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Abstract

Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards
understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify
environmental and demographic determinants of infection in their populations. Laboratory studies indicate water
temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale.
We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering
season would influence infection probabilities during the following breeding season within the same local watershed. Using
avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between
October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds
sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during
the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species
differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every
seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza
virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive
during the breeding season for every ten percent increase in the interval apparent prevalence during the prior
overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the
overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our
findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is
needed to identify how these drivers might interact with other host-specific infection determinants, such as species
phylogeny, immunological status, and behavioral characteristics.
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Introduction

Type A avian influenza virus (AIV) in wild waterfowl

constitutes an important reservoir and source of infection for

humans [1,2,3] and domestic poultry [4,5]. In the United States

AIV remains a threat to the domestic poultry industry [4,5,6]

with estimated losses ranging from 5 to 212 million United States

dollars [6,7]. In North America there have been seven high-

pathogenic outbreaks in poultry since 1924 with Losses from a

single outbreak in 2007 estimated at 643 million Canadian dollars

[8]. Although high pathogenic outbreaks of AIV in the United

States have been rare, periodic outbreaks of low pathogenic AIV

continue to occur and pose a threat due to its potential to mutate

to the high pathogenic form of the virus. Wild waterfowl are well

documented hosts for AIV [9,10,11]; however, identification of

specific mechanisms structuring environmental infection risk

across landscapes remains elusive. Experimental studies have

established relationships between water temperature and chem-

istry (e.g., pH and salinity) and AIV persistence [12,13]. At least

one experimental study has documented the role of water as an

indirect route of AIV transmission between individual waterfowl

[14]. Other studies using simulation modeling [15,16] have

suggested that environmental reservoirs play a large role in

maintenance of AIV in wild waterfowl. Currently there are few

studies evaluating the results of laboratory-based experimental

and simulation studies with field collected data [13]. Under-

standing determinants structuring the distribution of AIV in

waterfowl is paramount to inform surveillance, monitoring, and

outbreak response and management. Further, gaining an

understanding of environmental drivers of infection is a necessary

step towards national scale management of AIV spillover from

wild waterfowl to poultry.
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To mitigate evolving global risks associated with AIV, a United

States interagency strategic plan was developed in 2006 for the

early detection of (HPAI), specifically H5N1, to address the

possibility that this virus might be introduced into the United

States via wild birds during migration [17]. No highly pathogenic

AIV have been identified in waterfowl within the United States;

however, that surveillance effort has resulted in data on the

presence or absence of type A influenza viruses within individual

birds. The surveillance involved Federal and State Wildlife

Agencies in all fifty States as well as University, Tribal, and State

Department of Agriculture Cooperators. To date, the surveillance

effort has resulted in the collection of more than 250,000 samples

from wild migratory waterfowl. This represents the largest data

collection effort regarding AIV in North American waterfowl.

Here we use a portion of the surveillance data to test hypotheses

about the influence of local environmental conditions and past

levels of infection on the probability an individual tests positive for

AIV while accounting for demographic (e.g., species, age, and sex)

and temporal patterns that are known correlates of AIV infection

in wild waterfowl [10,18,19]. Based on studies suggesting a strong

dependence of viral persistence on water temperature

[12,20,21,22], specifically greater persistence as temperature

decreases, we hypothesized that environmental conditions (i.e.,

temperature) may influence local persistence of AIV and provide

an epidemiological link between overwintering and breeding

seasons. Because of the potential for AIV to persist in water for an

extended period (e.g., up to 270 days) [23,24,25], we hypothesized

that for a given site the proportion of AIV test-positive individuals

across the overwintering period might be related to the probability

of AIV infection at the individual bird level during the following

breeding period within local watersheds. We also examined the

influence of age and sex as it has been demonstrated that hatch-

year birds and males are more likely to harbor AIV than older

birds and females [9,18,19,26,27,28]. In our statistical models, we

wanted to control for these effects and determine if these patterns

are consistent with our AIV surveillance data. As we move towards

a more mechanistic understanding of the environmental condi-

tions that give rise to variations in the geographic patterns of AIV,

we will be increasingly enabled to improve surveillance and risk

assessment for human and domestic poultry health. Our goals are

to evaluate the significance of environmental, demographic, and

temporal controls of AIV at a national level and to identify

predictors of the distribution of AIV in wild waterfowl for

informing disease management; specifically risk assessments and

targeted surveillance.

Methods

Study site and data collection
Local wildlife biologists determined sampling locations based on

success of waterfowl hunting, historical bird banding locations, and

other factors. Specific study sites included State and Federal

refuges, lakes, rivers, private hunting clubs, and other areas where

waterfowl were legally hunted during open seasons or areas where

live capture was easily facilitated, such as locations where historical

waterfowl banding activities had occurred. Local expertise was

used to further define the study area. Study sites were located

throughout the contiguous United States and all birds were

collected under the migratory bird scientific collecting permit for

HPAI surveillance work (MB124992). No birds were lethally

collected for the purpose of this study.

Two of the strategies identified in the Interagency Strategic Plan

for Surveillance of AIV in Wild Waterfowl were hunter harvested

birds and live wild birds. Specific information regarding the

collection strategies is detailed in [17]. All samples were collected

using standardized protocols and procedures [29]. Briefly, one

cloacal and one oropharyngeal swab were collected from each bird

using sterile Dacron-tipped swabs after which both swabs were

combined in the same vial of transport media and left in the

sample vial after collection. Samples were placed in cyrovials

containing 3 mL of Brain Heart Infusion (BHI) transport media

manufactured by Becton, Dickinson and Co., Sparks, Maryland,

USA. Samples were shipped with ice packs within 24 hours of

sample collection, whenever possible, and tested under a

standardized protocol at one of 44 diagnostic laboratories that

are part of the National Animal Health Laboratory Network.

Laboratory handling protocols and testing procedures are

described in detail elsewhere [30]. Because the surveillance effort

was focused on first detection of H5 or H7 subtypes, no subtyping

was conducted for any other Hemagglutinins.

Data
For this analysis we used a subset of the AIV surveillance data

in migratory wild birds across the contiguous United States,

spanning from October 1, 2006 to September 30, 2009. Those

data were further reduced to restrict our response variable for

modeling of AIV matrix positive or negative to: 1) samples

collected during the putative breeding season (April 1 to

September 30); 2) birds that were sampled alive (i.e., not hunter

shot); and 3) only dabbling ducks. We imposed these conditions

for several reasons. First, we were interested in determining the

influence of AIV infection during the wintering period on AIV

status (test positive or negative) of individuals sampled in the

subsequent breeding season. To examine this we used the interval

apparent prevalence of AIV in birds sampled within a local

watershed during the overwintering season (October 1 to March

31) as a predictor of the probability an individual would test

positive during the following breeding season (April 1 to

September 30) within the same local watershed. The interval

apparent prevalence was defined for each watershed as the

number of test positive individuals divided by the total number of

individuals tested over a given length of time; in our case the six-

month period from October 1 to March 31 prior to each

breeding season. Thus, we only used data from the 137 local

watersheds across the United States having both breeding and

overwintering season data within the same biological year, April

1 to March 31. Second, we only considered birds that were

sampled alive to reduce the likelihood of including early migrants

in the analysis (e.g., American Green-winged Teal, Anas

carolinensis) since samples from live birds were typically collected

concurrent to traditional banding operations taking place on the

breeding grounds. Finally, we restricted our analysis to the most

common dabbling duck species (Anatidae sp.) in the surveillance

data to reduce confounding with differing life history and habitat

uses (e.g., Canada Geese) (Table 1). In addition, dabbling ducks

are represented in much larger numbers than any other taxa in

the surveillance data, which occurred because globally dabbling

ducks have exhibited the highest AIV test-positive rates [10].

These restrictions resulted in a sample of 9996 birds from the

breeding season and 9969 birds from the overwintering season.

The response variable was the binary classification AIV test

positive or negative during the breeding season for all models

formulated for this study. Overwintering season AIV testing data

was used to calculate one of the predictor variables described

below.

Predictor variables included a combination of intrinsic (i.e.; sex,

age, and species) and extrinsic (i.e.; overwintering season

temperature, interval apparent prevalence, and sampling month)

Avian Influenza Determinants
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variables. Age was classified as either hatch-year or after hatch-

year birds. We included variables for species, age, and sex in the

analysis to control for their putative effects and to account for as

much demographic variability as the data allowed when estimating

the effects of interval apparent prevalence and temperature. For a

relatively small proportion of samples age and sex were unknown;

thus, we included these as binary variables in our analysis with

each bird coded as a ‘‘one’’ if age and sex were unknown and as a

‘‘zero’’ if age and sex were known. Because we wanted to control

for individual- and species-level effects throughout the analysis, the

variables age, age unknown, sex, sex unknown, and species always

appeared together in models containing any of these effects.

Additionally, a covariate for the month a sample was collected was

included to account for the well documented pattern of increasing

prevalence of AIV in the late summer and early fall months [9,31].

Although the magnitude of these effects might be of interest

from a landscape epidemiological perspective—and we report

them here—they might also be viewed as nuisance variables

included in the models to control for potential confounding with

the two other variables of interest in this study. The first of those

two variables was the interval apparent prevalence of AIV within

local watersheds calculated for the previous overwintering period,

which was used to capture the local influence of prior

environmental deposition of AIV on breeding season infection

probabilities. Local watersheds were derived from the United

States Geological Survey’s Hydrologic Unit Codes database [32].

The interval apparent prevalence of AIV within each hydrologic

unit (i.e., local watershed) was calculated for each of the three

overwintering seasons used in this analysis. Thus, for each year

and watershed, the value of the interval apparent prevalence

during the overwintering season was related to each bird tested

during the subsequent breeding season within the same watershed.

Finally, we included a temperature variable derived from National

Oceanic and Atmospheric Administration weather station data

[33]. For every bird sampled for AIV during the breeding season,

we identified the nearest weather station (median distance = 14.7

kilometers) and calculated the total number of days having a

minimum temperature below 0uC. Then, we adjusted for the

difference in elevation between the weather station and the AIV

sample location using the formula for environmental lapse rate:

DT~
+6:490C

1000 meters

where DT represents a change in temperature of 6:490C for

every 1000 meters of elevation gained or lost between the

weather station location and the AIV collection site. We

included this variable as one hypothesis that might explain a

portion of the spatial heterogeneity observed in the AIV

surveillance data. This hypothesis was primarily based on

published laboratory studies showing greater persistence of

avian influenza viruses at colder temperatures, which in turn

might result in a higher availability of AIV for infecting birds

during the subsequent breeding season. All predictor variables

were checked for excessive collinearity, which was sufficiently

low not to preclude the use of all covariates in any combination

in our candidate set of models.

Formulation of competing models
We evaluated support for competing models portraying the

relationship between the probability an individual bird sampled

during the breeding season tested positive for AIV and the

variables of interest: demographic (species, age, and sex),

sampling month, interval apparent prevalence, and temperature.

Dummy variable coding was used in which the estimated effect

for each species was evaluated relative to mallards (Anas

platyrhynchos). This coding was chosen because mallards were the

most frequently sampled species in the data and they had one of

the highest interval apparent prevalence values of any species;

thus, all species effects were relative to the mallard effect. Given

the ubiquitous distribution of mallards—and the fact that 44

percent of the overwintering and breeding season data used in

this study were collected from that species—it is likely each of the

local watersheds used in this study reflects a similar species

composition. To check this assumption, we used a multiple pair-

wise comparison test, the Marsculio procedure [34], to test for

differences between the proportions of mallard versus all other

species in each watershed when compared to all other 136

watersheds.

Table 1. Species, number of individuals testing positive for influenza A virus matrix gene by rRT-PCR (Pos), number of individuals
tested for AIV (Sampled), and point estimate of interval apparent prevalence (IAP) in breeding and overwintering seasons for each
species across all three years of data used in this analysis.

Breeding Overwintering IAP

Species Pos Sampled Pos Sampled Breeding Overwintering

Mottled Duck 10 330 28 430 0.030 0.065

Gadwall 38 483 34 312 0.079 0.109

Northern Shoveler 5 61 11 63 0.082 0.175

Cinnamon Teal 7 74 6 28 0.095 0.214

Wood Duck 173 1815 124 3535 0.095 0.035

American Black Duck 24 145 10 294 0.166 0.034

American Wigeon 36 107 2 35 0.336 0.057

Blue-winged Teal 275 799 246 693 0.344 0.355

Northern Pintail 332 923 129 605 0.360 0.213

Mallard 1876 4918 1115 3833 0.381 0.291

Green-winged Teal 140 341 36 141 0.411 0.255

doi:10.1371/journal.pone.0032729.t001
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Our two primary hypotheses were:

1) a higher probability of testing positive during the breeding

season would be associated with a higher observed interval

apparent prevalence in the previous overwintering period at

the local watershed scale; and

2) as the number of days in which the average temperature was

reported below freezing during the six months prior to the

breeding season increased, the probability an individual

would test positive during the breeding season would

increase.

These two phenomenological variables act as surrogates to

capture geographic variability in the mechanisms of environmen-

tal deposition of AIV in feces and temperature mediated

persistence during the overwintering season, respectively. All

models containing the additive effects of age, age unknown, sex,

sex unknown, and species were represented by the term ‘‘DEMO’’

in models where they appeared. The influence of sampling month

was coded as ‘‘MONTH’’ in candidate models and interval

apparent prevalence and temperature variables were coded as

‘‘IAP’’ and ‘‘TEMP’’, respectively, in all models that included

those terms.

We determined relative support in the data for candidate

models to assess the influence of each variable, both alone and in

the presence of the other variables, on the probability an

individual bird tested positive for AIV during the breeding season.

To assess the contribution made by each of the variables to

predicting observed AIV status, we developed a suite of 16

candidate models that incorporated the variables in all possible

additive combinations. All models assumed a binomial error

structure and were fit using a generalized linear model with a logit

link function. All models were of the form:

logit pið Þ~azxT
j b

where pi represented the probability that the ith individual tested

positive for AIV, a was the intercept representing the estimated

background infection rate common to all waterfowl, b is an m61

vector of regression coefficients corresponding to xT
j , the transpose of

the m61 vector of covariates associated with the ith bird in the sample.

Model selection
We used likelihood-based methods and information theoretics

(Akaike’s information criterion, AIC [35]) to estimate model

parameters and quantify the strength of evidence for alternative

models, respectively. Specifically, AIC was used to assess the

relative information content of the models. Because model

parameters were estimated based on data, there was some

uncertainty the ‘‘best’’ model would emerge as superior if different

data were used to compare alternatives. This uncertainty was

quantified with Akaike weights, wr [35]. In the context of the

analyses, we regarded normalized wr as ‘‘probabilities’’ that the

estimated model r was the best Kullback-Leibler model for the

data at hand, given the set of models considered [35]. The wr can

be used to estimate the likelihood of the model, given the data, and

in so doing offer a way to compare the relative weight of evidence

for each model considered. Because AIC does not represent a

goodness-of-fit metric, we developed Receiver Operating Charac-

teristic (ROC) [36] curves and calculated Area Under the Curve

(AUC) values to assess how well models fit the data. ROC curves,

which originated in signal detection theory, plot the probability of

detecting true signal (sensitivity) and false signal (1-specificity) for

an entire range of cut points spanning the probability spectrum

(i.e., 0 to 1), resulting in an AUC value lying between 0 and 1 for

assessing model fit. All models contained only additive effects.

Maximum likelihood estimates, confidence intervals on model

parameters, and AIC values were obtained through logistic

regression model fitting within the R computing environment [37].

Model robustness
Although the choice of cutoff dates for representing breeding

and wintering seasons correctly categorizes the biological activities

of most birds in the data, there is some uncertainty around

correctly classifying all birds in the sample with regard to being

placed into the appropriate season. For example, migratory

movements to and from breeding grounds in the spring and fall,

respectively, differ by species, geographic location, and weather

patterns in any given year. Because of this natural variability, we

wanted to determine how robust biological inferences from our

models were to variations in the time window considered for

assigning birds to breeding and wintering seasons. To achieve this,

the data was restructured such that each of the two original

seasons were either delayed or advanced by one month, resulting

in four new data sets, including new covariate values. The four

time windows we considered reflected early (March 1 to

September 30) and late (May 1 to September 30) starts to the

breeding season, and early (September 1 to March 31) and late

(November 1 to March 31) starts to the overwintering season. We

refit the top model, based on AIC, to each of these new data sets

and assessed how well the resulting parameter estimates reflected

those from the top model fit to the data based on our original time

window for breeding and overwintering seasons.

Results

The Marsculio pair-wise comparisons test resulted in 3.7

percent of the local watersheds exhibiting a significant difference

(p,0.05) in the proportions of each species relative to mallards.

Thus, there appears to be little variation in species composition

across the study area for those included in this analysis.

The results of our model selection exercise are shown in Table 2.

Based on AIC, the global model (which contained an additive

combination of all predictor variables) was the only model meriting

consideration as the best approximating model in the candidate set.

Because the Aikaike weight, wr, was effectively one (1), none of the

other models were considered further and averaging parameter

estimates across candidate models was unnecessary. Models were

fitted in which we systematically omitted each of the variables

making up the DEMO covariate, but with all other covariates

included. However, those models all had AIC values that were

much greater than the second best model in the original candidate

set, which itself had an exceedingly small Akaike weight relative to

the global model. Thus, retaining the DEMO composite variable in

all of the candidate models was warranted.

The trapezoidal rule was used to integrate the ROC curve

associated with the global model (Figure 1) and calculated an AUC

value of 0.76. AUC values between 0.70 and 0.80 are considered

to have an acceptable level of discrimination between true and

false signal [36]. This AUC value suggests that the global model fit

the data well. Our assumption of binomially distributed errors was

tested by refitting the same model but with a quasi-binomial error

distribution, which allowed us to estimate the degree of over-

dispersion in the data. A perfect binomial process would have an

overdispersion parameter equal to one. The point estimate for the

overdispersion parameter using our avian influenza data was 1.02,

suggesting that departures from the assumption of binomially

distributed errors were negligible.

Avian Influenza Determinants
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Figure 2 portrays the model-based probability that a randomly

sampled bird from each watershed considered in this study would

test positive for AIV during the breeding seasons considered in this

study. The well-documented pattern of higher infection rates in

northern latitudes is made apparent by this figure. Parameter

estimates from the global model are shown in Table 3. All values

are on the logit scale; however, exponentiation of these estimates

provides an odds-ratio interpretation of their effect size. The

cumulative number of days below 0uC during the overwintering

season was a significant predictor of the probability an individual

would test positive during the following breeding season (odds

ratio = 1.008, 95% CI = 1.007, 1.009). For every seven days the

local minimum temperature fell below zero, the chance an

individual would test positive for AIV increased by 5.9 percent.

Figure 3 maps this effect for all breeding season samples in the

data set. Based on this variable, a bird sampled in North or South

Dakota (northern States) during the breeding season would be

expected to have nearly three times the odds of testing positive

over a bird sampled on the Texas (southern State) gulf-coast

during that same season. The final variable examined—interval

apparent prevalence of AIV measured within local watersheds

during the overwintering period prior to each breeding season—

was also a significant predictor of the probability an individual

would test positive during the following breeding season in that

same local watershed (odds ratio = 3.13, 95%CI = 2.45, 3.98). This

estimate translates into a 12 percent increase in the chances an

individual will test positive during the breeding season for every 10

percent increase in the interval apparent prevalence during the

prior overwintering period at the local watershed scale. Figure 4

depicts this relationship for all local watersheds collapsed across

the three years of data covered by this study. These results suggest

that the proportion of infected individuals during the overwinter-

ing season can be predictive of infection levels during the following

breeding season over relatively small spatial scales.

As expected, hatch-year birds had a greater probability of testing

positive for AIV than after-hatch-year birds (odds ratio = 2.00, 95%

CI = 1.81, 2.22) after accounting for species differences. Birds in

which the age was unknown were also more likely to test positive for

avian influenza (odds ratio = 1.44, 95% CI = 0.99, 2.06), with the

confidence interval slightly overlapping 1 on its lower end. The

variable female suggested differential infection probabilities, with

females less likely to test positive than males (odds ratio = 0.856,

95% CI = 0.77, 0.94). When sex was unknown the results are even

more skewed, with birds that could not be sexed being almost four

times less likely to test positive (odds ratio = 0.26, 95% CI = 0.15,

0.42). The well-known observation of elevated infection rates in late

summer and early fall months is confirmed in this analysis, with the

odds of finding a test positive in the sample increasing as the

breeding season progressed (odds ratio = 1.25, 95% CI = 1.17,

1.35). Species effects were also not surprising, given that all effects

were relative to the mallard, which exhibited one of the highest

proportions of test-positive individuals. The species with the lowest

proportion of test-positive individuals during the breeding season,

the gadwall (Anas strepera), was nearly ten times less likely to test

positive during the breeding season than was the mallard (odds

ratio = 0.12, 95% CI = 0.08, 0.16). Only one species was not

significantly different from the mallard; a randomly sampled Green-

winged Teal (Anas carolinensis) was nearly as likely to test positive as a

mallard (odds ratio = 0.87, 95% CI = 0.68, 1.11).

The results from refitting the top model to the four new data sets

reflecting variations in the assumed timing of breeding and

wintering seasons are shown in Table 4 for several of the key

variables we examined. Species effects are not shown for brevity;

however, they exhibited very strong agreement with the original

top model results. All effects shown in Table 4 are in very good

agreement in terms of the sign, estimated values, and p-values,

with the parameter estimates from the top model based on our

original time window for the breeding and overwintering seasons.

In particular, the number of days less than zero (DLZ), the sex

effect, and the hatch-year effect show very strong consistency

across all variations of assumed seasons. The interval apparent

prevalence (IAP) and sample collection month show greater

variability across the four new data sets, but are still consistent with

Figure 1. Receiver operating characteristics (ROC) curve for
assessing goodness-of-fit for the top model selected from the
candidate set. The area under the curve (AUC) is 0.76, suggesting a
strong ability to discriminate between true and false signal and a good
fit of the model to the data.
doi:10.1371/journal.pone.0032729.g001

Table 2. Candidate set of models used to identify the relative
influence of covariates on the probability an individual bird
sampled during the breeding season tested positive for Avian
Influenza Virus (AIV).

Model K{ Log-lik{ DAIC1 wr*

DEMO + MONTH + DBZ + IAP 18 25206.80 0 0.999

DEMO + ----------- + DBZ + IAP 17 25225.70 35.81 1.68E-08

DEMO + MONTH + DBZ + ------ 17 25249.35 84.1 9.03E-19

DEMO + ----------- + DBZ + ------ 16 25266.82 116.04 6.35E-26

DEMO + MONTH + ------- + IAP 17 25298.48 181.36 4.16E-40

Abbreviations are: DEMO = Demographic variables of age, age unknown, sex,
sex unknown, and species; MONTH = sample month; DBZ = number of days
temperature was below freezing during the six month overwintering season
prior to each breeding season; and IAP = interval apparent prevalence of AIV
within the local watershed during the six month overwintering period prior to
each breeding season.Notes: Only the top five models are shown for clarity.
{Number of estimable parameters.
{Maximized value of the logarithm of the likelihood function.
1Difference in AIC between a given model, r, and the model with the minimum
AIC.
*Aikaike weight, wr, is the probability that the estimated model, r, was the best
model given the data.
doi:10.1371/journal.pone.0032729.t002

Avian Influenza Determinants
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parameter estimates from the top model based on the original

asumed timing of breeding and overwintering seasons.

Discussion

To our knowledge, this study is the first examination of

environmental drivers (e.g., temperature) of AIV using field data

collected across the contiguous United States. It has been noted

that a scarcity of field data exist for comparison to laboratory

studies examining, among other aspects, environmental drivers of

AIV infection [13]. The aim of this study was to address some of

these knowledge gaps by characterizing determinants, including

aspects of the environment, of AIV in wild waterfowl on their

breeding grounds; a time when birds are much less mobile

compared to the migratory season. By limiting our analysis to the

breeding season and live sampled birds, we reduced much of the

confounding in local spatial processes that would be introduced by

combining AIV sample data from overwintering and breeding

seasons into a single response variable. Although our results are

consistent with previously reported patterns—specifically the

increased proportion of infected hatch-year birds relative to

after-hatch-year birds, an increase in the proportion of infected

birds as the breeding season progressed, and males exhibiting

higher test positive rates—we have nevertheless provided novel

insight into potential landscape-level determinants of AIV in wild

waterfowl across the contiguous United States.

In addition, we have shown that these results are highly robust

to the assumed timing of the breeding and overwintering seasons,

suggesting that our resulting biological inference is valid even in

the face of natural variations in the timing of these two seasons.

For example, our results should be applicable in years when the

timing of breeding and overwintering migratory movements are

either delayed or advanced relative to a ‘‘typical’’ breeding and

overwintering season.

Interval apparent prevalence
Based on the Marsculio test, it appears that across the 137 local

watersheds examined in this study there is a strong consistency in

the proportion of mallards in each watershed and that differential

species composition between watersheds is an unlikely explanation

for the overwintering season interval apparent prevalence effect

observed in our top model.

At the local watershed scale there appears to be a linkage

between overwintering and breeding seasons with respect to AIV

infection. In locations where the proportion of birds testing

positive was relatively high during the overwintering season the

probability a bird tested positive during the following breeding

season increased. This space-time linkage could be caused by

multiple, possibly interacting, mechanisms. It may be that a similar

composition of species uses the same watersheds for overwintering

and breeding, which could lead to those species with overall lower

or higher infection rates maintaining that pattern between seasons.

Although we do not possess strain-level data, it may be more likely

that those watersheds having a high interval apparent prevalence

during the overwintering season represent areas where large

quantities of virus are shed into water bodies used by foraging

waterfowl, with persistence of a sufficient viral pool to facilitate

transmission to birds using those same water bodies for breeding.

The latter possibility suggests environmental persistence of AIV, at

least within a given year, in which a reliable indicator of where a

high proportion of infected individuals will be found during the

breeding season (April 1 to September 30) is the interval apparent

prevalence from the previous overwintering season (October 1 to

March 31).

Temperature
The effect of temperature on persistence of AIV in water has

been well studied in laboratory environments [12,13,20,21,22];

however this is the first study to examine the influence of

temperature on infection status in wild waterfowl of North

America in a natural setting and across a large and heterogeneous

landscape. Although the existence of a latitudinal gradient, with

overall prevalence declining from north to south, has been noted

previously [38] this is the first study we are aware of that examines

a potential mechanism structuring that gradient. A primary factor,

which has been cited in the past for this gradient, includes the

Figure 2. Top model estimate of average predicted probability that an individual bird sampled from local watersheds during the
breeding season tests positive for avian influenza virus. The probability is an average across all three years of data for all waterfowl sampled
within a given watershed. Note the strong latitudinal gradient with higher probabilities of testing positive in northern latitudes and decreasing
probabilities in southern latitudes.
doi:10.1371/journal.pone.0032729.g002
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presence of large numbers of hatch-year birds congregating on

staging grounds in the northern States, particularly in the north-

central portion of the United States. Although this is likely a

dominant factor in observed prevalence levels in these areas, it is

also likely that this host-virus system has evolved in a direction in

which colder temperatures allow virus to persist longer, thereby

seeding new infections upon arrival of large numbers of birds onto

their breeding and pre-migration staging grounds. Because the

temperature variable, in particular, was so invariant to changes in

the assumed beginning and ending dates of the two seasons, we

view this as a very robust predictor of breeding season interval

apparent prevalence. Further field-based studies could examine

this pattern at even finer spatial granularities, such as at the

wildlife refuge level, to determine if this pattern is consistent across

spatial scales.

Species effects
Variation in the interval apparent prevalence among species led

predictably to a pattern of variability among species effects relative

to the mallard (Table 1). The strength of the effect becomes

increasingly negative as the interval apparent prevalence de-

creased among species. Given that the mallard has the greatest

population size of all waterfowl in the contiguous United States,

with an estimated 8.4 million individuals out of a total of 45.6

million waterfowl in 2011 [39], it is not surprising that this species

exhibits one of the highest proportions of infected individuals

among all those considered in this study. Avian influenza viral

strains may exhibit differential reproductive capabilities between

host species [40,41], which can manifest itself in differential

infection patterns among them [42]. Within this context, it is

possible that a substantial portion of the AIV circulating in wild

waterfowl environments has evolved to be more productive in

mallards, which could potentially explain the high degree of

variability in the interval apparent prevalence among the species

examined in this study. For example, mallard and gadwall

exhibited very different values; with gadwall testing positive at

some of the lowest rates among all species and mallards testing

positive at one of the highest rates. However, overlaying relative

abundance maps of the breeding distributions for these two species

shows that they are quite similar (Figure 5). Indeed, mallard and

gadwall typically share the same breeding areas [43] and comingle

extensively on the breeding grounds. It may be that viral strains

circulating annually in waterfowl populations are predominately

mallard adapted and that in this instance gadwall are weakly, or

not at all, susceptible hosts for such strains. It is interesting to note

that while mallards and American Green-winged teal exhibited

similar AIV interval apparent prevalence values during the

breeding season, they are much less likely to share local breeding

areas than are mallard and gadwall [43]. Thus, the relationship

between circulating AIV strains in any given year and host species

competency remains a challenge to understand at the landscape

scale.

Sex Effect
Our analysis revealed a sex effect, something which has been

observed previously in Alaska [18] and Canada [19], but has not

been reported elsewhere in North America, with males having a

higher probability of testing positive for AIV. Although we do not

have data that allow us to confirm a specific mechanism, several

hypotheses regarding this effect have been suggested. The effect

could be due to a combination of physiological and space use

differences between male and female dabbling ducks. Male ducks

typically have elevated testosterone levels during the breeding

season [44,45,46], which has been shown to decrease immune

function [47,48]. Conversely, elevated levels of estrogen, most

notably in females, have been shown to increase immune function

[49,50,51]. It is possible that these differential hormone patterns

are linked to differences in AIV infection probabilities between the

sexes. Further, males are more likely to switch mates between

breeding seasons, thus potentially using a greater number of

breeding sites over their lifetime than females [52]. This could lead

to exposure of males to a greater number of AIV strains than

females, resulting in a higher infection probability as males

encounter a greater number of strains throughout their life to

which they are, at least partially, immunologically naı̈ve. Finally,

female mallards—along with many other dabbling duck species—

suffer higher mortality rates on their breeding grounds [53]. If

females infected with AIV are more likely to suffer mortality

through, for example, increased predation risk or other mortality

factors linked to disease, this could lead to the patterns observed in

these data due to censoring of AIV infected females. Each of these

potential explanations remains an open question requiring further

study to determine the mechanisms behind the observed sex effect.

Data from other studies should be used to the extent possible to

either confirm, or refute, our findings in terms of the differential

probability of testing positive between the sexes.

Table 3. Maximum likelihood estimates for covariate
parameters in the global model examining the relationship
between the probability a bird tested positive during the
breeding season (April 1 to September 30) and the variables
shown.

Variable MLE 2.5% 97.5% p-value

Intercept 23.418 24.045 22.799 ,.001

DBZ 0.008 0.007 0.009 ,.001

IAP 1.140 0.898 1.382 ,.001

Hatch Year 0.695 0.595 0.796 ,.001

Age Unknown 0.363 20.012 0.723 .052

Sex 20.156 20.251 20.061 .001

Sex Unknown 21.341 21.883 20.851 ,.001

Sampling Month 0.228 0.155 0.302 ,.001

American Black Duck 20.880 21.360 20.438 ,.001

American Wigeon 20.544 20.968 20.136 .010

Blue-winged Teal 20.585 20.758 20.415 ,.001

Northern Pintail 20.305 20.465 20.147 ,.001

Gadwall 22.152 22.508 21.826 ,.001

Northern Shoveler 21.709 22.791 20.845 ,.001

Green-winged Teal 20.139 20.382 0.102 0.259

Mottled Duck 22.029 22.736 21.443 ,.001

Wood Duck 21.682 21.856 21.513 ,.001

Cinnamon Teal 21.433 22.318 20.708 ,.001

DBZ (days below zero) is the cumulative number of days during the previous
overwintering season that the mean temperature was less than zero and IAP is
the interval apparent prevalence during the previous overwintering season.
Hatch Year is the effect size relative to after-hatch-year birds, Age Unknown is
the effect size relative to known age birds, Female is the effect size relative to
males, Sex Unknown is the effect size relative to known sex birds, and all
species effects are relative to the mallard. MLE is the maximum likelihood
estimate of the parameter and 2.5 percent and 97.5 percent define the 95
percent confidence interval around the MLE based on profile likelihoods. All
values are on the logit scale; however, exponentiation of these estimates
provides an odds ratio interpretation of the effect size.
doi:10.1371/journal.pone.0032729.t003
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Implications for poultry health
Spillover from wild waterfowl has been implicated in outbreaks

of AIV in domestic poultry [31,54,55,56]. In the United States this

has been of particular concern in the Great Lakes region where the

turkey industry has experienced production losses resulting from

AIV [31,55,57] and in the New England region where the live bird

marketing system has repeatedly experienced outbreaks of AIV

[58,59,60]. Furthermore the presence of AIV in wild waterfowl

has been linked to increased transmission efficiency among

sympatric populations of domestic poultry [61]. The increasing

evidence that wild waterfowl directly influences the incidence of

AIV in domestic poultry populations suggests a need for

developing tools to aid in identifying regions at risk and support

mitigation of transmission events and optimized surveillance.

Our results indicate an increased probability of AIV infection in

waterfowl in regions that have historically experienced AIV in

domestic poultry – Great Lakes and New England regions. While

our analysis did not explicitly address the relationship between

AIV infection in waterfowl and poultry, it does suggest a potential

relationship. Should a highly pathogenic zoonotic strain emerge in

North America from wild waterfowl or poultry, or from a

reassortant from the two populations, these regions may be looked

Figure 4. Map showing the odds ratio for the overwintering season interval apparent prevalence effect resulting from the top
model fit to the data. The sample size reflects the number of AIV samples collected within each of the 137 local watersheds used in this analysis
and the colors reflect the mean odds ratio of testing positive for AIV, with red indicating the odds of testing positive are more than twice that of
points colored dark green based on this variable.
doi:10.1371/journal.pone.0032729.g004

Figure 3. Map showing the odds ratio for the overwintering season temperature effect from the top model fit to the data. The
sample size reflects the number of AIV samples collected within each of the 137 local watersheds used in this analysis and the colors reflect the mean
odds ratio of testing positive for AIV, with red indicating that the odds of testing positive for AIV are nearly three times as likely than points colored
dark green based on this variable.
doi:10.1371/journal.pone.0032729.g003

Avian Influenza Determinants

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e32729



to as a potential source given the sympatric waterfowl and poultry

populations, locally high waterfowl AIV prevalence, high occur-

rence of low biosecurity backyard poultry operations [62,63], live

bird markets [64,65], and small commercial poultry operations

[66,67].

Enhancing surveillance activities in regions with higher

probabilities of AIV infection in waterfowl may also yield long-

term benefits for early detection of novel AIV strains. The ability

to target locations where a high incidence of AIV is likely to occur

during the breeding season, which also culminates with the annual

peak in AIV prevalence in waterfowl, has implications for

prevention and mitigation of disease in poultry. A current

challenge to addressing this issue is optimizing surveillance systems

to improve early detection of AIV, particularly novel strains, and

identifying regions that would receive the largest benefits from

establishment of risk mitigations to prevent transmission. Adjuncts

to more traditional surveillance approaches may be warranted,

such as adjusting the level of surveillance based on monitoring

results during the overwintering season. Using the overwintering

season AIV status for a given location or region may serve as an

indicator of increased AIV transmission during the following

breeding period which might, in turn, increase potential risk for

spillover to poultry. In addition, identification of these areas before

the breeding season may allow for implementation of risk-based

Table 4. Maximum Likelihood estimates (p-values) for key model parameters when AIV data are restructured such that the timing
of breeding (April 1 to September 30) and overwintering (October 1 to March 31) seasons differs from that used to generate the
parameter estimates shown in Table 3.

Season DBZ IAP Sex Hatch Year Month

Original Dates 0.008 (,.001) 1.140 (,.001) 20.156 (.001) 0.695 (,.001) 0.228 (,.001)

Early Spring 0.009 (,.001) 0.997 (,.001) 20.154 (.002) 0.732 (,.001) 0.236 (,.001)

Late Spring 0.007 (,.001) 1.043 (,.001) 20.156 (.002) 0.728 (,.001) 0.206 (,.001)

Early Winter 0.010 (,.001) 0.846 (,.001) 20.141 (.028) 0.775 (,.001) 1.111 (,.001)

Late Winter 0.008 (,.001) 0.381 (.014) 20.183 (.002) 0.827 (,.001) 0.170 (,.001)

Each of the two original seasons were delayed and advanced by one month, resulting in four new data sets to fit the top model. The four time windows reflected an
early (March 1 to September 30) and a late (May 1 to September 30) breeding season, and an early (September 1 to March 31) and a late (November 1 to March 31)
overwintering season. Key parameters include the number of days during the overwintering season having an average temperature less than zero degrees Celsius
(DBZ), the interval apparent prevalence (IAP) during the overwintering season, the effect of being female (Sex), the age effect associated with hatch-year birds, and the
month of sampling. Estimates of original model parameters and those from the four new time windows show strong agreement, suggesting that biological inferences
from the top model using the original time window are robust to changes in the assumed timing of breeding and overwintering seasons. Species effects from the top
model, not shown here, were also robust to changes in all four time windows and exhibited strong concordance with the estimated species effects from the top model
based on the original time window.
doi:10.1371/journal.pone.0032729.t004

Figure 5. Map showing overlap in breeding relative abundance for mallard and gadwall species. Note that the geographic distribution
of gadwall breeding locations is contained almost entirely by areas where mallard breed, with similar areas of high- and low-breeding concentrations
across the contiguous United States. The mallard tested positive at some of the highest rates and the gadwall was near the lowest in proportion of
AIV positive tests, suggesting geographic overlap alone does not explain variations in species prevalence patterns.
doi:10.1371/journal.pone.0032729.g005
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mitigations (e.g., reduced contact between free-range poultry and

waterfowl) which can serve as a valuable method of reducing

potential spillover and subsequent outbreaks and production

losses.

Future directions
This is the first analysis we are aware of that examines the role

of environmental features and infection history as determinants of

AIV within North America from a landscape perspective. We have

shown how local-scale epidemiological history and temperature

observed in the overwintering season can influence the probability

of infection at the individual level during the following breeding

season; however, further mechanistic studies are needed to

determine the relative role of these and other environmental

drivers. The combination of a large proportion of infected

individuals, and an increase in the length of below freezing

temperatures during the overwintering season, suggests that the

proportion of individuals shedding virus—and temperature

mediated environmental persistence between the two periods—

may be a coupled mechanism influencing the spatial epidemiology

of this host-parasite system. Our results suggest that future

breeding season surveillance efforts could be made more efficient

by weighting surveillance activities towards locations where a high

interval apparent prevalence of AIV was observed during the

previous overwintering season, and where temperatures remain

below freezing for relatively extended periods. Given the scarcity

of landscape epidemiological work in this system, greater attention

is needed to disentangle the mechanisms driving infection

probabilities at individual and population levels. Although work

has been conducted examining the differential ability of species

adapted strains to infect other species [42], there remains a lack of

information linking host phylogenies to differential susceptibility

and viral replication. Linking this information with host life history

traits would further identify patterns of differential species risks for

exposure and infection. Such information could provide valuable

insight into the observed variability in infection rates among

species. Disentangling the role of environmental persistence,

differential behavior, and immunological capacity—as it relates

to infection rates at individual and population levels—will require

large-scale observational studies and experiments which have not

been attempted to date; but which could provide valuable

information for improving surveillance systems for early detection

of HPAI strains circulating silently in North American wild

migratory waterfowl.
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