
Morbillivirus Glycoprotein Expression Induces ER Stress,
Alters Ca2+ Homeostasis and Results in the Release of
Vasostatin
Jean-Marc Brunner1,2., Philippe Plattet3*., Marie-Agnès Doucey4, Lia Rosso1, Thomas Curie1, Alexandra

Montagner1, Riccardo Wittek2, Marc Vandelvelde3, Andreas Zurbriggen3, Harald Hirling5, Béatrice
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Abstract

Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of
neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions,
we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat
primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell
types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here,
we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER).
This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and
the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon
critically involved in the response to misfolded proteins and in Ca2+ homeostasis, was also upregulated. Transient
expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further
confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca2+

homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment,
also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest
that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell
dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.
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Introduction

Canine distemper virus (CDV), closely related to measles virus

(MV), belongs to the Morbillivirus genus of the Paramyxoviridae

family. The CDV genome consists of a non-segmented, single-

stranded RNA molecule of negative polarity. Both CDV and the

human pathogen MV may induce dramatic complications in the

central nervous system (CNS). Due to similarities between CDV-

mediated demyelination and human multiple sclerosis (MS), the

canine disease represents one of the few spontaneously occurring

animal models to study the pathogenesis of myelin loss associated

with infectious and immune-mediated mechanisms [1]. Epidemi-

ological observations strongly suggest that MS is a disease caused

by an infectious agent that induces an immune-mediated

demyelinating disease. While much progress has been made in

recent years, the pathogenesis of MS is still unclear, and animal

models of viral demyelination remain important tools in MS

research. Common to most animal models of viral demyelination

is viral persistence, the driving force behind the progression of the

disease. Thus, understanding the mechanisms of viral persistence

might contribute to our understanding of chronic demyelinating

diseases. For these reasons, CDV is considered as a model for

human multiple sclerosis, as well as for the study of Morbillivirus-

mediated pathogenesis [1,2].

We previously found that a recombinant CDV (rgA75/17-V),

closely related to the wild-type neurovirulent A75/17 strain, could

infect neuron and astrocyte primary cultures from the rat brain,

inducing a persistent, non-cytolytic infection. Using this model, we

demonstrated that, following CDV infection, glutamate release in

the extra-cellular compartment was involved in the induction of

neuronal cell death in infected and neighbouring non-infected cells

[3].
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ER stress is caused by conditions that perturb ER functions

including calcium release and accumulation of misfolded protein

[4,5]. When misfolded proteins accumulate in the ER, a

stereotypical cellular program called the unfolded protein response

is activated, which allows the cell to restore physiological

conditions [4,5]. Initially the cell reacts by expressing more

chaperons, such as calreticulin (CRT), but, under persistent stress

such as observed in viral infection, the unfolded protein response

switches from being pro-survival to proapoptotic [5,6]. At this

stage, the cell starts to transcribe proapoptotic transcription factors

such as the growth arrest- and DNA damage-inducible gene 153

(CHOP/GADD 153) [7,8].

In attempts to characterize the mechanisms of ER stress that

might be induced by CDV infection, we focused our attention on

the 60-kDa molecular chaperon CRT. This protein has been

shown to modulate the homeostasis of calcium (Ca2+) in the cell

[9]. We demonstrated that in Vero cells and primary hippocampal

neurons the CDV surface glycoproteins markedly accumulated in

the ER. This was correlated with a strong upregulation of the

molecular chaperons CRT and calnexin, two ER stress-dependent

proteins. Over-expression of the proapoptotic transcription factor

CHOP/GADD 153 was also demonstrated. Importantly, ER

stress and CRT over-expression were closely associated with

increase in cytosolic Ca2+. Finally, in an unanticipated manner, we

detected the 27-kDa N-terminal CRT cleavage product, also

termed vasostatin, in CDV infected cells. Remarkably, we

demonstrated the presence of CRT N-terminal fragments at the

cell surface of both infected and neighbouring non-infected cells,

an event that may contribute to the CDV and other virus-

mediated neurodegeneration.

Materials and Methods

Viruses and plasmids
The previously reported recombinant A75/17-V virus contains

an additional transcription unit coding for the enhanced green

fluorescent protein (e-GFP) in the 39 proximal position in the

genome, generating rgA75/17-V [10]. To simplify the nomencla-

ture we named the recombinant Vero-cells adapted rgA75/17-V

as ‘‘CDV’’.

Construction of expression plasmids: The plasmids pF-CDV,

pF-CDV-ER, pH-CDV and pN-CDV were described previously

[10,11]. After expression, the CDV proteins are named F CDV, F-

ER CDV, H CDV and N CDV proteins, respectively. The

constructs were made in the mammalian expression vector pCI

(Promega, Madison, USA) using PCR and recombinant PCR

techniques (Pfu Turbo DNA polymerase, Stratagene-Agilent,

Santa Clara, USA). All plasmid sequences were confirmed by

automated nucleotide sequence analysis.

Cell culture, infection, and transfection
Vero cells (ATCC, CCL-81) were grown in Dulbecco’s

modified Eagle’s medium (DMEM) (Sigma, St. Louis, USA)

supplemented with 10% fetal calf serum (FCS), penicillin, and

streptomycin (Gibco, invitrogen group, Carlsbad, USA) and all the

cultures were incubated at 37uC in a humidified atmosphere

containing 5% CO2, as previously described [10]. Hippocampal

rat brain cells were prepared from new born rats [12] and were

approved (No. 1150.4) by the cantonal regulation of animal care.

Hippocampi without dentate gyri were dissociated with papain

and triturated using a glass pipette. After centrifugation at 400 g

for 2 minutes, cells were plated on individual wells (35 mm) of 6-

well plates, each containing poly-D-lysin/laminin-coated borosil-

icate coverslips (15 mm diameter) at a density of 250000 cells/dish

in DMEM 10% FCS. The medium was changed after 3 h to a

Neurobasal/B27 medium (Invitrogen, Carlsbad, USA).

One day after seeding, Vero cell cultures at 90% of confluence

were infected with CDV at the multiplicity of infections (MOI) of

0.03. Hippocampal rat brain cells were infected with CDV two

days after seeding at a MOI of 0.003. Transfection were

performed one day after seeding using Lipofectamin (Invitrogen,

Carlsbad, USA) (1 mg of each plasmid as indicated in the figure

legends, in 2 ml Lipofectamine 2000TM) for a period of 24 hrs.

Transfections were performed in 35 mm dishes. For calcium signal

analyses, Vero cells and hippocampal rat brain cells were

transfected transiently for a period of 24 hours with Lipofectamin

2000TM (Invitrogen, Carlsbad, USA) (1 mg DNA per 2,5 mL of

Lipofectamin 2000TM for Vero cells and 1,8 mg DNA per 3,3 mL

of Lipofectamin 2000TM for hippocampal rat brain cells) in a 35-

mm dish. Transfection was done for 2 hours at 37uC, 5% CO2

and all plasmids were transfected in equal quantities.

Immunofluorescence staining
The following mouse monoclonal antibodies were used: anti-

calreticulin (CRT) C-terminal domain (CRT-C-term) (Becton and

Dickinson BD Bioscience, Erembodegem, Belgium), anti-calnexin

(Abcam, Cambridge, UK), anti-C/EBP-homologous protein

(CHOP/GADD 153) (Santa Cruz Biotechnology, Santa Cruz,

USA), anti-CDV nucleoprotein (D110) [13], anti-Flag and anti-

HA (Sigma, St. Louis, USA), anti-GAPDH (cell Signalling,

Danvers, USA), anti-hrp, (Sigma, St. Louis, USA). Also were

used rabbit polyclonal sera against CDV F and H proteins [11],

anti-CRT N-terminal domain (CRT-N-term, kindly provided by

Dr. Daniel Law University of Geneva [14], anti-Flag (Sigma, St.

Louis, USA), anti-HA (Sigma, St. Louis, USA), anti-wheat germ

agglutinin (WGA) Alexa 405 conjugated (Invitrogen, Carlsbad,

USA), and anti-hrp, (Sigma, St. Louis, USA). The secondary

antibodies were FITC- (Sigma, St. Louis, USA), CY3- (Chemicon,

Temecula, USA), CY5- (Jackson ImmunoResearch Laboratories,

Suffolk, UK) or Alexa 594 (Invitrogen, Carlsbad, USA) conjugated

antibodies.

For CRT C-terminal immunofluorescence, infected or trans-

fected cell cultures were fixed in 100% methanol for 10 minutes at

220uC. The fixed cultures were washed in a phosphate saline

buffer (PBS). Cultures were blocked in a blocking solution (5%

normal goat serum in PBS 1%) for 10 minutes, followed by

staining with the CRT-C-terminal antibody. For all the other

antibodies and antisera, cultures were fixed in 4% paraformalde-

hyde for 20 min at 4uC. Cells were then permeabilized (0.1%

Triton X100 in PBS) for 10 minutes and blocked in a blocking

solution (5% normal goat serum in PBS) for 1 hour, followed by

staining with the different antibodies. Incubation with the various

antibodies and antisera was performed overnight at 4uC. All

antibodies were diluted in a blocking solution. The secondary

antibody was added for 1 hour at RT. After intensive washing, cell

nuclei were stained with 496-diamidino-2-phenylindole (DAPI,

Sigma, St. Louis, USA) and subsequently examined by Laser

Scanning Confocal microscopy. All images were taken with a Zeiss

LSM 510 Meta confocal microscope, the Zeiss LSM 510 confocal

scan head was coupled with an Axiovert 200 M microscope (Carl

Zeiss, Jena, Germany).

Calcium signal analyses
To follow Ca2+ signals, GFP-aequorin (GA) was used. GA is a

fusion protein between aequorin and GFP, which emits lumines-

cent signals when it binds 3 Ca2+ ions. This requires the presence

of coelenterazine for the intracellular regeneration of the

photoprotein [15]. When Ca2+ binds to the aequorin protein, it
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undergoes a conformation change that results in the oxidation of

coelenterazine and the emission of a single photon. In the jellyfish,

binding of Ca2+ to aequorin results in an intermolecular non-

radiative energy transfer to GFP. This process is known as

chemiluminescence resonance energy transfer (CRET). In our

case, GFP and aequorin were fused genetically and an

intramolecular transfer of Ca2+ activated aequorin luminescence

energy to GFP occurred, resulting in the emission of a green light

[16,17]. GA is therefore a bi-functional reporter, whereby

expression patterns can be monitored by GFP fluorescence, while

Ca2+ activities can be measured by GFP fluorescence with single-

cell resolution.

GA expression was obtained via transfection of the correspond-

ing recombinant plasmid. Coelenterazine (Interchim, Montluçon,

France) is membrane permeable and was added to the transfected

cells at 5 mM, for pre-incubation at 37uC for 60 min in a tyrode

buffer containing Ca2+. In Vero cells, Ca2+ signals were then

recorded in phenol red-free DMEM, L-glutamine (2 mM), FCS

10%, Hepes (20 mM) medium while hippocampal rat brain cells

were recorded in a medium containing NaCl (128 mM), KCl

(5 mM), CaCl2 (2,7 mM), glucose (10 mM), Hepes (20 mM),

MgCl2 (1 mM), pH 7,4.

The calibration of photon data was carried out as follows. Light

emission is expressed as the fractional rate of photoprotein

consumption, which is the ratio between the emission of Light (L,

minutes) from that time point and the integral of total light emission

from that point until full exhaustion of the photoprotein (Lmax).

Photons were counted over 60 seconds every 10 minutes during

24 hours, by using a photon counting system (ACTIMETRICS,

Wilmette, IL). After 17 hours of recording in Vero cell cultures, or

21 hours for the hippocampal rat brain cells, ionomycin (2 mM)

was added to release all Ca2+ from ER stores and from the cells. A

high CaCl2 solution (10 mM) was then added in order to quantify

the total amount of photoprotein (Lmax). Each sample was analysed

in triplicate in three separate experiments.

Western Blot
48 hours after infection, Vero cells were washed in PBS at 4uC,

then exposed to a lysis buffer (M-PER Mammalian Protein

Extraction Reagent, PIERCE-Perbio bioscience, Alost, Belgium)

supplemented with protease inhibitors (Halt Protease Inhibitor

Cocktail, EDTA-Free, PIERCE-Perbio bioscience, Alost, Bel-

gium). Cell lysates were scraped off culture dishes and centrifuged

(14000 g; 10 minutes at 4uC) to recover cytosolic proteins in the

supernatant. Proteins were quantified using nanodrop. The

samples were diluted in adequate volumes of standard denaturat-

ing buffer. Protein (25 mg/lane) were separated by sodium

dodecylsulfate-polyacrilamide gel electrophoresis (SDS-PAGE) at

120 V for 1 hour and 30 minutes on 12% acrylamide gels, and

subsequently transferred to PVDF membranes (Westran Mem-

brane, Schleicher & Schuell Bioscience, Dassel, Germany). The

membranes were then saturated with 5% skim milk in Tris

Buffered Saline (TBS) containing 0.1% Tween 20 for 1 hour at

RT. They were then incubated with primary antibody diluted at

1/2500 for the anti-CRT C-terminal, 1/500 for the anti–CRT N-

terminal domain and 1/1000 for anti-GAPDH in TBS containing

1% skim milk and 0.1% Tween 20. After 3 rinses in PBS/Tween

20, membranes were incubated 1 h at RT with secondary

antibody (diluted at 1/10000 for anti-rabbit IgG HRP, and 1/

5000 for anti-mouse IgG HRP in the same TBS/Tween 20

skimmed milk solution). After secondary antibody removal, blots

were developed using the enhanced chemi-luminescence (ECL)

detection system (Amersham, Piscataway, USA). Each sample was

analysed in triplicate in three separate experiments.

Quantification of viral protein and CRT expression by
cytofluorimetry

Twenty four hours post infection with recombinant CDV

(rgA75/17-V)-GFP virus, Vero cells were trypsinized and re-

seeded in new plates at 56105 cells. In these series of experiments,

to ascertain cell surface staining, cells were mechanically recovered

in ice cold PBS containing 2 mM EDTA at 12, 24, 36 and

48 hours, respectively and fixed in a BD FACSTM fixation

solution, which preserves plasma membrane integrity (Becton and

Dickinson BD Bioscience, Erembodegem, Belgium). Alternatively,

in figure 1E, cells were recovered in a similar way 36 hours post

infection but treated with the BD FACSTM Perm 2 fixation/

permealization solution (Becton and Dickinson BD Bioscience,

Erembodegem, Belgium). After blocking with PBS containing 1%

goat serum, the cells were stained for one hour at 4uC using

antisera or antibodies specific for F protein or CRT N- and C-

terminal domains, and secondary goat anti-rat and anti-mouse-

Cy5 were added for one hour at 4uC. Cell fluorescence was

monitored by flow cytometry using FACSCaliburTM and FACS-

Diva software (Becton and Dickinson BD Bioscience, Erembode-

gem, Belgium). One representative experiment was shown of three

independent experiments.

Results

CDV infection induces ER stress
We previously demonstrated that CDV infection of rat

hippocampal primary cultures induced neuronal death in a

glutamate-dependent manner [3]. To assess whether this apoptosis

was triggered by a virus-dependent induction of cellular stress, we

first focused on malfunctions at the level of the ER. We took

advantage of a previously described recombinant CDV (rgA75/

17-V, which efficiently infects Vero cells and expresses high

amount of e-GFP) to monitor infection. Importantly, this virus

induces a non-cytolytic, persistent type of infection in many cell

types including Vero cells. Indeed, no obvious signs of cyotpathic

effects are seen up to 6 days post infection and infected cells can

efficiently be passaged several times before cyotpathic effects can

be observed [10]. This recombinant virus rgA75/17-V is referred

to in this study as CDV to simplify the nomenclature. 24 hours

post-infection, we monitored CRT expression as a marker of ER

stress [18,19] by means of immunofluorescence in fixed and

permeabilized Vero cells. In GFP positive infected cells, CRT

staining was strongly enhanced (Figure 1B, middle panel, white

arrow head) as compared to neighbouring non-infected cells or

control culture (Figure 1A and B). Immunostaining of two

additional ER stress markers -the proapoptotic transcription factor

CHOP/GADD 153 [6] and the chaperon protein calnexin [5]-

specifically stained infected cells, confirming the CDV-mediated

ER stress induction (Figure 1C and D, white arrows heads). To

confirm these data in a quantitative manner, increased expression

of all markers (CRT, CHOP/GADD 153, and calnexin) in CDV-

infected cells was monitored by flow cytometry (Figure 1E).

36 hours post-infection, CDV-infected cells (as sorted by GFP

expression) revealed a significant increase of all three ER stress

marker expressions. In a sharp contrast, in non-infected cells of the

same culture (GFP-), ER stress markers did not significantly differ

from isotype control (Figure 1E).

The viral glycoproteins F and H induce ER stress and
alteration in Ca2+ homeostasis

We next investigated whether both CDV surface glycoproteins,

F and H, were sufficient to induce the aforementioned ER stress.

Vero cells were transiently transfected with F or H-expressing
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plasmids and immunofluorescence in fixed and permeabilized

cells was performed 24 hours post-infection (Figure 2Ab and Ac).

As expected, the staining indicated that both proteins were

localized along the secretory pathway up to the plasma

membrane, though cell surface staining in fixed and permeabi-

lized cells remained moderate. However, efficient cell surface

expression of both proteins has already been demonstrated [21–

24]. Importantly, the staining was clearly enhanced around

nuclei, suggesting ER accumulation. Indeed, co-staining of CRT,

as a widely used marker of ER localisation [20], with F or H

clearly indicated their co-localization, confirming the expected F

and H targeting into the endoplasmic reticulum compartment

(Figure 2Ab–c). Hence, similar to results obtained in CDV-

infected cells (Figure 1), Vero cells transiently expressing F and H

exhibited accumulation of both glycoproteins in the ER, a

phenotype that correlated with CRT over-expression (Figure 2Ab

and 2Ac). Conversely, there was no significant CRT upregulation

in non-transfected cells (data not shown), in cells expressing the

cytosolic CDV nucleocapsid protein (N) or in cells expressing an

unrelated glycoprotein (the signaling lymphocytic activation

molecule -SLAM/CD150-), (Figure 2Aa and 2Ad). Together,

these results strongly support the hypothesis that CDV-induced

ER stress is mediated by the accumulation of F and H in the ER

compartment.

Figure 1. Infection of Vero cells by rgA75/17-V (CDV) induces ER stress. (A, B, C, D) Representative photomicrographs of non-infected Vero
cells (A) and infected with a Vero cell-adapted canine distemper virus (CDV) strain (rgA75/17-V). The former recombinant CDV expresses the
enhanced green fluorescence protein (e-GFP) for easier identification of infected cells (B, C, D). Cultures were infected 1 day after seeding. Cells were
then fixed and permeabilized and subsequently analysed by immunofluorescence at 24 hours (A, B and D) or 48 hours (C) after infection. Antibodies
against the protein F of CDV (F), calreticulin, CHOP-GADD and Calnexin are as indicated in the panels. Merged images are shown on bottom panels,
including labelling with 496-diamidino-2-phenylindole (DAPI, blue). Scale bar, 30 mm. Calreticulin and calnexin expression are increased in infected
cells that expressed the F protein (B and D) and at 48 hours post-infection, infected cells also express strongly the nuclear proapoptotic CHOP/GADD
153 (C). (E) Increase of CRT, CHOP/GADD 153 and calnexin during culture infection, as determined by flow cytofluorimetry. Each sample was analysed
in triplicate on three separate experiments, and one representative experiment is shown here.
doi:10.1371/journal.pone.0032803.g001
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We previously documented that CDV could induce a significant

release of L-glutamate from hippocampal primary cell cultures.

Interestingly, it has been suggested that following virus-induced

ER-stress, Ca2+ may be released from the ER [25–27]. We thus

investigated whether intracellular Ca2+ is released as a result of

CDV glycoproteins expression. This was achieved by using the

GFP-aequorin reporter assay [16,17]. Figure 2B illustrates that

Ca2+ signals in Vero cells transfected with the nucleocapsid gene

(N) did not show any differences in the recorded signals as

compared to that obtained with the unrelated SLAM/CD150

gene. In contrast, in CDV F-, H- or F/H-expressing cells,

substantial increased Ca2+ signals were recorded, corresponding to

release of Ca2+ in the cytosol (Figure 2B, F, H and F+H). We also

tested cells which expressed an engineered F protein that bears the

GFP fused to its c-terminal domain, allowing for a direct

assessment of F localisation in transfected cells without drastically

impeding F functionality (not shown). This protein triggered a

similar enhancement of Ca2+ cytosolic release (Figure 2B, F-GFP).

Finally, as a positive control of ER-stress induction, we expressed

an F protein which contains an ER-retention tag signal (KDEL)

fused to its cytosolic tail (F-ER) and consequently exclusively

accumulates in the ER (not shown), as anticipated [21]. F-ER did

potently trigger Ca2+ cytosolic release when it was expressed alone

or co-expressed with H (Figure 2B, F-ER and F-ER+H,

respectively).

Hippocampal cultures transfected with CDV
glycoproteins show ER stress and altered Ca2+

homeostasis
To investigate whether the ER stress was also induced by CDV

in a more physiologically relevant model, dissociated cells derived

from rat brain hippocampus were used [12]. Consistent with

results obtained in Vero cells, Figure 3A indicates that F-GFP

(most detection-sensitive mutant) strongly accumulated in the ER.

As we previously observed in Vero cells, accumulation in the ER

of F-GFP correlated with significant enhancement of CRT

expression, in turn reflecting ER stress induction. Similar results

were observed with untagged F or H proteins (not shown).

We next assessed the alteration of Ca2+ homeostasis in primary

rat brain cells. As seen in Figure 3B, cells transfected with empty

vector or N-expressing plasmid did not reveal any enhanced

cytoplasmic Ca2+ release, whereas co-expression of F and H

glycoproteins resulted in a marked increase in cytosolic Ca2+

concentration. These data were further validated by our ER-stress

triggering control (F-ER) that was here co-expressed with H, and

which resulted in even stronger Ca2+ release than in F and H-

expressing cells (Figure 3B). Taken together, our results obtained

in Vero cells were confirmed in primary rat brain cells. Indeed,

expressing both CDV glycoproteins in primary neuronal cells led

to ER-stress induction and ER calcium-depletion.

CRT fragmentation is specifically induced by CDV
infection

CRT is not only used as a marker of ER stress induction (when

upregulated) but is also an important contributor to Ca2+

homeostasis. We thus explored whether the structure and/or

localization was altered in CDV-infected cells. In a first series of

experiments, Western blots were performed in order to analyze

CRT during infection. Two different CRT antibodies were used: a

monoclonal antibody (employed in the previous staining experi-

ments) that recognizes the C-terminal part of the protein, and a

polyclonal antiserum, which is directed against the N-terminal part

of the protein (Figure 4A).

While the full-length CRT protein was detected to similar

extend in infected and non-infected cells, an additional fragment

of about 30 kDa was exclusively observed in CDV-infected cells.

This 30 kDa band was recognized by the C-terminal-specific

antibody (Figure 4B, left blot). The apparent low levels of

cleaved fragments correspond to the fact that only 15% of the

cells were infected at the time of cell lysis, as evaluated by

counting GFP positive cells. We sought to detect the second

putative cleavage product of the full-length CRT, i.e. the N-

terminal region using the N-terminal CRT antiserum. We

detected the full-length CRT protein and a fragment of about

27 kDa, which corresponded to the N-terminal CRT fragment

called vasostatin [28], in addition to several smaller bands (not

shown) (Figure 4B, right blot).

To investigate whether CRT fragmentation is specifically

dependent on CDV infection, we assessed the effect of two drugs:

dithiothreitol (DTT) and thapsigargin (Th). Both drugs are known

to induce ER stress by two different mechanisms: inducing protein

misfolding or blocking ER Ca2+ ATPase pump activity, respec-

tively [29]. In DTT- and Th-treated Vero cells, there was a clear

dose-dependent accumulation of CRT in the ER, compared to

non-treated cells, as revealed by immunofluorescence analysis of

fixed and permeabilized cells (Figure 4C). The highest drug

concentration (4 mM) exhibited the most severe CRT increase.

Higher drug concentrations were clearly cytotoxic (data not

shown). Strikingly, neither DTT nor Th treatment induced

detectable CRT fragmentation (immunoblot Figure 4D lanes 1–

5 and 6–10), whereas in CDV-infected cells, a clear band

migrating with a molecular weight of about 27 kDa was present

(right immunoblot, lane 11). In summary, our cellular and

biochemical data provide strong evidence that CRT fragmenta-

tion is specifically mediated by CDV infection. Because drug-

induced cellular ER stress did not cause any detectable increase of

the CRT cleavage process, our results suggest that virus-induced

ER stress may be different in some way from that induced by DTT

or Th. Alternatively, CRT cleavage in CDV-infected cells might

require additional effects that viral glycoprotein expression would

induce.

Figure 2. CDV F and H surface glycoproteins accumulate in the ER, induce increased CRT expression and cause changes in Ca2+

homeostasis in Vero cells. (A) Vero cells were transiently transfected with plasmids expressing CDV protein N (Aa), F (Ab), H (Ac) or the SLAM/
CD150 construct (Ad). Top row: schematic representation of their respective protein structures. Top panels: immunofluorescence at 24 hours post-
transfection for N, F, H, and SLAM/CD150 (in green). Middle panels: immunofluorescence for CRT (in red). Bottom panels show merged images,
including nuclear staining with DAPI (in blue). The viral F and H glycoproteins accumulated within the ER lumen and co-localize with strongly
expressed CRT (empty white arrow heads). In contrast, cytosolic N CDV protein is not localized to the ER and does not induce CRT upregulation.
(Compare empty white arrow head corresponding to N CDV protein, and white arrow head indicating CRT). SLAM/CD150 does not induce CRT
upregulation. Scale bars, 30 mm. The immunofluorescence assays were performed in fixed and permeabilized cells. (B) Investigation of Ca2+

homeostasis. Vero cells were co-transfected with GFP-aequorin (GA) and different combination of the CDV glycoproteins and SLAM/CD150, as
indicated above each panel. 24 hours after transfection, 5 mM Coelenterazine was added and photon counting started 60 minutes later. At the end
of the experiment 2 mM of ionomycin was added to completely empty ER Ca2+ stores, followed by high Ca2+ solution (10 mM, shown by the last
peak ‘‘High/Ca2+’’ and represented by an asterisk (*). This enabled an estimation of GA expression levels and allows normalization between the
acquisitions.
doi:10.1371/journal.pone.0032803.g002
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CDV-dependent re-localisation of the 27 kDa vasostatin
CRT fragment at the plasma membrane

Cleavage of CRT is known to release the N-terminal fragments,

also known as vasostatin [28]. To determine if the vasostatin is

released from infected cells, Vero cells were infected with CDV for

24 hours, trypsinized and re-plated into new wells for additional

time periods. This was performed to ascertain synchronization of

the putative release of CRT fragments between all infected wells. To

ascertain specific cell surface-exposed CRT staining, immunofluo-

rescence was performed on non-fixed and non-permeabilized cells

at 4uC to prevent internalisation. Quantitative data were recorded

by cytofluorimetry. Infected cells could be distinguished from non-

infected cells by their GFP expression from the recombinant virus.

As a control for surface protein expression, we used an anti-F

antiserum, which demonstrated an increase in mean fluorescence

intensity (MFI) by 12 hours after re-plating, and this, only in

infected cells (Figure 5A; F). We saw no significant enhanced signals

from infected cells using the antibody targeting the CRT C-

terminus (Figure 5A; CRT C-term). In contrast, a substantial

increase was recorded when using the N-terminal antiserum in both

the CDV-inoculated cultures and the non-infected cells, suggesting

secretion of vasostatin and binding to cell surface receptor

(Figure 5A; CRT N-term). Non-infected cultures did not stain with

this antibody, indicating that it was specifically due to the presence

of infected cells. We then investigated by means of immunofluo-

rescence the sub-cellular localisation of CRT fragments in CDV-

infected cells. This was performed in fixed and permeabilized cells.

While CRT staining remained almost exclusively cytosolic using the

C-terminal-recognizing antibody, the N-terminal-recognizing anti-

body illuminated both the cytosol and the plasma membrane.

Furthermore, co-staining of CRT with WGA, a marker for all cell

membranes, revealed that only the N-terminal fragment of the

CRT co-localized with the marker (Figure 5Bf).

In summary, we demonstrated that both CRT antibodies

stained the cytosol but that only the N-terminal-recognizing

antibody stained the plasma membrane. This specific recognition

of the N terminal fragment at the cell surface was confirmed by

cytofluorimetry and immunofluorescence assays. Altogether, this

provides strong evidence that only N-terminal fragments of the

CRT, but not the full-length protein or C-terminal fragments, are

re-localized to the plasma membrane of the infected and

neighbouring non-infected cells. This pattern is consistent with

the N-terminal fragment being the vasostatin, a secreted,

biologically active fragment of CRT.

Discussion

In this study we explored the molecular events associated with

ER stress induced by Morbillivirus infection and transient

expression of viral glycoproteins. CRT is a luminal ER chaperon

implicated in the folding of newly synthesized proteins, a

component of the ER quality control system [9,30,31]. The N-

terminal and the central P domains of CRT display the chaperon

function and can bind the hydrophobic parts of the nascent

proteins in the ER thus preventing protein aggregation [32]. In

addition, by accumulating Ca2+ in its C-terminal domain [14,33],

CRT is the major Ca2+-binding and buffering protein in the ER

lumen [34,35]. During virus infection, viral glycoproteins are

folded and glycosylated in the ER and further processed in the

Golgi apparatus. While the release of Ca2+ from ER stores appears

to be the primary initiator of the ER stress response and cellular

apoptosis [25–27,36–38], the primary mechanism responsible for

the disruption of calcium homeostasis remains unknown. Herein

we report for the first time that accumulation of CDV

Figure 3. CDV F and H surface glycoproteins accumulate in the
ER, induce increased CRT expression and cause changes in Ca2+

homeostasis in primary hippocampal cells. (A) Top panel:
Drawing representing the F-GFP construct. F-GFP was transfected into
primary hippocampal neurons. Bottom panels: visualisation of cells
expressing F (green fluorescence) and CRT (red fluorescence). For CRT
staining, immunofluorescence was performed in fixed and permeabi-
lized cells. The two panels are merged together with DAPI staining in
the very bottom panel. As in Vero cells, this chimera induced an
increased CRT expression. Scale bars, 30 mm. (B) Investigation of Ca2+

homeostasis. Primary hippocampal neurons were co-transfected with
empty vector and the CDV protein-expressing vectors as indicated in
the top panel. Below, the graphs exhibit combined curves of Ca2+

release in the cytosol upon expression of the indicated proteins. The
bottom graph is a magnification of the middle graph, which is a
magnification of the top graph. All samples were analysed in triplicate
on three separate experiments, and one representative experiment is
shown here. The recorded Ca2+ responses are consistent with the ER F
and H protein accumulation and subsequent ER stress observed in Vero
cells.
doi:10.1371/journal.pone.0032803.g003
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Figure 4. CDV infection of Vero cells causes CRT fragmentation with vasostatin formation. (A) Schematic representation of the 60 kDa
CRT protein. The globular 27 kDa N-terminal domain (N-term) is the most important antigenic site of the protein. This domain, as well as the P
domain, possesses the chaperon function. C-terminal domain (C-term) is important for Ca2+ storage and possesses the KDEL ER retention signal. P
and C-terminal domains have together an estimated mass of 30 kDa. (B) The Vero cells were either left non-infected or infected with CDV. At 48 h
post-infection cells were lysed and analyzed by Western blot using C-terminal-specific (left) or N-terminal-specific (right) antibodies. Note the C-
terminal 30 kDa fragment, and the 27 kDa N-terminal fragment. GAPDH is used as an internal control. (C) Impact of the ER stress inducing drugs
dithiothreitol (DTT) and thapsigargin (Th) on CRT expression during CDV infection. Red fluorescence in all panels corresponds to CRT
immunostaining, which increases in a DTT concentration-dependent manner (top panels) or in a thapsigargin concentration-dependent manner
(white arrow heads). For comparison, calreticulin staining is shown in infected cells probed by immunostaining of the F protein (bottom left and
insert panels). Immunofluorescence analyses were performed in fixed and permeabilized cells. (D) Western blot using the antibody recognizing either
the N- terminal domain of CRT (27 kDa, right panel) or the C- terminal domain (30 kDa; left panel). Both antibodies recognize the full-length CRT (top
line, 60 kDa). Cellular extracts come from Vero cells exposed to DTT or thapsigargin (Th), or CDV infected as indicated. GAPDH was used as an internal
control. CRT cleavage was specifically mediated by CDV infection (line 11) and not by exposure to DTT or thapsigargin.
doi:10.1371/journal.pone.0032803.g004
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glycoproteins in the ER, CRT over-expression and ER stress

correlated very well with the disruption of ER Ca2+ homeostasis of

infected cells. Importantly, our results obtained in Vero cells were

recapitulated in primary rat hippocampal culture. Furthermore,

we showed that CDV could induce CRT fragmentation and

selective secretion of the CRT N-terminal fragment, also known as

vasostatin, and its binding to cell surface to both infected cells and

neighbouring non-infected cells.

Depletion of Ca2+ from ER stores, an event potentially triggered

by ER stress, critically affects the survival of CNS cells by inducing

Figure 5. CRT N-terminal fragments are re-localized at the cell surface. (A) The kinetics of the appearance of the F protein and CRT C-
terminal and N-terminal fragments at the surface of infected Vero cells were monitored by flow cytofluorimetry using the corresponding specific
antibodies. Control cell cultures were not infected (grey lines). From infected cell cultures, infected cells (red line; GFP-positive) and non-infected cells
(blue line, GFP-negative) were identified by virus-encoded GFP fluorescence. Cell surface immuno-labelling of cells (unifxed and nonpermeablized)
with F and CRT C-terminal and N-terminal were performed with specific antibodies as indicated at the top of the panels. The mean fluorescence
intensity (MFI) of the labelling was determined within each cell population regularly over 48 hours of infection (top panels). The three bottom panels
represent the distribution of the MFI within each population at 48 hours post-infection. Here is shown one representative experiment out of three
independent experiments. (B) Membrane localisation of CRT N-terminal fragment following CDV infection. At 24 hours post-infection in Vero cells,
cultures were immuno-labelled for the viral F protein to identify infected cells (Ba; fluorochrome: FITC), C-terminal specific anti-CRT antibody (Bb;
fluorochrome: CY3), and N-terminal specific anti-CRT antibody (Bc; fluorochrome: CY5). In panel Bd, cell membranes were stained with alexa-405-
conjugated wheat germ agglutinin (WGA). The merges images b and d (Be) reveal little co-localisation of CRT C-terminal fragment with the cell
surface, while the merges images c and d (Bf) indicate partial surface localization of the CRT N-terminal fragment. Panel g is a merge between images
b and c. Scale bar, 30 mm. Immunofluorescence analyses were performed in fixed and permeabilized cells.
doi:10.1371/journal.pone.0032803.g005
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proapoptotic stimuli and the exocytotic release of synaptic vesicles

[39–41]. These events could explain the apoptotic death of CNS-

infected cells [42] as well as apoptosis of neighbouring non-

infected brain cells as a result of Ca2+-induced L-glutamate release

[3]. In the CNS, both neurons and glial cells can be infected by

CDV in dogs and other carnivores [1]. In the early stage of

infection, CDV causes an acute infection followed by a subacute

stage leading in some cases to chronic infection. During acute

infection, demyelination has been described as being a direct

consequence of virus replication, in the absence of detectable

inflammation [1]. In contrast, during chronic demyelination,

plaque progression seems to be mainly related to an immuno-

pathological process [43]. Based on these and our past [3] and

present observations, we suggest that in the acute phase of the

infection in the CNS, neurodegenerative events are at least in part

initiated by an ER stress, which increases CRT expression and

perturbs Ca2+ homeostasis, subsequently releasing L-glutamate

[3]. Altered Ca2+ homeostasis and L-glutamate release in turn

cause rapid CNS degeneration (within days or a week)

corresponding to the acute phase of the disease. The fact that

we observed this cascade of molecular events in the immune

deficient Vero cells does not exclude that in vivo some more

primordial defence system of the infected cells contribute to the

initiation of the neurodegenerescence.

Under physiological conditions, full-length CRT [35] or N-

terminal fragments [44] have been detected in small amounts at

the cell surface. Importantly, the adaptive immune system is

strongly activated by increasing amounts of full-length CRT

[45,46] or by vasostatin, the 27 kDa N-terminal CRT fragment

[28] at the cell surface. Here, we reported that CDV can also

trigger CRT fragmentation and relocation of the N-terminal

vasostatin CRT fragment to the cell surface of both infected and

non-infected cells (Figure 6). Though CRT cleavage appeared to

be caused by CDV-induced ER stress, the fact that the well-known

ER stress inducers thapsigargin and DTT do not cause CRT

cleavage, suggest that the triggering of ER stress may not be

equivalent in both conditions. Interestingly, cell surface localiza-

tion or secretion of the vasostatin has been first described in

Epstein-Barr-Virus (EBV)-infected cells [44,47] although the

precise molecular mechanism underlying this phenomenon

remains undetermined. Pike and co-workers additionally demon-

strated that vasostatin efficiently inhibited endothelial cell

proliferation and could supressed angiogenesis in vivo [28]. In

addition, vasostatin also significantly reduced tumor growth in

mice [47]. While one possible explanation to explain CDV-

induced CRT cleavage would implicate a direct role of F and/or

Figure 6. Mechanistic model of neurodegenerative processes
induced by CDV infection. The F and H CDV proteins are
accumulating in the ER. This event induces an early ER stress event.
In early ER stress, the quantities of CRT chaperon increase, the Ca2+

homeostasis is altered and Ca2+ is depleted from ER stores. Increase of
cytosolic Ca2+ can have as consequence a glutamate release during CDV
infection as previously described [3]. Glutamate release could induce, in
the neighbouring neurons, Ca2+ entry followed by an ER stress
induction [56]. During ER stress, the infected cells show enhance
expression of the chaperons CRT, calnexin and GRP94 and relocalisation
of the transcription factor ATF-6 in the nucleus followed by the
expression of the proapoptotic factor CHOP/GADD 153. More
importantly, infected cells show CRT fragmentation in a CDV-
dependent manner. C-terminal fragments are retained in the ER by
the KDEL signal whereas CRT N-terminal fragments are present after
24 hours at the cell surface. Cell surface exposition of CRT N-terminal
fragment may contribute to CDV-mediated neurodegenerative auto-
immunity. In grey italic are events described in previous publications.
doi:10.1371/journal.pone.0032803.g006

CDV Glycoproteins Induce Vasostatin Release

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e32803



H on CRT processing and subsequent secretion of the vasostatin

from the cell, any other indirect effects cannot be rule out. Further

works are hence warranted to illuminate the precise molecular

mechanism leading to CRT cleavage in CDV-infected cells.

Moreover, we speculate that secretion of the CDV-induced N-

terminal vasostatin fragment may contribute to the establishment

of the chronic phase of the disease over many months or years.

Indeed, vasostatin may stimulate the adaptive immune system,

which may generate auto-antibodies directed against it. This

alteration might even be amplified by the fact that we detected the

vasostatin on the surface of non-infected cells in infected cultures,

suggestive of a molecular mechanism by which the released CRT

fragments might bind to an unknown receptor on the surface of

neighbouring cells [44,46] (Figure 6). Increased CRT-specific

auto-antibodies have been reported in autoimmune diseases such

as Sjögrens’s syndrome and systemic lupus erythematosus. In some

cases these diseases show neurodegenerative progression

[44,48,49]. It is interesting to note that early stages of multiple

sclerosis and systemic lupus erythematosus share some clinical

signs than those induced by CDV [50]. Alternatively, vasostatin-

dependent inhibition of angiogenesis in the brain may also

contribute to CDV-induced neurological disorders.

Additional effects of CRT cell surface exposure are known in

cancer progression and therapies. Indeed, in mouse models,

exposure of CRT on a tumour cell surface following treatment

with chemotherapeutic agents caused apoptosis, tumour immu-

nogenicity and cancer cell death [45]. Consistent with these

finding, CDV and MV infections showed promising oncolytic

activity in a mouse model of lymphoma carcinomas [51]. The

MV-mediated anti-tumour response has been characterized as an

immune response triggering cell apoptosis in hepatocellular

carcinoma and human cutaneous T cell lymphoma [52–54].

The fact that MV infection in human lymphoma induces ER-

resident stress proteins [55] is in line with our own observations

linking viral infection-mediated ER stress and CRT exposed at the

cell surface. While the molecular mechanisms of oncolytic action

mediated by CDV and MV very likely are governed by F/H-

induced syncytium formation and subsequent cell lysis, they are

not yet completely elucidated. Thus, it is tempting to speculate that

vasostatin on the cell surface of both infected and neighbouring

cells may contribute to anti-tumour activity in vivo.

In conclusion, we demonstrate that during morbillivirus

infection the accumulation of viral surface glycoproteins in the

ER induces an ER stress characterized by Ca2+ release, apoptosis

and CRT fragmentation. The N-terminal fragment of CRT,

vasostatin, is secreted and binds to the cell surface of both infected

cells and neighbouring cells. An auto-antibodies response to

vasostatin, as described in other disease, might result in

neurodegenerative-autoimmunity.
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