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Abstract

Bioinorganic chemistry is critical to cellular function. Homeostasis of manganese (Mn), for example, is essential for life. A lack
of methods for direct in situ visualization of Mn and other biological metals within intact multicellular eukaryotes limits our
understanding of management of these metals. We provide the first quantitative subcellular visualization of endogenous
Mn concentrations (spanning two orders of magnitude) associated with individual cells of the nematode, Caenorhabditis
elegans.
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Introduction

Inorganic co-factors are fundamental to biological systems.

Despite this vital role of inorganic chemistry in biology, and recent

advances in the tools available for metalloprotein bioinformatics

[1,2], it remains difficult to understand the interactions between

metals and cellular macromolecules that define an organism’s

biochemistry. Approximately one half of known protein structures

contain a metal cofactor [1,3]. Metal dependent metabolism is

involved in a myriad of chemical processes including efficient

energy maintenance, catalysis under physiological conditions, and

highly selective stereo-synthesis. An understanding of protein

structure and function requires knowledge of metal-macromolec-

ular interactions.

Manganese (Mn) is an essential cofactor for multiple classes of

enzymes, e.g. transferases, hydrolases, lyases, and superoxide

dismutase (SOD). The reduction of molecular oxygen in all

aerobic cells results in intermediates such as superoxide radicals,

hydrogen peroxide and hydroxyl ions, which are highly toxic and

may contribute to biological senescence [4]. Typically, these

species are decomposed by a cells complement of antioxidants, of

which Mn-SOD plays an important role in reducing the oxidative

burden.

Mn uptake requires orthologs of mammalian divalent metal

transporters (DMT1) and yeast Smf proteins, which belong to the

wider family of natural resistance-associated macrophage protein

(NRAMP) [5]. In C. elegans, loss-of-function alleles of the three smf

genes alter toxicity to excess Mn [5,6]. Interestingly, these mutants

also show decreased innate immunity suggesting transport of Mn

from the intestinal lumen limits colonization by potential microbial

pathogens. However, how and where intracellular Mn is stored

within a multicellular animal remains unknown.

C. elegans is a widely adopted model system in biological studies,

making this multicellular organism attractive for the study of

inorganic elements and biological-metal distribution, including

homeostatic maintenance. The optical transparency, relatively

simple anatomy, defined cell lineage, and well-characterized

genetics have made C. elegans a proven tool for developmental

studies of protein localization and function. Until now, studies of

the inorganic elements intrinsic to protein structure and function

have lacked methods for direct in situ quantitation and visualiza-

tion. Whilst traditional bulk analysis techniques (e.g. inductively

coupled plasma spectroscopy) possess formidable sensitivity, they

are destructive and provide information on total elemental

abundances only. Histochemical staining has been utilized for

localizing metals in cellular structures but such methods have

significant limitations including issues with specificity (for example,

no stains are specific for Mn), difficulty with simultaneous analysis

of multiple elements, and the lack of quantitative data.

The establishment of detailed anatomical maps that define Mn

and other bioinorganic cellular and subcellular distribution is

essential to build our biological understanding. Furthermore, such

data would provide reference points to protein-based studies of

metal homeostasis. Scanning x-ray fluorescence microscopy is

ideally suited for investigating elemental distributions within

biological specimens [7]. However, the typically slow acquisition

rates and poor detector efficiency of these instruments has limited

the application of this technique to complex biological systems [8].
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High-resolution studies of larger, intact and complex biological

specimens, such as C. elegans, have been impossible due to sample

aging and radiation damage.

Furthermore, as the incident beam excites elemental fluores-

cence from the full thickness of the specimen, the resulting 2D

images display projected elemental content, and unambiguous

interpretation of elemental localization therefore remains difficult.

Results and Discussion

We therefore took advantage of developments in tomographic

analysis to further identify features not readily discernible in 2-D

[9]. In this study we use a 96-channel silicon detector system

(Maia) capable of event-mode x-ray fluorescence detection [10].

This detector accelerated measurements by over two orders of

magnitude to not only quantitate elemental composition but also

interrogate the detailed subcellular spatial arrangement of

elements in situ in whole, unsectioned adult C. elegans. A 100-

projection rotation series was obtained over 360 degrees in 5 hours

with a dose of ,10 MGy. Each projection was generated with an

effective dwell time of 3 ms per 1.6 mm2 pixel. The x-ray

fluorescence data, collected over 8 megapixels of exposure,

represent an order of magnitude more information than any

previous x-ray fluorescence tomography measurements [11,12].

Individual elemental maps were combined to generate a

tomographic visualization of the anterior two-thirds (650 mm)

portion of the specimen with an estimated resolution of ,7 mm3.

The distributions of inorganic elements (K to Zn) are shown in

Figure 1 (for stereo image see Figure S1 and Movie S1). The

nematode intestine is comprised of a ring of four epithelial cells

(INT1) immediately posterior to the pharynx, and subsequent

pairs of cells moving to the posterior (INT2 through INT9). The

INT cells show distinct Ca and Mn localization. To more closely

examine the anterior intestine we used surface rendering to

highlight cellular structures (Figure 2). A single 2-D projection was

chosen and the elemental concentrations determined along a

transect line through the INT2 cell pair and the intestinal lumen

(dashed line Figure 2a). The concentrations of Ca, Mn and Fe

along this line were plotted (Figure 2b). Mn present in the INT2

cell pair is enriched ,450-fold compared to the intestinal lumen.

The peak Mn concentration within the entire sample was mapped

to the INT2 cell pair at 38 mM. How the intestinal cells safely

maintain such high Mn concentration under normal physiological

conditions remains unknown. Exogenous Mn above 75 mM

reduces body and brood size, and median life span in the

nematode [13], while as little as 5 mM is toxic to primary cells in

culture [14]. The maintenance of this steep Mn concentration

gradient implies a critical role for this metal in the intestine.

Uptake and sequestration of Mn from the intestinal lumen may be

Figure 1. 2D projection of elemental tomography in a
lyophilized-wild type adult C. elegans. Shown are K (white), Ca
(yellow), Mn (red), Fe (green), Zn (blue) and elements in combination.
White box defines region examined in close-up (Fig. 2). Dashed line
indicates the gonad. Bar = 50 mm. A movie of the reported elements is
shown in Movie S1.
doi:10.1371/journal.pone.0032685.g001

Figure 2. Surface rendered close-up and concentration plot of
elements in the anterior intestinal (INT) cells. (A) Surface
rendering shows Fe (green) is restricted to the cytoplasm of the INT
cells, and excluded from nuclei. Zn (blue) is concentrated within nuclei
(* = nuclei). Mn (red) and Calcium (yellow) show subcellular enrichment.
Dashed line represents transect examined in panel B. INT cells marked
as labeled. Bar = 25 mm. (B) Plot of elemental (Ca, Mn and Fe)
concentration extracted from transect through the intestinal region.
doi:10.1371/journal.pone.0032685.g002

X-Ray Fluorescence Tomography of C. elegans
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important for innate immunity, as Mn is essential for bacterial

virulence [15].

In the C. elegans, intestine intracellular Ca concentration is

dynamic and oscillates to regulate peristalsis [16,17]. In our

sample this flux in Ca has been captured, such that the anterior

intestinal cells contained the peak Ca concentration of ,3.2 mM

(INT1 cell pair). The distribution of both Ca and Mn in the

intestinal cells is not homogeneous, and appears to overlap

(particularly in INT2 and INT3, Figure 2). This region may

include endoplasmic reticulum, which is thought to be involved in

Ca storage and is abundant in intestinal cells [18].

The intestine is also rich in Fe and shows a characteristic left-

handed twist along the longitudinal axis as it negotiates around the

nematode gonad (Figure 1). The peak Fe concentration of 26 mM

was found in the INT3 cells. We observed that, although the

intestinal cell cytoplasm is rich with Fe, this element is excluded

from intestinal nuclei (Figure 1 and 2). In contrast, Zn is

concentrated within these large nuclei, conceivably as a cofactor

for nuclear transcription factors. Zn also has a wider distribution,

consistent with other nuclei, including those of the nerve ring,

gonad and developing embryos (see movie S1).

Studies of individual purified proteins, recombinant proteins or

isolated biological fluids [1,19] can be confounded by the incorrect

metallation or even inadvertent exclusion of the relevant metal

species altogether [20,21]. Furthermore, sample preparation, in

particular the use of chemical crosslinking prior to analysis, can

adversely affect metal measures [22]. These considerations

emphasize the importance of minimally invasive sample treatment

to maintain the in vivo status of metals. Recent work has

highlighted the diversity and complexity of the prokaryotic

metallome and exposed our limited understanding of how

metalloprotein interactions influence microbial physiology [23].

A deeper understanding of inorganic physiology in more complex

eukaryotic systems is increasingly necessary to tease apart the

critical roles metals play in development, health and disease.

Our investigations indicate that Mn and other elements are

strictly maintained and enriched within specific cell types of C.

elegans. Direct in situ mapping of these elements at the sub cellular

level in this multicellular system has not previously been achieved.

Having determined the wild type elemental distribution in young

adult C. elegans, the wealth of mutants and disease models for this

organism can now be exploited to explore the role of biological

metal homeostasis in development and disease.

Materials and Methods

Strains
Wild-type Bristol strain (N2) was provided by the Caenorhabditis

Genetics Center and cultured at 20uC under standard conditions

[24].

Scanning x-ray Fluorescence Tomography
A cohort of developmentally synchronous 4-day old adults was

then washed four times in excess of S-basal [24] to remove excess

bacteria, anesthetized in ice-cold 0.2% (w/v) NaN3, then washed

again in ice-cold 1.5% (w/v) CH3COONH4. Individuals were

then deposited onto a silicon nitride window (Silson). Excess buffer

was removed via fine tapered paper wicks (MiTeGen) and the

samples straightened using an eyelash. The window was then

frozen in liquid N2-chilled liquid propane using a KF-80 plunge

freezer (Leica) and lyophilized overnight at 240uC. Immediately

following drying the straightest sample was then removed (via an

eyelash) and sandwiched, by its tail, between two pieces of

adhesive tape backed onto a small tab of developed autoradiog-

raphy film and mounted for tomographic imaging.

A beam of 10-keV x-rays was focused to a spot of ,1.5-mm

diameter using a Kirkpatrick-Baez mirror pair at the X-ray

Fluorescence Microscopy beamline of the Australian Synchrotron

[25]. The sample was scanned through the focus at constant

velocity (0.6 mm/s) using a 96-channel Maia detector system [10],

which recorded the x-rays emitted into a 0.2-steradian solid-angle

cone orientated at 90u to the incident beam. Real-time processing

of the recorded x-ray events was processed using the Maia field

programmable gate array (FPGA), and these x-ray events

(characterized by energy, time-over-threshold, and detector

identity) were streamed to disk. Pixel boundary transitions were

defined by interleaving the scan stage positions (horizontal and

vertical) at 1.25 mm intervals with the x-ray events. Spectral

deconvolution and imaging were performed using the Dynamic

Analysis method [26] and GeoPIXE software (http://nmp.csiro.

au/GeoPIXE.html). This analysis reduced the data to 100, 2-D

projected images of the distributions of 12 elements (K - Zn).

Tomographic analysis
The projected images were aligned 1) vertically, using cross-

correlation technique and 2) horizontally, using the ‘centre-of-

mass’ of the fluorescence signal. The Fe image sequence had the

most well defined features, and so was used to determine the

sequence of image shifts that were required to align the dataset.

These shifts were then applied to all projections so as to align the

images for all elements.

X-TRACT (http://xrsi.cmit.csiro.au/Services/AppInfo/X-

TRACT.aspx) software was used for computed axial tomography

(CT) reconstruction following a Feldkamp-Davis-Kress (FDK)-

based algorithm [27]. The reconstructed volumes were smoothed

over 2 voxels in the vertical direction to reduce the effect of a

residual line-by-line misalignment due to hysteretic response of the

scanning system to the rapid, bi-directional scanning pattern

employed. The three-dimensional (3-D) elemental reconstructions

preserved the quantitative nature of the measurement, with voxel

values representing volumetric concentrations. These reconstruct-

ed volumes can be interrogated to determine volumetric elemental

co-localization, scatter plots, and linear profile concentration

gradients. 3-D rendering was performed using Avizo software (ver.

6.2, VSG).

Supporting Information

Figure S1 Stereo view of elements in adult C. elegans. Shown are

K (white), Ca (yellow), Mn (red), Fe (green) and Zn (blue).

(PDF)

Movie S1 Stereo view and movie of a tomographic reconstruc-

tion of the elemental content in C. elegans.

(MP4)
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