is unstable. For pA~pB§pc, only a single

stable fixed point exists.

(EPS)

Table S1 Possible interactions and respective outcomes
in the model of social influence - a two-opinion variant of
the Naming Game - that we study. Nodes can possess

opinion A, B or AB, and opinion updates occur through repeated

selection of speaker-listener pairs. Shown in the left column are the

opinions of the speaker (first) and listener (second) before the

interaction, and the opinion voiced by the speaker during the

interaction is shown above the arrow. The column on right shows

the states of the speaker-listener pair after the interaction.

(PDF)

Supporting Text S1 Mean-field analysis for bifurcations
in parameter space and scaling of switching time with
system size.
(PDF)
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Figure 7. Visualization of opinion evolutions. The evolution of
opinions on an ER random graph with N~200 and SkT~6 for two
(pA,pB) pairs. In each case nB~1{pA{pB and nA~0. Nodes holding
opinion A are depicted in red, while nodes holding opinion B are
shown in green. Nodes with larger diameters are committed nodes.
Top: The case pA~pB~0:1 for which the system is in region I in
parameter space (following the terminology of Fig. 1, and the system is
trapped in a B-dominant steady-state. Even after 2500 time steps, the
system continues to remain trapped in this state (inset) with nA �& 0:05.
Bottom: The case pA~0:125 and pB~0:1 for which the system is in the
region II, and undergoes an abrupt transition (inset) to the A-dominant
state within 250 time steps.
doi:10.1371/journal.pone.0033215.g007
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