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Abstract

The reason why IL-6 induces a pro-inflammatory response, while IL-10 induces an anti-inflammatory response, despite both
cytokines activating the same transcription factor, STAT3, is not well understood. It is known that IL-6 induces a transient
STAT3 signal and that IL-10 induces a sustained STAT3 signal due to the STAT3-induced inhibitor SOCS3’s ability to bind to
the IL-6R and not the IL-10R. We sought to develop a general transcriptional network that is capable of translating sustained
signals into one response, while translating transient signals into a second response. The general structure of such a
network is that the transcription factor STAT3 can induce both an inflammatory response and an anti-inflammatory
response by inducing two different genes. The anti-inflammatory gene can bind to and inhibit the inflammatory gene’s
production and the inflammatory gene can bind to its own promoter and induce its own transcription in the absence of the
signal. One prediction that can be made from such a network is that in SOCS32/2 mice, where IL-6 induces a sustained
STAT3 signal, that IL-6 would act as an anti-inflammatory cytokine, which has indeed been observed experimentally in the
literature.
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Introduction

In many examples in biology, a single transcription factor is able

to activate multiple genes [1–3]. Also, different receptors are able

to activate the same transcription factor, but each leads to unique

outcomes [4–6]. How signal specificity is attained with all of this

redundancy has long interested researchers. Manipulation of

signal duration through the use of feedback loops, phosphatases,

and ubiquitin ligases is one mechanism by which cells attain signal

specificity when multiple receptors utilize the same pathway. For

instance, both nerve growth factor (NGF) and epidermal growth

factor (EGF) signal through the MAPK pathway, but NGF is able

to generate a sustained ERK signal, while EGF generates a

transient signal; sustained and transient signals in this case result in

two different outcomes through the same pathway [6,7]. It was

recently discovered that NGF signaling leads to a positive feedback

loop in the MAPK pathway, while EGF leads to a negative

feedback loop, and this disparity accounts for the differences in

signal duration [8]. One mechanism cells can use to translate

signal duration into different outcomes at the gene transcription

level is through manipulation of immediate early gene (IEG)

stability [9]. ERK induces transcription of the IEG products and

then can bind to and phosphorylate them. The phosphorylated

form of the IEG is less susceptible to degradation allowing it to

further assist in the activation of downstream programs. Transient

signals are unable to induce the protected form of the IEG

products and the signal degrades. The net result is that the signal

propagates through the genetic network for sustained signals or

dies out for transient signals.

A simpler example of two receptors sharing the same signaling

pathway, but leading to two different outcomes, is the IL-6 and IL-

10 receptor. Both receptors activate signal transducer and

activator of transcription 3 (STAT3), which forms dimers upon

phosphorylation and enters the nucleus where it acts as a

transcription factor. Despite the simplicity of the pathway, the

two receptors induce different cellular behaviors: IL-6 elicits a pro-

inflammatory response, while IL-10 signaling leads to an anti-

inflammatory response [10]. The anti-inflammatory response by

IL-10 acts on a number of cell types including antigen presenting

cells (APCs) and is characterized by the induction of gene products

by STAT3, which inhibit the transcription of inflammatory genes

[11]. One key distinction between the two pathways is that the

inhibitor, suppressor of cytokine signaling 3 (SOCS3) induced by

STAT3, can bind to the IL-6 receptor, but cannot bind to the IL-

10 receptor. This leads to IL-6 inducing a transient STAT3 signal,

while IL-10 induces a sustained STAT3 signal [10]. Two

independent experiments demonstrated that blocking SOCS3’s

ability to inhibit IL-6 signaling leads to an anti-inflammatory

response indistinguishable from that induced by IL-10 in

macrophages [12,13].

Recent work by Behar et. al. is an example of how

mathematical modeling can be utilized to propose various network
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architectures in which cells can make decisions by signaling

through multiple receptors with shared components, while

retaining signal specificity [14,15]. These models focus on signal

events upstream of transcription. We sought to identify a simple

transcriptional model that would allow cells to make decisions

based entirely on the duration of the input signal to the

transcriptional network. Developed in the context of how signal

duration manipulation by SOCS3 can lead to different outcomes

from the IL-6 and IL-10 signaling pathways, our model focuses on

the choice whether to produce a generic inflammatory gene

product I or a generic anti-inflammatory gene product A when

activated by a common transcription factor pSTAT3.

Methods

Transcriptional network model development
A transcriptional network was formulated to allow the cellular

decision of whether to be pro-inflammatory or anti-inflammatory

to be made by changes in activated pSTAT3 signal duration. The

network consists of two genes (I and A) that are activated by the

same transcription factor (Figure 1). The essential feature of such a

network must be that a transient pSTAT3 signal leads to dominant

production of the inflammatory gene (I), while a sustained pSTAT3

signal leads to dominant production of the anti-inflammatory gene

A. In reality, there are many inflammatory and anti-inflammatory

genes, but we will adopt a coarse-grained view of the system where

all of these genes will be characterized by generic representative

genes I and A, respectively. In the model, which we shall refer to as

Model 1, pSTAT3 dimers (pSTAT3) are allowed to bind to the

promoter region of gene I (Ig) and gene A (Ag)

pSTAT3zIg / ?
kon, T ,I

koff , T ,I

pSTAT3{Ig

pSTAT3zAg/ ?
kon, T ,A

koff , T ,A

pSTAT3{Ag

where the on and off rates can be different for the two genes.

Different epigenetic modifications of the two genes could mean that

one gene is more accessible than another, thus the possibility for

different rates.

DNA-bound pSTAT3 can induce transcription of I mRNA (Im)

and A mRNA (Am), via reactions assumed to be assumed first order

pSTAT3{Ig �?
ktrx, I , T

ImzpSTAT3zIg

pSTAT3{Ag �?
ktrx,A, T

AmzpSTAT3zAg

where the rate constants of the form ktrx,I,T should be read as the

transcription of I in the presence of transcription factor, T (pSTAT3

dimer). It is assumed that the associated transcription factors

dissociate each time a transcription reaction is carried out. Due to

the simplicity of the network, it was easy to also construct a model

where transcription factors do not dissociate each time mRNA is

transcribed to verify that the qualitative behavior would not change,

which we shall refer to as Model 2 (Web S1). We found multiple

combinations of parameters that lead to the same qualitative

behavior in both models (Figure 2, Figure 3, Web S1). For this

reason, we shall mostly present results generated using Model 1 in

the results section, unless otherwise noted. Any reference to ‘‘the

model’’ is in reference to Model 1, where transcription factors

dissociate after each transcriptional event.

After transcription, the mRNA of I and A can be translated to

fully functional proteins in assumed first order processes

Im �?
ktrl, I

I

Am �?
ktrl, A

A

where species I and A represent the fully functional proteins.

The models also contain two types of feedback loops, which

make the network sensitive to signal duration. Inflammatory

protein I is allowed to bind to its own promoter and induce its own

transcription in the presence or absence of pSTAT3 as given by

Iz½pSTAT3�{Ig / ?
kon,I ,I

koff ,B,B

½pSTAT3�{I{Ig �?
ktrx,I ,I

½ktrx,I ,T �
Imz½pSTAT3�zIgzI

where [pSTAT3] indicates that pSTAT3 may or may not be

present. If pSTAT3 is present, it is assumed that the rate of

transcription is governed by whichever rate constant, ktrx,I,I or

ktrx,I,T, is greater. The ability of I to induce its own production in

the absence of the signal through a positive feedback loop allows

for the production of I even for a fast decaying signal as long as the

decay rate of I is small enough to allow for the initiation of the

positive feedback loop. Though we do not have direct experi-

mental evidence for the existence of a positive feedback loop in this

system, the addition of an autoregulatory positive feedback loop to

our models is feasible since it has been identified as a general

network motif [16,17] and has been observed experimentally in

other systems [18,19]. The A gene has no positive feedback loops

so it is entirely dependent on the signal and thus will not be

produced in appreciable quantities by transient signals.

Figure 1. Transcriptional network that allows for cellular
decisions based on signal duration. The ‘‘signal’’ in this mechanism
is the ability of pSTAT3 to induce transcription of I or A. The cellular
decision is based on the relative amounts of protein I or A produced. In
this mechanism I can induce its own transcription in the absence of
signal, pSTAT3. Protein A can bind to inflammatory gene I and inhibit its
transcription.
doi:10.1371/journal.pone.0033018.g001

How Signal Duration Can Determine Transcription
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The network also contains a negative feedback loop where anti-

inflammatory protein A is able to bind to the promoter of gene I

and impede its transcription according to

Az½pSTAT3,I �{Ig / ?
kon,A, I

koff ,A, I

½pSTAT3,I �{A{Ig �?
ktrx, I ,A

Imz½pSTAT3,I �zIgzA

where [pSTAT3,I] indicates that either pSTAT3 or I is bound to

gene I. The ability of A to negatively regulate I is important in

creating a regime where A can win out. If the inhibition is strong

enough (ktrx,I,A,,0), A can shut down the production of I if A is

present in great enough quantities. Sustained signaling may permit

this scenario.

Another important aspect of the network is that all species,

except genes, can decay at assumed first order rates

Figure 2. The transcription of A-molecules dominates for a sustained signal (Kdeg,T = 0 min21). (A) Time course trajectories for molecule I
obtained by solution of the Model 1 equations using a mean field ODE solver (red curve) and ten times using the Gillespie Algorithm (10 blue curves).
(B) Time course trajectories for molecule A obtained by solution of the Model 1 equations using a mean field ODE solver (red curve) and ten times
using the Gillespie Algorithm (10 blue curves). (C) Histogram for molecule I obtained by solving the Model 1 equations using the Gillespie Algorithm
1000 times and recording the number of molecules at 2000 min. (D) Histogram for molecule A obtained by solving the Model 1 equations using the
Gillespie Algorithm 1000 times and recording the number of molecules at 2000 min. (E) Histogram for molecule I obtained by solving the Model 2
equations using the Gillespie Algorithm 1000 times and recording the number of molecules at 2000 min. (F) Histogram for molecule A obtained by
solving the Model 2 equations using the Gillespie Algorithm 1000 times and recording the number of molecules at 2000 min. Parameters for Model 1
were obtained from Table 1 and parameters for Model 2 were obtained from Table S2.
doi:10.1371/journal.pone.0033018.g002

How Signal Duration Can Determine Transcription
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pSTAT3 �?
kdeg , T

X

½I ,A� �?
kdeg

X

½Im,Am� �?
kdeg ,m

X

where [] represents either I or A. Biologically, the deactivation of I

or A would be caused by ubiquitin ligases or phosphatases in the

nucleus, which are assumed to be present in large enough

concentrations so that the reactions are first order. The parameter,

kdeg,T, is a measure of the duration of the signal. Large values of

kdeg,T indicate a highly transient signal, whereas small values kdeg,T

indicate a relatively sustained signal. In the context of IL-6 and IL-

Figure 3. The transcription of I-molecules dominates for a transient signal (Kdeg,T = 1.0 min21 for Model 1 and Kdeg,T = 0.1 min21 for
Model 2). (A) Time course trajectories for molecule I obtained by solution of the Model 1 equations using a mean field ODE solver (red curve) and
ten times using the Gillespie Algorithm (10 blue curves). (B) Time course trajectories for molecule A obtained by solution of the Model 1 equations
using a mean field ODE solver (red curve) and ten times using the Gillespie Algorithm (10 blue curves). (C) Histogram for molecule I obtained by
solving the Model 1 equations using the Gillespie Algorithm 1000 times and recording the number of molecules at 2000 min. (D) Histogram for
molecule A obtained by solving the Model 1 equations using the Gillespie Algorithm 1000 times and recording the number of molecules at 2000 min.
(E) Histogram for molecule I obtained by solving the Model 2 equations using the Gillespie Algorithm 1000 times and recording the number of
molecules at 2000 min. (F) Histogram for molecule A obtained by solving the Model 2 equations using the Gillespie Algorithm 1000 times and
recording the number of molecules at 2000 min. Parameters for Model 1 were obtained from Table 1 and parameters for Model 2 were obtained from
Table S2.
doi:10.1371/journal.pone.0033018.g003
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10 signaling, kdeg,T is modified by the ability or inability of SOCS3

to inhibit pSTAT3 signaling. We begin the simulation just after

appreciable amounts of SOCS3 have been induced, which means

that the signal has reached its maximum value and then begins to

decay at time zero. For IL-6, this occurs at about 30 minutes after

signaling has begun [13]. Deactivation/degradation of I and A is

allowed to occur whether or not the proteins are bound to genes.

We also considered the case where deactivation/degradation of

pSTAT3, I, and A is not allowed to occur when the molecules are

bound to genes and found by sensitivity analysis that this does not

significantly affect the qualitative results of the models (Web S1).

Results and Discussion

Genes I and A exhibit different responses to changes in
signal duration

Rate laws were written for each of the reactions in the model

and the corresponding chemical master equations were solved

using the Gillespie algorithm [20]. We explicitly considered

stochastic fluctuations in the number of molecules in this system

via the Master equations because genes are often present in small

copy numbers. The solution of the mean field equations could lead

to the identification of signaling thresholds that in reality cannot be

met due to fluctuations. For instance, the mean field solution to the

Model 1 equations obtained via MATLAB predicts that the

number of I molecules never reaches 50 molecules at any point in

time for the set of parameters identified in Table 1 using a signal

degradation rate of 0 (Figure 2A). However, the Gillespie

algorithm shows that half of the trajectories of I cross 50; therefore

it would be inaccurate to conclude that I never reaches the

signaling threshold of 50 molecules (Figure 2A).

We are more interested in the general qualitative behavior of the

genetic network as opposed to fitting the results to actual data, so no

attempt was made to use experimentally derived parameters

relevant to a specific system. As a result, it is important to use

sensitivity analysis to verify that the qualitative results of the model

are robust over a range of parameters. Sensitivity analysis was

performed according to the procedures outlined in Web S1. The

basic procedure was to divide all the parameters into nine different

classes and testing all combinations of low, medium, and high values

for each parameter class (Table S1). We then determined if the

response could be switched from pro-inflammatory response to an

anti-inflammatory response by changing the signal degradation rate

for a given parameter set. In an initial search, 1809 parameter sets

were identified that led to the desired qualitative behavior (Web S1).

A snapshot of the qualitative behavior of the model can be

obtained by considering two values of kdeg,T with all other

parameters fixed at the values given in Table 1. A value of 1 for

kdeg,T corresponds to a transient signal, whereas a value of 0 for

kdeg,T corresponds to a sustained signal. Sensitivity analysis

revealed that the mRNA degradation rate did not alter the results

(Figure S1), so the rate of degradation for I and A mRNA was set

to 0. We consider the case where the rate of transcription of I is the

same whether its induced by pSTAT3 or by itself (i.e.

ktrx,I,T = ktrx,I,I) and where the transcription of A is slower than

the transcription of I (i.e. ktrx,A,T,ktrx,I,T, ktrx,I,I). The qualitative

results are robust to a range of parameters including the case

where the rate of transcription of I and A is the same and the case

where the rate of transcription of A is greater than I as determined

by parameter sensitivity analysis (Web S1).

For sustained signals, the number of I molecules peaks at early

times and then degrades, while the number of A molecules

increases steadily through time (Figure 2A and Figure 2B). There

are no negative feedback loops on A, and so, for sustained signals,

the increase in its molecular levels is only hindered by its

degradation. This is the cause for its steady increase with time.

Conversely, I is strongly affected by the negative feedback loop at

later times. Protein A is in high concentration at later times and is

statistically likely to be bound to both copies of the I genes. In the

parameter range chosen, A is able to bind tightly to the I gene and

shuts down its production at later times. Once I production is shut

down, the level of I gradually decreases due to its degradation/

deactivation. The combined effect of the negative feedback loop

and the degradation/deactivation reaction causes the peak in the

number of I molecules at early times (Figure 2A).

An alternative way of viewing the data is to run 1000

trajectories, determine the molecular levels of I and A at ‘‘long

times’’ (time = 2000 min), and construct a histogram. For

sustained signals, the distributions appear similar in shape;

however, I is at much lower levels than A (Figure 2C and

Figure 2D). Therefore, these cells would appear to be producing

mostly protein A if assayed at long times. This implies that the cells

have made the decision to activate the anti-inflammatory gene

program for sustained signals, an idea which will be explored in

more detail in the next section. The same qualitative results were

obtained using Model 2 (Figure 2E and Figure 2F).

For transient signals, the molecular levels of I increase gradually

with time in some of the trajectories, while A remains at or around

zero in all of the trajectories (Figure 3A and Figure 3B). Protein A

is entirely signal-dependent so it is not able to be produced in

significant quantities when the signal degrades too quickly

(Figure 3B and Figure 3D). As a result, the negative feedback

loop is not effective for highly transient signals and the production

of I is limited only by its ability to initiate the positive feedback

loop. For this particular degradation rate, kdeg,T = 1, only some of

the trajectories of I led to nonzero amounts, which is clearly

observed in the long time histogram (Figure 3C). The bistability

that results is entirely stochastic in nature, evident by the fact that

the mean field time trajectory for I follows the average of the

nonzero curves (Figure S2) [21]. Bistability results from the ‘‘roll of

the dice’’ in determining whether or not the positive feedback loop

is initiated before the signal and resulting I molecules degrade. It

appears that bistability develops at approximately kdeg,T = 0.4 -

min21 (Figure 4). As the signal becomes more transient in nature,

an increasing number of I trajectories remain at I = 0. In many

biological systems bistability serves as a tool in making cellular

decisions, but in this system it is simply a consequence of the signal

Table 1. Table of parameters used in Model 1.

kon,T,I 0.015 molec21 min21 ktrx,I,I 1.0 min21

kon,T,A 0.015 molec21 min21 ktrx,I,A 0 min21

kon,I,I 0.015 molec21 min21 ktrl,I 0.5 min21

kon,A,I 0.015 molec21 min21 ktrl,A 0.5 min21

koff,T,I 0.5 min21 kdeg,T 0–10 min21

koff,T,A 0.5 min21 kdeg 0.001 min21

koff,I,I 0.5 min21 kdeg,m 0

koff,A,I 0.01 min21 pSTAT3o 100 molec.

ktrx,I,T 1.0 min21 Ig 2 molec.

ktrx,A,T 0.1 min21 Ag 2 molec.

The parameters were selected in order to clearly demonstrate the phenomena
of interest (i.e. I dominates transcription for transient signals while A dominates
for sustained signals). The results presented were robust to a range of
parameters as indicated by the sensitivity analysis (Web S1).
doi:10.1371/journal.pone.0033018.t001
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degrading too quickly and does not have direct relevance to the

decision to be inflammatory versus anti-inflammatory [22–24].

Instead it determines what percentage of cells will be inflammatory

or exhibit no response.

In silico knock-out experiments can be performed where either

the positive or negative feedback loops are removed. When the

positive feedback loop is removed, the results for sustained signals

are virtually unchanged since the negative feedback loop

dominates (Figure S3). For the transient case, both I and A would

remain at approximately zero since both would be entirely signal

dependent. The end result of blocking the positive feedback loop is

that the cell would activate the anti-inflammatory gene program

for sustained signals or neither program for transient signals.

When the negative feedback loop is knocked out, the results for

transient signals remain unchanged since the positive feedback

loop dominates the behavior (Figure S4). For sustained signals,

both I and A would be produced in significant quantities. There

would no longer be a peak in I at short times, but a steady increase

as a function of time. The end result of blocking the negative

feedback loop is that the cell would choose the pro-inflammatory

gene program for transient signals. The model predicts that both

programs would be initiated for sustained signals, but this is likely

not biologically relevant since the ability of anti-inflammatory

genes to act ‘‘anti-inflammatory’’ has been removed by the

deletion of the negative feedback loop. Therefore, sustained signals

would likely lead to pro-inflammatory cells in this system. If both

feedback loops were removed, both I and A would be entirely

signal dependent and would exhibit similar qualitative behavior

(Figure S5). The end result of blocking both the positive and

negative feedback loops is that the cell would choose both I and A

for sustained signals or neither for transient signals. Again, since

the negative feedback has been deleted, it would likely be observed

that the cells are pro-inflammatory for sustained signals or neither

for transient signals.

The same qualitative results of A dominating transcription

(Figure 2D and Figure 2F) over I (Figure 2C and Figure 2E) for

sustained signals and I dominating transcription (Figure 3C and

Figure 3E) over A (Figure 3D and Figure 3F) for transient signals is

observed for both Model 1 and Model 2. Therefore, whether or

not transcription factors dissociate after each transcriptional event

is not important in this analysis. All the remaining results are based

on the models allowing for either A or I to dominate transcription

at different signal durations. We shall only consider results

generated using Model 1, although the exact same conclusions

would be reached using Model 2.

Tuning signal duration as a tool for cellular decisions
From the two test values of kdeg,T, it appears as if this

mechanism could be a viable tool for making cellular decisions

based entirely on signal duration modification. To further probe

this idea, we constructed the following in silico experiment.

Thousands of I and A trajectories similar to those obtained in the

last section were generated for kdeg,T values ranging from 0 to 10

with all other parameters fixed at the values given in Table 1. It is

assumed that the downstream gene programs (inflammatory or

anti-inflammatory) activated by I or A are only initiated when the

respective molecules cross a threshold value in molecular number

at any point in the time trajectory. To measure this computation-

ally, the maximum point in each trajectory was compared to a

threshold value and the number of I and A trajectories crossing the

threshold was recorded for each value of kdeg,T. The percent of I or

A trajectories crossing the threshold directly corresponds to the

percent of cells that exhibit pro-inflammatory or anti-inflamma-

tory responses in an equivalent biological experiment since each

trajectory corresponds to 1 cell.

Cells with sustained signals (kdeg,T,1023) clearly exhibit an

anti-inflammatory response while cells with transient signals

(0.02,kdeg,T,1) clearly exhibit an inflammatory response

(Figure 4A and Figure 4B). There is a small crossover region for

mildly transient signals (1023,kdeg,T,0.02), the behavior in which

is determined by the choice in downstream threshold values for I

and A. For the given set of parameters, it is clear that I has the

capability of attaining a higher maximal value since its

Figure 4. Cellular decisions can be made by manipulating
signal duration. The maximum amount of I and A observed in 1000
time course trajectories measured out to 2000 min was compared to an
arbitrary threshold and the percentage of trajectories crossing the
threshold was computed for a wide range of signal degradation rates.
(A) Different downstream thresholds were chosen for I and A such that
both responses are observed in the intermediate crossover region. The I
threshold was set to 100 molecules, while the A threshold was set to 20
molecules. (B) Using the same downstream threshold for both I and A
leads to no response observed in the intermediate crossover region.
The I and A thresholds were taken to be 90 molecules. The results were
generated using Model 1 and the parameters were obtained from
Table 1.
doi:10.1371/journal.pone.0033018.g004

How Signal Duration Can Determine Transcription
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transcription rate is an order of magnitude higher than A and since

I has a positive feedback loop (Figure 2B and Figure 3A).

Therefore, one natural choice is to set the downstream threshold

higher for I to account for this difference. With different I and A

threshold values, the inflammatory and anti-inflammatory re-

sponse curves overlap such that a mixture of cells exhibiting either

response would be observed in the crossover region (Figure 4A).

An alternative choice is to set the thresholds to be the same for

both I and A, which leads to no response in the crossover region

(Figure 4B). Setting a downstream threshold is an arbitrary

process, which merely shifts the inflammatory and anti-inflamma-

tory response curves, but does identify two distinct crossover

region behaviors that may both have biological relevance.

One difficulty in performing this analysis is choosing where to

set the long time cutoff for when an inflammatory or anti-

inflammatory response can occur. For instance, it would not

necessarily be biologically relevant if it takes several days of

sustained signaling for A to cross its signaling threshold. For

the purposes of this study, we arbitrarily chose this cutoff time to

be 2000 minutes (,1.5 days). Under most conditions, the decision

is made much earlier than 2000 minutes, but we chose a longer

time for inspection to ensure that we are identifying the decision

for all kdeg,T values. As an example, consider Figure 3A and

Figure 3B. For this kdeg,T value, the decision to be I and not A

has occurred as early as 300 minutes. Given the nature of the

curves, the same conclusion can be drawn by looking at

2000 minutes. Different parameter sets could give even earlier

decision times or later decision times. Measuring at 2000 minutes

allows us to reliably measure what decision has occurred,

regardless of when it occurs. Immediate early gene transcription

is on the order of minutes [25], while Th17 differentiation is on the

order of 5 days [26]. Choosing 1.5 days as the cutoff seemed like a

reasonable intermediate choice for considering biological rele-

vance. An example of a cellular decision becoming evident after 1

day is in Th17 differentiation, where IL-17 mRNA starts to be

transcribed in appreciable quantities at this time (unpublished

observations).

Using 3.5 days as the cutoff time revealed an important

limitation of our model. For any signal with a degradation rate

greater than zero, I will eventually be produced in significant

quantities if the simulation is allowed to run for long enough times

(Figure S6A). The cause of this limitation is highlighted by the time

course of I for a signal degradation rate of 0 (Figure 2). Even with a

sustained signal, I does not go to zero since its potent positive

feedback loop coupled with the sustained signal are still active in

the moments when a given A molecule bound to the I gene

dissociates or is deactivated, which can counteract the decrease in

I due to its own degradation. For all cases where the signal

degradation rate is not zero, A will eventually decay to zero since it

is signal dependent. If the number of A molecules becomes low

enough, it can no longer prevent the few remaining I molecules

from initiating the positive feedback loop. Performing the

threshold analysis at 3.5 days, I and A thresholds can still be

chosen to allow for a cellular decision to be made based on signal

duration changes, but the peak in I is broader and the crossover

region occurs at smaller values of the signal degradation rate

(Figure S6B). One way to deter this from occurring is to decrease

the degradation rate of A, so that the negative feedback loop will

remain active even at long times (Figure S6C). We do not believe

that this limitation would be relevant under most biological

situations since it would take longer than 3.5 days of steady

signaling without any other changes within the cell for it to be an

issue. Conceivably, once a pro-inflammatory or anti-inflammatory

response was selected, the cell would have other means for shutting

down the other set of genes. In this sense, the model is not entirely

self-contained.

Amplitude only significantly affects cellular decisions in
the crossover region

Intracellular signals are generally described by two variables,

signal amplitude and duration. Often in the literature, these two

variables are combined into one quantity, the strength of signal.

One interpretation of the strength of signal is the integrated signal,

which is the area under the curve on a plot of signal strength vs.

time. The gene transcriptional network depicted in Figure 1 was

formulated to allow for disparate cellular decisions based strictly

on differences in signal duration. To declare the cellular decisions

made in the transcriptional model as strictly dependent on signal

duration, it was also necessary to study the qualitative effect of

modifying the signal amplitude.

The effects of amplitude modification were determined by

setting the initial value of pSTAT3 molecules to different amounts

and using the same procedure that was used to generate Figure 4.

We observed that decreasing the signal amplitude from 100

molecules of pSTAT3 to 10 molecules shifted the I and A curves to

the left without significantly altering their shape (Figure 5). The

effects of amplitude modification can be observed within the

crossover region from the inflammatory to anti-inflammatory

response in that a 10-fold decrease in signal amplitude would shift

the crossover from occurring at a degradation rate of 0.01 min21

to 0.001 min21. The production of A is entirely signal dependent,

so significant decreases in the amount of pSTAT3 molecules

translates into significant decreases in the amount of A molecules

produced during the lifetime of the signal. As the number of A

molecules is reduced, I becomes less regulated and will eventually

win out. The effect of reducing pSTAT3 on the number of A

molecules produced during the lifetime of the signal can partially

be compensated for by increasing the lifetime of the signal, i.e.

decreasing kdeg,T, which accounts for the shift in the curves to the

left. The crossover region is susceptible to these effects since it is at

the edges of the inflammatory and anti-inflammatory response

regimes.

Amplitude modification also affects significantly transient signals

(kdeg,T.0.1 min21) by shifting the region of bistability to lower

kdeg,T values as amplitude is decreased. As an example, consider a

kdeg,T value of 0.2 min21. For a signal amplitude of 100 pSTAT3

molecules, 100% of cells assayed would exhibit an inflammatory

response. With a 10-fold decrease in amplitude, 50% of cells would

exhibit an inflammatory response, while the other 50% of cells

would exhibit no response. Therefore, amplitude only affects the

number of cells exhibiting a given response for transient signals,

but does not affect the type of response. The shift in the bistable

region is also due to the fact that a decrease in signal amplitude

can be partially compensated for by increasing the lifetime of the

signal. Highly transient, low amplitude signals do not lead to any

response since they do not have enough strength to kick off the

positive feedback loop. Signals that are moderately sustained

(kdeg,T,0.001 min21) or moderately transient (0.1,kdeg,T,0.01),

are unaffected by these changes in amplitude.

Decreasing the signal amplitude to five or less leads to both

inflammatory and anti-inflammatory responses for sustained

signals in some of the trajectories, unless the threshold for an

inflammatory response is increased from that used to generate

Figure 5 (data not shown). Since the transcription rate of I is faster

than A, I is able to initiate the positive feedback loop before

appreciable amounts of A are produced in some of the trajectories.

At later times when appreciable amounts of A are produced, the I

signal shuts down but had already crossed the inflammatory
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response threshold leading to an observed inflammatory response

starting at early times and also an anti-inflammatory response at

later times.

Model predicts that IL-6 will promote an anti-
inflammatory response in SOCS2/2 cells

Another key difference between the IL-10R and the IL-6R,

besides their differing interactions with SOCS3, is that the IL-10R

has two motifs for STAT3 activation while the gp130 subunit of

the IL-6R has four, leading to the IL-6R inducing a higher

amplitude STAT3 signal [13,27,28]. Given that IL-6 induces a

higher amplitude signal than IL-10, one could conclude that

strong signals induce an inflammatory response, while weak signals

induce an anti-inflammatory response. In this definition of signal

strength, amplitude is the defining feature. If an experiment were

performed where SOCS3 was no longer able to inhibit IL-6

signaling, the high amplitude signal would be converted from a

transient signal into a sustained signal, and thus would have an

even higher signal strength than before. Thinking about this

problem in terms of signal strength, one would predict that IL-6

would still induce an inflammatory response when SOCS3

inhibition has been removed.

A revealing experiment performed by Yasukawa et. al. in which

they exposed SOCS32/2macrophages to IL-6 and LPS and

measured the concentration of two pro-inflammatory cytokines

(TNF and IL-12(p40)) in the supernatant showed just the opposite

[12]. LPS induces an inflammatory response in macrophages, so a

decrease in inflammatory cytokine production would be consid-

ered anti-inflammatory. As the dosage of IL-6 was increased, the

pro-inflammatory cytokine concentration dropped meaning that

IL-6 was acting as an anti-inflammatory cytokine on the

SOCS32/2 macrophages. This puzzling result cannot be

explained by a signal strength model where signal strength is

essentially just a measure of the amplitude of the signal.

Our model is capable of making a prediction for how IL-6 will

act on SOCS32/2 macrophages by making very few assump-

tions. We assume that IL-6 induces a moderately transient

pSTAT3 signal that can roughly be approximated by a kdeg,T

value of 0.1 min21 in WT macrophages. The second assumption

is that IL-10 induces a slowly decaying pSTAT3 signal that can be

approximated by a kdeg,T value of 0.003 min21 in both SOCS32/

2 and WT macrophages. IL-6 and IL-10 would conceivably

induce similarly decaying pSTAT3 signals in SOC32/2

macrophages, so we can use the same kdeg,T value. In their

experiment, Yasukawa et. al. measure concentrations of secreted

inflammatory cytokines. In our model this translates to counting

the percentage of trajectories (cells) that cross the imposed

threshold value of I at any point for a set value of kdeg,T, which

is characteristic to the macrophage type and the type of cytokine

added along with LPS. By carrying out this analysis for a variety of

initial amplitudes, we can make a prediction about how the

macrophages will respond to increasing dosages of either IL-6 or

IL-10. Since LPS induces an inflammatory response on its own, it

is assumed that 100% of the cells would be pro-inflammatory in

the absence of IL-6 and IL-10. Therefore, until a large enough

signal amplitude is reached where gene A can cause a drop in the

number of trajectories which cross the threshold value of I due to

the negative feedback loop, it is assumed that all the cells will

remain pro-inflammatory.

Using these assumptions, it is clear that the model predicts IL-6

will be anti-inflammatory when acting on SOCS32/2 macro-

phages (Figure 6). The model also captures the observed

phenomenon that as the pSTAT3 amplitude is increased (i.e.

the IL-6 dose is increased), IL-6 has a stronger anti-inflammatory

effect. Since there is no distinction between IL-10 acting on

SOCS32/2 or WT macrophages, the model predicts that no

distinction will be seen experimentally, as was observed [12]. For

transient signals, the model predicts a pro-inflammatory response,

which is why the percentage of inflammatory cells remains at

100% for all amplitudes when WT macrophages are exposed to

IL-6. If it were IL-6 alone, there would be a ramping up of the

percentage of inflammatory cells at low amplitudes since a basal

level of signaling is required to initial the positive feedback loop.

However, since LPS induces an inflammatory response on its own,

the ramping up period is not observed in the figure. There is no

amplitude range for transient signals where A is capable of

decreasing the percentage of inflammatory cells.

Yoshimura [10] has proposed that sustained STAT3 signals are

essential for anti-inflammatory responses while transient signals

promote inflammation, which is consistent with our model. The

model serves as a tool for visualizing how the duration of the signal

can lead to two different responses from the same genetic network

activated by the same transcription factor from two different

pathways. As further evidence of signal duration being a defining

feature in determining the inflammatory response, El Kasmi et. al.

also developed a system for analyzing this problem [13]. They

transfected macrophages with an altered form of the EPO receptor

(EPOR), which was capable of inducing pSTAT3 and was not

susceptible to SOCS3 inhibition. This altered form of the EPOR

induced an anti-inflammatory response indistinguishable from IL-

10, which also supports the hypothesis that signal duration is a

determinant of whether or not a response is inflammatory or anti-

inflammatory [13].

While it is true that many different cytokines activate STAT3

that may or may not induce an inflammatory or anti-inflammatory

response, often these cytokines activate multiple STAT molecules,

such as STAT1 or STAT5, in addition to STAT3. It is beyond the

scope of this analysis to determine how genes activated by other

Figure 5. Altering the initial signal amplitude shifts the I and A
curves, but does not affect their shape. The four sets of curves
were generated using initial concentrations of 10, 20, 50, and 100
molecules of pSTAT3, respectively. For each initial concentration, the
maximum amount of I and A observed in 1000 time course trajectories
measured out to 2000 min was compared to an arbitrary threshold and
the percentage of trajectories crossing the threshold was computed for
a wide range of signal degradation rates. The I threshold was set to 100
molecules, while the A threshold was set to 20 molecules. The results
were generated using Model 1 and the parameters were obtained from
Table 1 unless otherwise noted.
doi:10.1371/journal.pone.0033018.g005
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STATs affect the decision to be pro-inflammatory or anti-

inflammatory. Since different STATs can be activated by the same

receptor, heterodimer formation may be prevalent and it is difficult

to predict how this may impact a network with this structure.

One could argue that the proposed transcriptional network

model cannot easily account for common gene expression. The

key wiring in our model that makes it sensitive to changes in signal

duration is the positive and negative feedback loops. Common

genes would not necessarily need to have the same wiring as the

anti-inflammatory/inflammatory genes. As an example, consider

the example of a common gene C that is also induced by pSTAT3.

If this gene had a positive feedback loop, significant amounts of C

would be produced from both transient and sustained signals.

Even in the absence of a positive feedback loop, a transient signal

still could produce significant amounts of C for high amplitude

signals and low values of the C degradation/deactivation.

We have provided the structure of a gene transcriptional

network which is sensitive to changes in signal duration. The

essential feature of the model is that both genes of interest are

activated by the same transcription factor and that one of the

genes has a positive feedback loop to sustain itself in the absence of

the main signal, but is also negatively regulated by the opposing

gene. We believe that the model may be applicable to IL-6/IL-10

signaling since all essential steps of the model have been observed

except for the positive feedback loop, namely that STAT3 induces

both inflammatory and anti-inflammatory genes and that the anti-

inflammatory genes inhibit the inflammatory genes. Experimen-

tation would be necessary to identify a positive feedback loop in

the inflammatory gene network in order for the model to be fully

validated. Bioinformatic techniques could be used to determine

whether inflammatory genes have the potential to bind to the

promoter region of other inflammatory genes. Gene array analysis

could then be used to verify the binding. Mutations to these

promoter sites could then be used to knockout the positive

feedback loop. Our model would then predict that IL-6 would not

be able to induce an inflammatory response (Figure S3).

Even though the model was presented in the context of IL-6/

IL-10 signaling, it may be applicable to a range of biological

networks which are sensitive to signal duration. There has been

extensive work in the field of systems biology to identify network

motifs [16,17]. Our network contains components of previously

identified motifs such as an autoregulatory positive feedback loop

[16–19] and a negative feedback loop. We are by no means the

first to explore the effects of regulatory loops on cellular decision

making. A number of studies have investigated the effects of

positive feedback loops on decision making [24,29]. Mangan and

Alon described the characteristics and features of feed-forward

loops [30]. Our focus in this work was not to propose a new

signaling motif, but instead to show that a very simple genetic

network could be used to explain the differences between IL-6 and

IL-10 signaling without having to resort to using other more

complicated arguments such as receptor-specific STAT3 confor-

mational changes or effects due to unknown species. Further

investigation is necessary to see how our model compares to

existing models in the literature and to look for other examples in

biology where our model may be applicable.

Supporting Information

Web S1 Discussion of sensitivity analysis.

(DOC)

Figure S1 Depiction of sensitivity analysis results.
Simulations were performed with all combinations of values (high,

medium, low) for the nine different classes of parameters where the

description of the classes and their respective high, medium, and

low values are defined by Table S1. Each parameter set that led to

a positive result (i.e. signal duration allows for a decision between I

and A) was recorded. We computed for each of the 9 parameter

classes, what percentage of these parameter sets had high values,

medium values, or low values for the given parameter class. As an

example, consider ktrx,I. Out of all the parameter sets that led to a

positive result, 71% had the high value for ktrx,I, 29% had the

medium value, and zero had the low value.

(JPG)

Figure 6. Model predicts that IL-6 will be anti-inflammatory in
SOCS32/2 cells when given some inflammatory stimulus such
as LPS for most pSTAT3 signal amplitudes. (A) Percentage of
inflammatory cells predicted for transient pSTAT3 signals (WT) and
sustained signals (SOCS32/2) when the cells are exposed to LPS and
IL-6. The value of kdeg,T used to represent the WT condition was
0.1 min21, while a kdeg,T value of 0.003 min21 was used to represent
the SOCS32/2 condition. (B) Percentage of inflammatory cells
predicted for sustained pSTAT3 signals (WT and SOCS32/2) when
the cells are exposed to LPS and IL-10. The value of kdeg,T used to
represent these conditions was 0.003 min21. For each initial concen-
tration of pSTAT3, the maximum amount of I observed in 1000 time
course trajectories measured out to 2000 min was recorded and the
percentage of trajectories crossing the inflammatory threshold (100 I
molecules) was determined for a value of kdeg,T corresponding to the
signal duration expected for each condition. The results were generated
using Model 1 and the parameters were obtained from Table 1 unless
otherwise noted.
doi:10.1371/journal.pone.0033018.g006
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Figure S2 Only the nonzero stochastic solution trajec-
tories follow the mean field solution to the model
equations for molecule I at a signal degradation rate of
1.0 min21. Time course trajectories obtained by solution of the

Model 1 equations using a mean field ODE solver (red curve), ten

times using the Gillespie Algorithm (10 blue curves), average at

each time point of the nonzero stochastic trajectories (green curve),

and average at each time point of all the stochastic trajectories

(cyan curve). The results were generated using Model 1 and the

parameters were obtained from Table 1.

(JPG)

Figure S3 Upon deletion of the positive feedback loop, A
is dominates transcription for sustained signals, while
neither is significantly transcribed for transient signals.
Histogram for (A) molecule I and (B) molecule A obtained by

solving the Model 1 equations for a sustained signal of Kdeg,T

equal to 0.0 min21 using the Gillespie Algorithm 1000 times and

recording the number of molecules at 2000 min. Histogram for (C)

molecule I and (D) molecule A obtained by solving the Model 1

equations for a transient signal of Kdeg,T equal to 1.0 min21 using

the Gillespie Algorithm 1000 times and recording the number of

molecules at 2000 min. Parameters for Model 1 were obtained

from Table 1.

(JPG)

Figure S4 Upon deletion of the negative feedback loop,
both I and A are strongly transcribed for sustained
signals, while only I is significantly transcribed for
transient signals. Histogram for (A) molecule I and (B)

molecule A obtained by solving the model equations for a

sustained signal of Kdeg,T equal to 0.0 min21 using the Gillespie

Algorithm 1000 times and recording the number of molecules at

2000 min. Histogram for (C) molecule I and (D) molecule A

obtained by solving the Model 1 equations for a transient signal of

Kdeg,T equal to 1.0 min21 using the Gillespie Algorithm 1000

times and recording the number of molecules at 2000 min.

Parameters for the model were obtained from Table 1.

(JPG)

Figure S5 Upon deletion of the positive and negative
feedback loops, both I and A are produced in significant
quantities after 2000 min for sustained signals, while
neither is produced in significant quantities for tran-
sient signals. Histogram for (A) molecule I and (B) molecule A

obtained by solving the Model 1 equations for a sustained signal of

Kdeg,T equal to 0.0 min21 using the Gillespie Algorithm 1000

times and recording the number of molecules at 2000 min.

Histogram for (C) molecule I and (D) molecule A obtained by

solving the Model 1 equations for a transient signal of Kdeg,T equal

to 1.0 min21 using the Gillespie Algorithm 1000 times and

recording the number of molecules at 2000 min. Parameters for

the model were obtained from Table 1.

(JPG)

Figure S6 At very long times the model breaks down
and I dominates transcription for all nonzero signals.
This is due to the fact that A is entirely signal dependent, so once

the signal is gone it also decays to zero rendering it incapable of

inhibiting the production of I. Since I has not decayed to zero, its

positive feedback loop allows it to ramp up production when A is

incapable of inhibition. (A) Mean field solution for molecule I at a

signal degradation rate of 0.002 min21 plotted out to 5000 min.

(B) The maximum amount of I and A observed in 1000 time

course trajectories measured out to 5000 min was compared to an

arbitrary threshold and the percentage of trajectories crossing the

threshold was computed for a wide range of signal degradation

rates. The I and A thresholds were set to 100 molecules. The

results were generated using Model 1 and the parameters were

obtained from Table 1, thus Kdeg,A is equal to 0.001 min21. (C)

Reducing the degradation rate of A (Kdeg,A) to a value of

0.0001 min21 counteracts the effect of measuring out to

5000 minutes. The I threshold was set to 100 molecules, while

the A threshold was set to 20 molecules. Sampled trajectories were

5000 minutes long.

(JPG)

Table S1 Listing of the parameter classes and their
corresponding low, mid, and high values used in the
sensitivity analysis. Low, mid, and high values for each

parameter were selected arbitrarily to either test over a range of

orders of magnitude or to test at values around those used to

obtain all the results in the main text (Table 1 parameter values).

(DOC)

Table S2 Table of parameters used in Model 2. This is

the model where transcription factors do not dissociate after a

transcriptional event. The parameters were selected in order to

clearly demonstrate the phenomena of interest (i.e. I dominates

transcription for transient signals while A dominates for sustained

signals).

(DOC)

Author Contributions

Conceived and designed the experiments: KDF. Performed the experi-

ments: KDF. Analyzed the data: KDF. Wrote the paper: KDF. Helped to

conceive the experiments: VKK. Helped to analyze the data: AKC.

Helped to write the paper: AKC VKK.

References

1. Müller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor

comes of age. Nat Rev Immunol 10: 645–656.

2. Li Q, Verma IM (2002) NF-kB regulation in the immune system. Nat Rev

Immunol 2: 725–734.

3. Boros J, Donaldson IJ, O’Donnell A, Odrowaz ZA, Zeef L, et al. (2009)

Elucidation of the ELK1 target gene network reveals a role in the coordinate

regulation of core components of the gene regulatory machinery. Genome Res

19: 1963–1973.

4. Murray PJ (2007) The JAK-STAT signaling pathway: input and output

integration. J Immunol 178: 2623–2629.

5. Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development,

differentiation, and activation. Nat Rev Immunol 3: 317–330.

6. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient

versus sustained extracellular signal-regulated kinase activation. Cell 80:

179–185.

7. Kholodenko BN (2007) Untangling the signaling wires. Nat Cell Biol 9:

247–249.

8. Santos SDM, Verveer P, Bastiaens PIH (2007) Growth factor-induced MAPK

network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol

9: 324–330.

9. Murphy LO, MacKeigan JP, Blenis J (2004) Molecular interpretation of

ERK signal duration by immediate early gene products. Mol Cell Biol 24:

144–153.

10. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signaling and

immune regulation. Nat Rev Immunol 7: 454–465.

11. Murray PJ (2005) The primary mechanism of the IL-10-regulated anti-

inflammatory response is to selectively inhibit transcription. Proc Natl Acad

Sci U S A 102: 8686–8691.

12. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, et al. (2003) IL-6

induces an anti-inflammatory response in the absence of SOCS3 in

macrophages. Nat Immunol 4: 551–556.

13. El Kasmi KC, Holst J, Coffre M, Mielke L, de Pauw A, et al. (2006) General

nature of the STAT3-activated anti-inflammatory response. J Immunol 177:

7880–7888.

How Signal Duration Can Determine Transcription

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e33018



14. Behar M, Dohlman HG, Elston TC (2007) Kinetic insulation as an effective

mechanism for achieving pathway specificity in intracellular signaling networks.
Proc Natl Acad Sci U S A 104: 16146–16151.

15. Behar M, Hao N, Dohlman HG, Elston TC (2007) Mathematical and

computational analysis of adaptation via feedback inhibition in signal
transduction pathways. Biophys J 93: 806–821.

16. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev
Genet 8: 450–461.

17. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science 298: 824–827.
18. Bateman E (1998) Autoregulation of eukaryotic transcription factors. Prog

Nucleic Acid Res Mol Biol 60: 133–168.
19. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene

networks: cell differentiation by graded to binary response conversion. EMBO J
20: 2528–2535.

20. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 81: 2340–2361.
21. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic

binary decisions in cell signaling models without underlying deterministic
bistabilities. Proc Natl Acad Sci U S A 104: 18958–18963.

22. McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and

decision making in MAP kinase pathways. Nat Gen 39: 409–414.
23. Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320: 65–68.

24. Das J, Ho M, Zikherman J, Govern C, Yang M, et al. (2009) Digital signaling

and hysteresis characterize Ras activation in lymphoid cells. Cell 136: 337–351.
25. Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an

immediate early gene product, is a dual specificity phosphatase that
dephosphorylates MAP kinase in vivo. Cell 75: 487–493.

26. Bettelli E, Carrier Y, Gao W, Korn T, Strom T, et al. (2006) Reciprocal

developmental pathways for the generation of pathogenic effector Th17 and
regulatory T cells. Nature 441: 235–238.

27. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10
and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765.

28. Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its
physiological roles: the signal orchestration model. Rev Physiol Biochem

Pharmacol 149: 1–38.

29. Xiong W, Ferrell JE (2003) A positive-feedback-based bistable ‘memory module’
that governs a cell fate decision. Nature 426: 460–465.

30. Mangan S, Alon U (2003) Structure and function of the feed-forward loop
network motif. Proc Natl Acad Sci U S A 100: 11980–11985.

How Signal Duration Can Determine Transcription

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e33018


