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Abstract

Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field
devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to
illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study
individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide
receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a
variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR’s)
and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to
elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the
diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show
that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally
consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the
system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the
ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R
duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the
ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show
that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately
shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene
families.
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Introduction

Analyses of whole genome sequence data have confirmed

that three rounds of whole genome duplication (WGD) are

thought to have contributed immensely to the diversification of

vertebrates [1,2,3]; two rounds of WGD (2R) occurred in early

vertebrate evolution, probably before the divergence of agnathans

and gnathostomes [4], while the third round (3R) occurred at

the base of the teleostean lineage (Figure 1). Even though gene

duplication has long been recognized as a major factor in the

evolution of biological diversity [5,6], determining the evolution-

ary relationships among members of gene families is not always

easy because individual genes originate via both small-scale and

whole genome duplication events, can be modified by selection

or concerted evolution, and may experience differential loss

across lineages [5,6,7,8]. Although the ready availability of small-

scale synteny data has facilitated the determination of ortholo-

gous and paralogous relationships among genes, some aspects of

gene family evolution, such as their ancient origins and the timing

and kind of duplication events they underwent, continue to be

difficult to resolve using traditional bioinformatic approaches

[9,10].

Recently, large scale synteny analyses comparing entire

genomes of evolutionarily distant taxa have been employed to

reconstruct the karyotypes of extinct ancestors and to look back at

the events that shaped the appearance of modern genomes [11].

Ancestral genome reconstruction models depict metazoan chro-

mosomes as composed of segments, originating from one or more

linkage groups of a distant ancestor, which become united

following repeated chromosomal fission and fusion events to

ultimately form the karyotypes of modern taxa. By tracing the

syntenic relationships among such chromosomal segments from

two or more extant taxa, it is possible to reconstruct the linkage

groups of their common ancestor at the time of taxon divergence.

For example, comparison of the genomes of tetrapods and teleosts

allows one to infer the chromosomes of the hypothetical ,450 MY

old gnathostome ancestor and to outline the linkage groups of the

,500 MY old ancestor of all extant vertebrates (Figure 1) [12].

Reconstructions of ancestral genomes in the chordate lineage

are particularly interesting, because they shed light on the role of
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WGD events and the intensive karyotype rearrangements that

played key roles in the evolution of the vertebrate genetic portfolio.

Although it has been suggested that genome reconstructions

provide principally a heuristic tool for understanding genome

evolution [11], in this study we show how such models can be used

to trace the evolutionary history and linkage relationship of genes,

thereby giving further power to elucidate both the origin and

duplication history of gene families. To demonstrate the utility of

this approach, we focus on the origins of a group of small peptide

hormones and their receptors, whose evolutionary history has

been a matter of debate.

The relaxin (RLN) and insulin-like (INSL) peptides mediate a

broad variety of primarily reproductive and neuroendocrine

functions and are hypothesized to have played important roles in

mammalian evolution [13]. The relaxin-family hormones belong to

the Insulin-Relaxin superfamily, which also includes Insulin (INS)

and Insulin-like growth factors (IGF). However, distinct from both

INS and IGF, which signal via receptor tyrosine kinases (RTK),

RLN/INSL peptides interact with two very dissimilar classes of G

protein-coupled receptors (GPCR). One class of Relaxin family

peptide receptors (RXFPs), consisting of RXFP1 and RXFP2 (also

known as LGR7 and LGR8 respectively), is closely related to

glycoprotein hormone receptors and is hence distinguished by a

large N-terminus containing leucine-rich repeats [14]. The other

class of RXFPs, consisting of RXFP3 and RXFP4 (also known as

SALPR and GPCR142), is related to small peptide (e.g. angiotensin

or somatostatin) receptors, which have relatively short N-termini

[14]. The promiscuous interaction of RLN/INSL with these 2

diverse classes of receptors is rare among GPCR ligands and its

evolutionary significance has yet to be clarified [15].

Although it has been shown that orthologous copies of four

RLN/INSL genes (RLN, INSL3, INSL5 and RLN3) are present in

teleosts and mammals, the exact mechanisms giving rise to their

diversification in non-placental vertebrates have remained elusive

[13,16,17,18]. For instance, it was proposed that the signaling

system originated via duplication of the INS/IGF locus in the

ancestor of olfactores (tunicates+vertebrates), and that the

ancestral ligand originally functioned using an insulin RTK-like

receptor, prior to switching to an RXFP3/4-type receptor in early

vertebrates [19]. At the same time it was believed that RXFP1/2

receptors were not recruited into the system until after the

emergence of mammals [13]. In addition, it has also been

hypothesized that 3 vertebrate RLN/INSL genes are ohnologs, i.e.

products of 2R that took place in the vertebrate ancestor, while the

fourth gene arose from a local duplication [17].

In this paper, we employ paleogenomics models to look at the

origin and linkage relationships of RLN/INSL and RXFP genes and

to determine the role of WGDs in their diversification. We provide

evidence that WGDs played a central role, larger than previously

appreciated, in the origination of these gene families and suggest

that the system consisted of a trio of 2 receptors (one RXFP1/2-

like and the other RXFP3/4-like) and a single ligand in the

vertebrate ancestor. We find support for the hypotheses generated

from the ancestral genome reconstruction models by employing

small-scale synteny analyses and phylogenetic reconstructions

performed on a broad repertoire of focal genes, and ultimately

Figure 1. Simplified phylogenetic tree showing the evolutionary relationships among the major deuterostome taxa (with the
common names of organisms in brackets) and their ancestors discussed in this paper. The hypothetical ancestral genome predicted by
Nakatani et al. (‘‘N’’) probably belongs to an organism that existed just before 2R in early vertebrates. On the other hand, Putnam et al. (‘‘P’’)
reconstructed the karyotype of the common ancestor of amphioxus and the olfactores (tunicates+vertebrates). 1R, 2R and 3R mark the three rounds
of whole genome duplication that happened throughout vertebrate evolution. Tree topology adapted from Putnam et al [20].
doi:10.1371/journal.pone.0032923.g001
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show the utility, with some caveats, of incorporating paleoge-

nomics data into understanding the evolution of gene families.

Results

In the first part of this study, we inferred the origins of the RLN/

INSL and RXFP gene sets by comparing the ancestry of large

chromosomal fragments in a teleost fish (Japanese medaka), a bird

(chicken) and human using a model of vertebrate genome

evolution [12], the ‘‘N-model’’ (for a full explanation of the

method, see Supporting Information S1). Since, with some

exceptions, RLN/INSL and RXFP genes in non-mammals have

been primarily characterized by automated gene scan tools and

are poorly annotated, we searched a number of available

vertebrate genomes (25 species) for our focal genes (235 total

genes) to ensure that we considered all potential ligand and

receptor ohnologs (see Dataset S1: Tables S4–S8). Thus for

human, chicken and medaka, we mapped the genomic positions of

4, 3 and 6 ligand RLN/INSL and 6, 4 and 9 receptor RXFP genes

(or pseudogenes) respectively onto the linkage groups contained in

each of the 3 vertebrate genomes (according to the N-model) and

‘‘traced’’ their origins to the gnathostome ancestor chromosomes

(GAC), i.e. linkage groups of the hypothetical post-2R ancestor of

jawed (and possibly jawless, see [4]) vertebrates. According to the

N-model, each of the 40 post-2R reconstructed GACs (A0-J1)

originate from 10–13 Vertebrate Ancestral Chromosomes (VAC,

A-J), i.e. linkage groups that existed in the hypothetical pre-2R

genome. For 3 of the VACs (A, B and F), Nakatani et al. [12] were

able to reconstruct the major chromosomal events that established

chromosomal content of the post-1R and -2R vertebrate ancestor

genomes. The occurrence of several of our genes-of-interest on

these GACs allowed us to not only trace their pre-2R origins, but

also to assess the number and linkage relationships of the RLN/

INSL and RXFP genes in the intermediate post-1R vertebrate

ancestor. In their work, Nakatani et al. [12] proposed two

alternative scenarios for the duplication and rearrangement history

of VAC ‘‘A’’ (found to host the predecessors of both RLN/INSL and

RXFP3/4 genes, see below). We considered both scenarios

(Figures 2 and S1) and adopted here the one presented in the

main text of Nakatani et al [10], which also minimizes the number

of linkage groups in the pre-2R vertebrate ancestor. As described

in detail in Supporting Information S1, the primary difference of

the main (‘‘fusion’’) and the alternative (‘‘fission’’) models concerns

the syntenic linkage of AncRln-like and AncRxfp3/4 genes.

RLN/INSL and RXFP3/4 originate from ancestral linkage
group VAC ‘‘A’’, while RXFP1/2 originates from another
group, VAC ‘‘C’’

Our analyses revealed that RLN, RLN3, INSL3, INSL5 and their

orthologs in teleosts originated from one location in VAC ‘‘A’’ in

the pre-2R vertebrate ancestor (Dataset S1: Table S1). Since each

of the four RLN/INSL genes can be mapped to 4 distinct 2R-

derived GACs (A0, A1, A2 and A3), we infer that modern vertebrate

relaxin family genes arose from a single ancestral gene, AncRln-like,

as a result of 2R (Figure 2).

The origins of the receptor RXFP3/4 genes in tetrapods and

teleosts were traced to four GACs (A0, A1, A4 and A5; 2 of which,

A0 and A1, are the same as those hosting RLN and INSL3), which

suggests that they also originated from one gene, AncRxfp3/4-like,

located on VAC ‘‘A’’ (Dataset S1: Table S1). This indicates that the

ancestral genes for RLN/INSL and RXFP3/4 were physically

linked before 2R took place (Figure 2; whereas in the alternative

scenario, the ancestral ligand and receptor genes were located in

separate linkage groups and half of their duplicates became linked

in the post-1R descendants, Figure S2 and Supporting Informa-

tion S1).

The high number of receptor rxfp3-type genes in teleosts is

explained by the post-2R retention of all four rxfp3/4 ohnologs in

the teleost ancestor. Additionally, the fish-specific 3R coupled with

a few local duplications increased the number of rxfp3-like genes in

teleosts to 7 (Figure 2 and Dataset S1: Tables S7, S8).

Interestingly, our data mining uncovered that a few tetrapods

retained RXFP3-3, but RXFP3-2 appears to have been completely

lost in the early tetrapod ancestor (Figure 2 and Dataset S1: Tables

S4, S6). Using the available RXFP3-3 sequences from opossum,

cow and pig we located the RXFP3-3 pseudogene in human and

confirmed its common origin (GAC ‘‘A4’’) with its medaka

orthologs (Dataset S1: Table S1).

Our tracing of the ancestral origins of RXFP1 and RXFP2

receptors in human and medaka showed that both of these genes

originated from VAC ‘‘C’’ (Dataset S1: Table S1). Thus we

concluded that 2R led to the duplication of an ancestral gene,

AncRxfp1/2, of which only 2 orthologs (RXFP1 and RXFP2) were

retained in human and medaka (Figure 3 and also Figure S2).

Interestingly, duplicates of rxfp1 and rxfp2 were also lost after 3R in

stickleback (Gasterosteus aculeatus), tetraodon (Tetraodon nigroviridis)

and fugu (Takifugu rubripes), but were partly retained in zebrafish, in

which we found two rxfp2 orthologs (Figure S4).

The two genes previously reported as RXFP1 and RXFP2 in

chicken, turned out to have an evolutionary history that was

slightly different from that of their counterparts in other

vertebrates. Chicken ‘‘RXFP1’’ was traced to GAC ‘‘C1’’ (implying

its orthology to the RXFP1 of human and medaka), but the chicken

‘‘RXFP2’’ gene was traced to a different ancestral linkage group

(GAC ‘‘B0’’ or ‘‘F4’’) than the expected GAC ‘‘C2’’ (Dataset S1:

Table S1). Further analyses confirmed that this gene does not

share synteny with either RXFP1 or RXFP2 human genes and we

therefore rename it RXFP2-like. Subsequently, we identified an

ortholog of this RXFP2-like gene in some other vertebrates, such as

zebrafish and opossum, and found a pseudogene of the RXFP2-like

gene on human chromosome X next to STARD8, its neighbouring

gene in chicken (Dataset S1: Table S6). Convincingly, BLASTn

searches also revealed a pseudogene of RXFP2 in the region of the

chicken genome orthologous to that hosting RXFP2 in other

vertebrates. To incorporate this information about the evolution-

ary relationship among genes, here we adopt an origin-based

nomenclature for the novel genes identified in this study but retain,

as much as possible, the traditional naming scheme for the RLN/

INSL and RXFP gene families (Table 1).

Linkage relationships among RLN/INSL and RXFP genes
have changed over evolutionary time

According to the ‘‘fission’’ model of VAC ‘‘A’’ evolution, in the

pre-2R vertebrate ancestor, the receptor AncRxfp3/4 gene was in

the same linkage group as the ligand AncRln-like. Our reconstruc-

tion shows that two of the RXFP3 2R-ohnologs (RXFP3-1 and

RXFP3-2) were linked to RLN and INSL3 (Figure 2), while the

remaining ohnologs became unlinked. These ancestral genetic

linkage relationships have mostly persisted in teleosts (Figure 4),

but they have dynamically changed in tetrapods resulting in

different combinations of linkage pairs such as INSL5-RXFP4,

RLN3-INSL3 and RXFP1-RXFP2-like to name a few (Figure S5).

We additionally used an ancestral genome reconstruction model

by Putnam et al. [20] (the ‘‘P’’ model, see Figure 1 and Supporting

Information S1), to address the ancestry of human RLN/INSL/

RXFP genes. Consistent with the results obtained using the N-

model, the P-model places all human RLN/INSL genes together

with RXFP3-1 in one ancestral linkage group. Likewise RXFP1 and
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RXFP2 were traced to one linkage group independent from the

one harboring RXFP2-like. In disagreeement with the N-model,

the ancestral linkage group predicted for RXFP3-3 differs from

that harboring RXFP3-1, and RXFP4 could not be assigned to any

ancestral region (Figure S3).

RXFP phylogenetic reconstruction supports strong role
of WGDs in gene duplication events

The second goal of this study was to use other types of analysis,

such as phylogeny and small-scale synteny, to corroborate the

above model of evolution of the vertebrate RLN/INSL-RXFP

systems in a broader range of vertebrates. We created a protein

database and subsequently phylogenetic trees of RLN/INSL and

RXFP-type genes for vertebrates and a few pre-2R diverging taxa,

based on publicly annotated genes and included a few that we

identified de novo (Dataset S1: Tables S4–S11). Overall, we find

that the phylogenetic relationship of the receptor RXFP3/4

sequences clearly recapitulates their proposed WGD-driven

origination: the proposed 1R-descendants cluster into two groups,

AncRxfp3-I versus AncRxfp3-II, while the proposed 2R-descen-

dants are sister clades, i.e. RXFP3-1/RXFP3-2 and RXFP3-3/

RXFP3-4 as expected (Figure 5). Because most tetrapods lost half

of their post-2R RXFP3 ohnologs, the RXFP3-2 and RXFP3-3

clades mostly contain teleostean sequences.

The RXFP1/2 phylogenetic tree (Figure 6) also generally

supports the reconstruction model: there are 3 distinct clades for

RXFP1, RXFP2 and RXFP2-like, and the RXFP2-like clade is

sister to RXFP2, a clustering that supports the ohnologous nature

of the relationship between RXFP2-like and RXFP1/2 genes, rather

than a pre-2R origin of RXFP2-like. To examine this more closely,

Figure 2. Reconstruction of the genetic events that led to the diversification of RXFP3-type receptors and RLN/INSL hormones in
vertebrates based on the ‘‘fission’’ scenario of ancestral genome rearrangement. The genomic origins of the hypothetical ancestral relaxin
(AncRln-like) and Rxfp3/4 receptor (AncRxfp3/4) genes can be traced to a single chromosome in the vertebrate ancestor that had not yet been through
2R (Pre-2R vertebrate ancestor). The ancestral linkage group harboring AncRln-like and AncRxfp3/4-like sequentially underwent duplication, fission and
another duplication yielding 5 distinct linkage groups (agnathan and gnathostome ancestor) harboring the ligand and receptor genes. Subsequently,
tetrapods completely lost RXFP3-2 and often RXFP3-3 genes, but retained all of the post-2R ligand gene duplicates. Teleosts, on the other hand,
retained both all of the ligand and receptor post-2R gene duplicates, suggesting that RXFP3-2 and RXFP3-3 acquired important functions in the pre-3R
teleost ancestor. The duplicates of rxfp3-2 and rxfp3-3 were again retained in the post-3R teleost ancestor along with those of rln3 and insl5
(indicating their possible ligand-receptor relationships). Lastly, in vertebrates the RLN locus underwent multiple local duplications, resulting in the
emergence of INSL4 in all eutherians, and INSL6 and RLN1 only in apes, whose RLN2 is orthologous to RLN of other eutherians. For simplicity, tetrapod
and eutherian ancestor linkage groups are only shown to contain the fragments (e.g. A0, A2–A5) harboring the genes of interest; thus they should not
be confused with actual chromosomes. Blue circles and squares represent receptor and their ligand genes respectively. Crossed circles represent
pseudogenes (red, if they are verified in databases, blue if they are hypothetical). SSD: small-scale duplication. The first letter of ancestral gene names
is capitalized.
doi:10.1371/journal.pone.0032923.g002
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we analyzed several vertebrate RXFP1/2 and RXFP2-like protein

sequences together with invertebrate rxfp1/2-type proteins, and

found that all vertebrate sequences clustered together (Figure S6),

indicating that all 3 genes (i.e. RXFP1, RXFP2 and RXFP2-like)

originated after the divergence of protochordates.

Discussion

Although it is now widely accepted that the two rounds of WGD

that took place early in vertebrate evolution played a crucial role

in the diversification of many vertebrate gene families [21], the

processes by which WGD-driven gene family evolution occurred

are not easy to determine. This has been shown to be true for the

three vertebrate gene families encoding relaxin hormones and

their receptors (RLN/INSL, RXFP1/2 and RXFP3/4), whose

duplication history and invertebrate origins we analyzed here.

By combining information from ancestral genome reconstructions

with phylogenetic and syntenic data, we were able to elucidate the

origin of the RLN/INSL and RXFP genes. While the phylogenetic

and syntenic data confirm the paralogous nature of the RLN/INSL

and RXFP genes, the ancestral genome reconstructions strongly

suggest that the four RLN/INSL and four RXFP3/4-type genes

present in the gnathostome ancestor arose during 2R, and are thus

ohnologs, and that two of the three RXFP1/2 genes are similarly

ohnologs, while the third RXFP1/2-like gene has an unclear

origin. This is the first study to show the full evolutionary origin of

the RLN/INSL and RXFP genes and the role of both 2R and 3R

events in their diversification. Our study also supports the linkage

of the ancestral RLN/INSL (ligand) and RXFP3/4 (receptor) loci in

the pre-2R vertebrate ancestor genome as first suggested by

Olinski et al. [22], and at the same time reveals how these linkage

relationships have been retained in some lineages while new

linkage relationships have arisen in other lineages.

The role of WGDs in the diversification of relaxin ligand-
receptor systems

We based the reconstruction of the RLN/INSL and RXFP gene

history principally on Nakatani et al.’s [12] model of vertebrate

genome evolution. It has been proposed that the major vertebrate

novelties, such as their structurally complex nervous, immune and

reproductive systems, arose as a result of the massive amplification

of genes that occurred during 2R [21,23]. By making the necessary

assumption that our focal genes remained in the given linkage

groups since the pre-2R vertebrate ancestor, we deduced that the

diversification of RLN/INSL and RXFP genes was coincidental

with 2R events, suggesting that they probably played an important

role in the establishment of neuroendocrine and reproductive

regulation in early vertebrate evolution.

We also observe that the teleost-specific 3R, which strongly

contributed to the genetic richness of teleosts and their biological

success [24,25], further increased the number of rln/insl and rxfp

genes. However, in contrast to the 1R and 2R events, only those

genes potentially involved in neuroendocrine regulation (rln3, insl5

and half of the rxfp3/4-type receptors), but not reproduction (rln,

insl3 and rxfp1/2-type receptors) were retained after 3R in teleosts.

Figure 3. Reconstruction of the genetic events that led to the diversification of RXFP1/2-type receptor genes in vertebrates. Symbols
and linkage group numbering same as in Figure 2.
doi:10.1371/journal.pone.0032923.g003
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The post-3R retention of rln3 and insl5 paralogs was paralleled by

the retention of duplicates of rxfp3-2 and rxfp3-3 suggesting both

co-functioning but also subfunctionalization of their neuroendo-

crine functions. Overall, we demonstrate that the large number of

teleost receptor rxfp3 genes is only partly attributable to teleost-

specific duplications (which was proposed as the sole factor driving

their diversification in a previous study [26]), but rather also

resulted from the massive loss of RXFP3 ohnologs in tetrapods.

The ‘‘tripartite’’ origins of relaxin signaling
With respect to the origin of the RXFP receptors, we find that

while both amphioxus and sea urchin genomes seem to be devoid

of rxfp3-type genes [27,28] and the two rxfp3-type genes in C.

intestinalis are very divergent from their vertebrate analogs

(Figure 5), early deuterostome lineages witnessed many lineage-

specific expansions of the RXFP1/2 locus (Figure S6). Intriguingly,

three of the 5 amphioxus rxfp1/2-type genes appear orthologous to

human RXFP1 and RXFP2 based on their shared ancestral

chordate linkage groups as shown using the ‘‘P’’-model (Figure S3

and Dataset S1: Table S3). Collectively, given the observation of

multiple rln/insl and ins/igf [19,22,29,30] and rxfp1/2-type genes,

which are unmistakably evolutionarily related to their vertebrate

counterparts, combined with the virtual absence of rxfp3-type

genes in echinoderms and cephalochordates, we propose that the

signaling of the ancestral RLN/INSL peptide in the chordate

ancestor occurred via RXFP1/2-type receptors. Only at the onset

of 2R, was the RXFP3/4-type receptor recruited to produce a

signaling system encoded by 3 genes, composed of 2 receptors and

a single ligand. It is tempting to hypothesize that this ancestral 2-

receptor system had a dual function and played roles in both

reproductive (using RXFP1/2-type receptor) and neuroendocrine

processes (via RXFP3/4-type receptor).

The hypothesis that the AncRln-like locus exhibited co-expression

in reproductive and neuroendocrine tissues and signaled via both

RXFP1/2 and RXFP3/4 type receptors is supported by the

following findings: 1) the dual functionality of human RLN3,

considered to be the ‘‘oldest’’ member of the relaxin peptide family

in vertebrates, a neuropeptide with the ability to trigger

reproductive responses [31] and 2) the discovery of the relaxin-

like nature of a starfish gonadotropin which is produced by the

echinoderm’s nervous system and directly influences the matura-

tion of eggs in the ovary of starfish, probably via a GPCR receptor

[32,33]. This hypothesis also provides a rationale for the retention

of the post-1R Rln/Insl duplicates and further helps to explain how

the relaxin peptides have evolved to work with two divergent

receptor types. If the neuroendocrine and reproductive actions of

the pre-1R hormone were mediated by both RXFP1/2- and

RXFP3/4-type receptors, then the post-1R loci (AncRln-I and

AncRln-II) could have undergone subfunctionalization and special-

ization in terms of the tissues they targeted, i.e. either reproductive

or neuroendocrine, and the receptors with which they functioned.

Issues with currently used nomenclature
By thus elucidating the origin of genes, our model underscores

the somewhat artificial nature of both ligand and receptor

nomenclature. For ligands, we show that all INSL (insulin-like)

genes independently originated from RLN (relaxin-like) genes (and

not from an ancestral INSL gene, as previously hypothesized [17]).

For receptors, currently only 4 RXFP genes (RXFP1-4) are

recognized, those present in humans and some other placentals,

while, in fact, there are seven RXFP genes of independent origin in

vertebrates (three RXFP1/2 and four RXFP3/4-type), at least six of

which are ohnologs, and six of which are present in at least one

copy in tetrapods. We also show that RLN3 and INSL3 are

ohnologs, and not closely related genes that arose from a tandem

duplication event as previously hypothesized [18]. Furthermore,

all four RLN/INSL ohnologs were retained after 2R, which

contradicts a less parsimonious scenario discussed by Hoffman and

Opazo [17], in which one of RLN/INSL genes is lost in all

vertebrates. Overall, our model for RLN/INSL evolution in

vertebrates is consistent with the hypothesis postulating that INSL3

and RLN evolved as a subfamily distinct from that formed by

RLN3 and INSL5 [13]. Our model, however, dates the

diversification of the two subfamilies back to the agnathan and

gnathostome ancestors, while Wilkinson and Bathgate [13] refer it

to the more recent appearance of mammals.

Genetic linkage of RXFP receptors and their ligands
To the best of our knowledge, this is the first study to reveal the

dynamic nature of the changing linkage relationships among

relaxin family peptides and their receptor genes. The association of

RXFP3/4 genes with the RLN/INSL paralogon was first docu-

mented by Olinski et al. [22] and the linkage of human INSL5 and

RXFP4 on one chromosome also mirrors their ligand-receptor

Table 1. Explanation of the nomenclature used for the
hypothetical ancestral genes that gave rise to the three gene
families discussed in this study (receptors RXFP3/4, RXFP1/2
and their ligands RLN/INSL) via three rounds of WGD (1R, 2R
and teleost-specific 3R).

Origin Gene Family: RXFP3/4 (SALPR/GPCR142)

Pre-2R AncRxfp3/4

Post-1R
paralogs

AncRxfp3-I AncRxfp3-II

Post-2R
paralogs

RXFP3-1 RXFP3-2 RXFP3-3 RXFP3-4*

Post-3R
paralogs

rxfp3-1 { rxfp3-2a rxfp3-2b rxfp3-3a{ rxfp3-3b rxfp4 {

Origin Gene Family: RXFP1/2 (LGR7/8)

Pre-2R AncRxfp1/2

Post-1R
paralogs

AncRxfp1 AncRxfp2

Post-2R
paralogs

RXFP1 { RXFP2 RXFP2-like**

Post-3R
paralogs

rxfp1 { rxfp2a rxfp2b

Origin Gene Family: RLN/INSL (Relaxin family peptides)

Pre-2R AncRln-like

Post-1R
paralogs

AncRln-I AncRln-II

Post-2R
paralogs

RLN INSL3 RLN3 INSL5

Post-3R
paralogs

rln { insl3 { rln3a rln3b insl5a insl5b

*We show that the gene known as ‘‘RXFP4’’ is one of the three ohnologs of
RXFP3-1, hence based on its origin it should be termed ‘‘RXFP3-4’’;
**The origins of RXFP2-like (present in zebrafish, amphibians, birds, reptiles and
marsupials) remain controversial, it is possible that RXFP2-like is a post-2R
descendant of AncRxfp2, in which case it should be called ‘‘RXFP2-2’’, while the
ortholog of human RXFP2 should be called ‘‘RXFP2-1’’;
{rxfp3-3a was locally duplicated in the Post-3R ancestor of zebrafish, medaka,
stickleback and pufferfishes (hence rxfp3-3a and rxfp3-3b); in zebrafish there
are three paralogous rxfp3-3a genes: 3-3a1, 3-3a2 and 3-3a3;
{Gene loss.
doi:10.1371/journal.pone.0032923.t001
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interaction [34]. Nevertheless, we show that INSL5 and RXFP4

occupied different linkage groups in the gnathostome and tetrapod

ancestors and only became linked in the eutherian ancestor

(Figure 2). Chromosomal linkage of receptor and ligand genes, and

other functionally linked or interacting genes, has been known for

a number of unrelated gene families and is more common in the

human genome than expected by chance [35,36]. To explain this

phenomenon, it has been proposed that receptor-ligand linkage

could be advantageous for the creation of new receptor-ligand

pairs when they result from block duplications [35]. However, this

beneficial effect of linkage would not pertain to genes duplicated

via WGDs, as is the case of RLN/INSL and RXFP loci. Instead, we

propose that the ancestral RXFP3/4-RLN/INSL linkage was

fortuitous and only the subsequent retention of linkage in

descendants may have been subject to selection for an advanta-

geous topology, which may have caused the co-expression of

ligands and receptors thereby increasing the frequency of their

interaction. Although the original linkage was disrupted for one of

the post-1R ohnolog pairs, linkage of certain RLN/INSL-RXFP3

pairs has been conserved in some organisms, e.g. in medaka, while

not in others, such as in rat (Figure 3 and Figure S6). In this

regard, it is interesting that the chromosomal sections harboring

the INSL/RLN paralogons contain many other conserved gene

families, such as the major histocompatibility complex genes,

whose origins are traceable to singular pre-2R ancestor genes [21].

This suggests that conservation of the linkage relationship among

the RLN/INSL and RXFP genes may result from conservation of

synteny at a larger scale. At the same time, vertebrates have also

acquired novel and lineage-specific gene linkages, such as that of

RLN3-INSL3 in opossum, human and pig and RXFP1-RXFP2-like

in chicken (Figure S6), which could be explained by other factors

such as recurrent evolutionary chromosomal breaks in the fragile

parts of genomes containing these genes [37].

Difficulties encountered using paleogenomics models
Finally, it should be noted that there can be difficulties in

resolving the origin of some genes using ancestral genome

reconstructions. This was observed here for the RXFP2-like gene.

When a gene maps to a different ancestral linkage group than

expected (VAC ‘‘F’’ versus ‘‘C’’ in the case of RXFP2-like), it is difficult

to determine if 1) this gene has independent origins from its ex-

pected ohnologs or 2) it underwent a single-gene translocation that

Figure 4. The evolution and genetic linkage of RLN/INSL (ligand) and RXFP3/4 (receptor) loci in the pre-3R teleost ancestor and three
species of teleost fish. Notice that among the three fish species analysed, medaka’s genome and rln/insl-rxfp gene sets are the most preserved and
resemble those of the teleost ancestor. Tetraodon experienced lineage-specific loss of two genes, rln3b and rxfp3-1, which may indicate their co-
evolution as a ligand-receptor pair. The rxfp4 gene in zebrafish seems to have been replaced with an extra (zebrafish-specific) copy of an rxfp3-3 gene.
The syntenic linkage between rln and insl3 (ligand) and rxfp3-1 and rxfp3-2(b) (receptor) genes has been conserved in all three teleosts since the post-
2R ancestor (see Figure 2). Overall this scheme demonstrates that the rln/insl-rxfp system in teleosts has taken a slightly different, and seemingly
more complicated, evolutionary pathway compared to other vertebrates. Chromosome numbers in extant species are shown as numbers and in the
teleost ancestor as letters.
doi:10.1371/journal.pone.0032923.g004
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caused it to move from its authentic chromosomal fragment after

duplication or whether 3) the ancestral linkage groups are

inaccurately reconstructed. For RXFP2-like it seems possible that

there were 2 genes present in the ancestral pre-2R genome, because

there are many rxfp1/2-type genes in primitive chordates. However,

the RXFP2-like genes from vertebrates cluster closely within the

Figure 5. Phylogenetic reconstruction of the evolutionary relationship among vertebrate RXFP3/4 protein sequences. Reconstruction
performed as outlined in methods with G = 0.91 and I = n/a. Numbers at each node indicate the bootstrap values (only values exceeding 50% shown).
Teleost rxfp3-2 underwent duplication yielding two 3R-paralogs, rxfp3-2a and rxfp3-2b, while teleostean ancestral rxfp3-3 was duplicated giving rise
to typically three rxfp3-3 loci in modern teleosts: 3R generated rxfp3-3a and rxfp3-3b, while a local duplication generated rxfp3-3a1 and rxfp3-3a2.
Solely in zebrafish, rxfp3-3a2 duplicated again giving rise to rxfp3-3a3, an event which appears to have occurred coincidently with the exclusive loss
of rxfp4 in zebrafish.
doi:10.1371/journal.pone.0032923.g005

Figure 6. Phylogenetic reconstruction of the evolutionary relationship among vertebrate RXFP1/2 protein sequences. Phylogenetic
tree reconstructed as outlined in methods with G = 0.958 and I = 0.034. Numbers at each node indicate the bootstrap values (only values exceeding
50% shown). Due to their incomplete nature, not all sequences from our created database (see Methods) were included in this tree (e.g. zebrafish
rxfp2a and rxfp2b and medaka rxfp2).
doi:10.1371/journal.pone.0032923.g006
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vertebrate RXFP1/2 sequences (Figure S6), suggesting that RXFP2-

like is an ohnolog of RXFP1 and RXFP2 genes. Hence RXFP2-like

was probably either translocated from its authentic position in the

gnathostome ancestor or we are confronted with an inaccurate

reconstruction of VAC ‘‘C’’ and ‘‘F’’. Interestingly, there is a

documented example of a single gene translocation of a duplicated

insulin (INS) gene in rodents [38]. When traced using the N-model

(not shown here) the murid-specific INS gene maps to an ancestral

linkage group different from the expected VAC ‘‘D’’ owing to a single

gene-translocation that took place early in the evolution of mice and

rats [38].

Conclusions
In summary, the origination of relaxin hormones and their two

distinct classes of receptors in vertebrates was strongly driven by

whole genome duplication events. We postulate that the relaxin

hormone-receptor signaling system in the pre-2R ancestor

consisted of three components, one ligand and two receptors,

and had a dual (reproductive and neuroendocrine regulatory)

function. The genetic linkage of RLN/INSL and RXFP3/4 genes,

which has been highly conserved in teleosts since the post-2R

ancestor, probably played a role in the original establishment of

ligand-receptor interactions between ancestral RLN/INSL and

RXFP3/4 proteins. We show that most of the ligand and receptor

genes duplicated during 2R (or 3R) and that, compared to

tetrapods, teleosts have had significantly higher post-2R retention

rates of RXFP genes. Our findings about the evolution of relaxin

hormones and their receptors should facilitate further research on

this system in various vertebrates, including both placental and

non-placental taxa. For instance, the discussed 2R-driven model of

evolution should raise questions about the number of involved

genes in early diverging vertebrates, such as jawless fish, whose

status in relation to 2R has until recently been debated [21].

Overall, our study highlights the utility of incorporating

ancestral genome data into investigations of the origin, linkage

relationship and duplication history of gene families. The

methodology employed here will hopefully be useful in similar

studies, where traditional approaches may fail to clearly resolve the

origin of genes due to their small size, strong roles of selection or

insufficient synteny data. Presently, however, a major drawback of

the method is the absence of a unified scheme, which would avoid

having to perform the time consuming and tedious manual

inspection of multiple ancestral genome reconstruction models. In

the future this problem could be resolved by designing appropriate

computer software. Thus, rather than being viewed as a primarily

heuristic tool for studying large scale genome evolution, ancestral

genome reconstructions have a potential to form the basis of an

instrument that could be routinely consulted to supplement

traditional bioinformatic analyses.

Methods

Tracing of the duplication history of RLN/INSL, INS/IGF
and RXFP genes

Detailed methods used to trace the evolutionary history of genes

are provided in Supporting Information S1. A brief overview of

the procedure is given here: First, using their exact map positions,

we mapped the RLN/INSL, RXFP and INS/IGF genes found in

human, medaka and chicken to their corresponding chromosomal

segments. These chromosomal segments were then matched to the

linkage groups in ancestral genomes primarily according to

Nakatani et al.’s [12] model, but we also invoked other vertebrate

genome reconstructions [39,40], in particular Putnam et al’s [20],

as needed. Finally we compared the results obtained for each of

the three taxa to resolve the positions of the focal genes at

consecutive stages of the vertebrate genome evolution. Where

discrepancies arose and the genes reported as ‘‘orthologous’’ were

traced to different ancestral linkage groups, we performed small-

scale synteny analyses (details below) to clarify the relationship of

individual genes among taxa.

Identification of RLN/INSL and RXFP(-like) sequences
across vertebrates

All annotated RLN/INSL and RXFP coding sequences with their

genomic positions were retrieved from the Ensembl v.60 database

(http://ensembl.org) for 13 mammals (11 placentals, opossum and

platypus), 3 reptiles (anole lizard, chicken and zebrafinch), 2

amphibians (clawed frog and edible frog) and 5 teleosts (Dataset

S1: Tables S4–S8). The annotated sequences for rhesus monkey

were obtained from NCBI (http://ncbi.nlm.nih.gov/gene). For

RXFP1/2 genes, when multiple splice variants were available, the

longer variant was chosen, unless shorter variants had been

confirmed to be functional.

Using the more or less complete sets of human, mouse, zebrafish

and medaka sequences as reference, we performed searches of the

databases at both Ensembl and NCBI to look for unannotated and/

or yet unidentified genes in other tetrapods and teleosts using the

NCBI BLAST package [41]. Additionally, to either confirm the

identity of sequences obtained using the above procedure or to

search for other difficult to identify genes, we searched the

paralogons syntenic to previously determined human/teleost RLN/

INSL [16] or RXFP genes in Ensembl by using the Genscan tool or

the MIT Genscan server (http://genes.mit.edu/GENSCAN.html)

in combination with the conserved-domain search tool (http://ncbi.

nlm.nih.gov/Structure/cdd/wrpsb.cgi), or by blasting the entire

syntenic regions via BLASTn in NCBI with an appropriate query.

The synteny analysis for the RXFP genes was done using either the

Genomicus v.60.01 server (http://dyogen.ens.fr/genomicus-60.01/

cgi-bin/search.pl), the appropriate Ensembl tools and/or manual

identification of orthologous regions through subjecting genes to

BLASTp at NCBI.

RXFP-type genes in pre-2R taxa
For C. intestinalis, 8 rxfp1/2-type genes were retrieved from

Ensembl and 2 candidate rxfp3/4-type genes were obtained from

ANISEED (http://crfb.univ-mrs.fr/aniseed). Five amphioxus

rxfp1/2-type and were retrieved from GenBank. The 6 ilp genes

from the amphioxus database were previously analyzed and shown

to have syntenically shared genes with the vertebrate Insulin-

Relaxin loci [29]. Our searches in the sea urchin database (http://

www.spbase.org/SpBase/) yielded 27 rxfp1/2-like sequences. 2

rxfp1/2-like genes (lgr3 and lgr4) were obtained from Ensembl

Metazoa (http://metazoa.ensembl.org) for fruit fly (Drosophila

melanogaster).

Phylogenetic reconstruction of the relationships among
RXFP genes

The alignment of RXFP sequences (available upon request) was

accomplished using MUSCLE [42] as implemented in MEGA v.

5.01 [43] and through manual adjustments. Phylogenetic

reconstruction of protein sequences was carried out in Phyml

[44] using: for RXFP genes, the LG model of sequence evolution

and with estimated or fixed values for G, the shape parameter for

the gamma distribution, and I, the proportion of invariant sites,

depending on what was determined to be the best model of amino

acid sequence evolution based on AIC as implemented in ProtTest

[45]. Confidence in the phylogenetic reconstruction was assessed
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using 1000 replicate bootstrap samples. The phylogenetic

relationship among invertebrate rxfp1/2-type genes was recon-

structed separately following the same method.
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