
Crystallization and Preliminary Analysis of Crystals of the
24-Meric Hemocyanin of the Emperor Scorpion
(Pandinus imperator)
Elmar Jaenicke*, Bruno Pairet, Hermann Hartmann, Heinz Decker

Institut für Molekulare Biophysik, Johannes Gutenberg-Universität, Mainz, Germany

Abstract

Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute
giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is
reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin
complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal
structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We
report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor
scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1
and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (a= 90.00u, b= 90.02u, c= 90.00u). The asymmetric unit
contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of
the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation,
which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering
experiments.
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Introduction

Hemocyanins are giant oxygen transport protein complexes in

the hemolymph of invertebrates with molecular masses up to

8 MDa [1]. As such they number in molecular mass among the

biggest soluble protein complexes such as cell organelles (e.g.

ribosomes) or even small viruses [2,3]. Due to the enormous size of

hemocyanin complexes up to 160 oxygen binding centers can

interact with the highest oxygen binding cooperativity (nH$7)

observed in nature [4,5].

All hemocyanins bind dioxygen reversible in m-g2: g2

coordination at a type 3 copper active site, which is part of a 4-

a-helix-bundle [6,7,8,9,10]. Depending on the animal group

(phylum) two fundamentally different hemocyanin architectures

are observed [11,12,13]. In molluscs hemocyanins form semi-

hollow cylinders with a diameter of approx. 35 nm, which

are made up from decamers (MW<4 MDa), didecamers

(MW<8 MDa) or multidecamers (MW$12 MDa) of a 350–

400 kDa subunit [14,15,16]. The molluscan hemocyanin subunit

consists of a concatenation of seven to eight paralogous functional

units (FU) of approx. 50 kDa each on a single polypeptide chain.

Each FU possesses two copper atoms that can bind one dioxygen

molecule. The 50 kDa FU is further structurally divided and made

up from two or three domains one of which contains the dicopper

active site [7,17]. In contrast, arthropod hemocyanins occur as

hexamers (MW<450 kDa) or depending on the species, as oligo-

hexamers assembled from several paralogous subunit types with a

molecular mass of 75 kDa [18]. Each arthropod subunit is made

up from three domains with the middle one containing the

dinuclear copper active site. Oligo-hexamers of arthropod

hemocyanin are found in distinct aggregation states being two-

hexamers (MW<900 kDa), four-hexamers (MW<1.8 MDa), six-

hexamers (MW<2.7 MDa) and eight-hexamers (MW<3.6 MDa)

[18].

Hemocyanin multimers are generally distinguished by cooper-

ative oxygen binding (homotropic allosteric control) and complex

heterotropic allosteric control (Ca2+, Mg2+, H+, urate, lactate, etc)

of dioxygen binding. It has been shown that these properties are

associated with large conformational changes [19,20,21,22,23].

Among hemocyanins the four-hexamer hemocyanin of the

emperor scorpion (Pandinus imperator) is known for its exceptionally

high cooperativity with Hill coefficients (nH) commonly ranging

between 6–7 [24]. Owing to these properties hemocyanins are

used as model proteins to better understand their underlying

mechanisms both on a functional and structural level. For example

a general extension of the two-state MWC model, the Nesting

model, was developed and tested using hemocyanins [19,25,26].

Furthermore in recent years hemocyanins have gained interest due

to the fact that they may serve as ecdysone carriers or act as

phenoloxidases after specific activation [27,28]. As such they can

o-hydroxylate monophenols and oxidize diphenols to quinones,

which form the black pigment melanin after non enzymatic
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reaction. The activation of hemocyanins to enzymes can be

induced in various ways [28,29,30,31,32]. In oligo-hexameric

arthropod hemocyanins a well characterized conformational

change which exposes their active site to the solvent accompanies

activation [33,34,35].

Structural investigations of arthropod hemocyanins were

initiated with the crystal structures of two arthropod hemocyanins,

i.e. the native hexamer from spiny lobster and the homohexamer

of subunit II from horseshoe crab [8,9,36]. Oligo-hexameric

hemocyanins have not been suitable for crystallographic analysis

until now due to the fact that crystals of oligo-hexamers are

difficult to grow most probably owing to the multiple conforma-

tional equilibria they manifest.

With the development of cryo-EM reconstruction several low

and medium resolution structures of arthropod hemocyanin

multimers have been solved in recent years. The cryo-EM

structures of Limulus (48-mer) and Scutigera (36-mer) hemocyanin

have been solved at 10 Å resolution [37,38]. Recently the cryo-

EM structure of the emperor scorpion hemocyanin (24-mer) was

presented at a resolution of 6.8 Å [33].

However, despite all the advances made with cryo-EM a

hemocyanin multimer structure with atomic resolution most

probably will only be solved by crystallographic analysis. As part

of our endeavor to grow hemocyanin multimer crystals which

ultimately diffract to atomic resolution, we present here for the first

time the growth and a first analysis of crystals of the 24-meric

hemocyanin of emperor scorpion which diffract to 6.5 Å

resolution. The molecular mass in the asymmetrical unit of

emperor scorpion hemocyanin crystals is one of the largest

recorded in the PDB databank comparable to ribosomes, human

DNA-dependent protein kinase or erythrocruorin [39,40,41].

Materials and Methods

Hemocyanin preparation
Emperor scorpions (Pandinus imperator) were obtained from

‘‘Tropenhaus Hamburg’’ (Hamburg, Germany). Hemolymph

was collected by dorsal puncturing of the pericard and

immediately diluted 1:2 with stabilization buffer [0.1 M Tris/

HCl, 10 mM MgCl2, 10 mM CaCl2, pH 7.8] to prevent

coagulation. Since only a few drops of hemolymph could be

obtained from one scorpion, it was necessary to pool the

hemolymph of several scorpions to obtain a sufficient hemolymph

volume for purification. The hemolymph was centrifuged at

4500 g for 10 minutes at 4uC to remove cellular debris. The

supernatant containing hemocyanin was applied to a Sephacryl S-

300 16/60 HR size exclusion column (GE Healthcare Biosciences,

Sweden). The column was eluted with stabilization buffer at a flow

rate of 0.6 ml/min) at room temperature. Hemocyanin containing

fractions were identified by their absorbance at 340 nm and stored

at 4uC. Only fractions containing 24-meric hemocyanin were used

for the experiments. The protein concentration of hemocyanin

samples was determined by measuring the absorbance at

278 nm using the molar extinction coefficient [e278 (nm) =

1.04 ml*mg21*cm21] calculated for Pandinus imperator hemocyanin

using sequence data of the subunits [42]. When necessary,

hemocyanin samples were concentrated in Biomax-30K centrif-

ugal filters (Millipore, Schwalbach, Germany).

Crystallization
Crystals were grown by the ‘‘hanging drop’’ vapor diffusion

method in Linbro plates covered with silanized cover slides

(Hampton Research, Aliso Viejo, USA). Briefly, 5 ml of a 20 mg/

ml hemocyanin solution were mixed with 5 ml of reservoir solution

[100 mM Tris/HCl buffer, pH 7.8, containing 2.0% (w/v) PEG

[poly(ethylene glycol)] 6000, 1.0 M NaCl, 10 mM CaCl2 and

10 mM MgCl2] and left to equilibrate in the sealed well at 20uC.

Data collection and analysis
Prior to data collection the crystals were soaked in mother

liquor containing 25% glycerol as cryoprotectant for 30 to

60 seconds. Crystals were then flashed cooled in the gas stream

of a cryostream system (Oxford Cryosystems, Oxford, United

Kingdom), with a nitrogen gas temperature of 100 K. The crystals

diffracted to 6.0 Å resolution on a Microstar rotating anode

(Bruker AXS, Karlsruhe, Germany) equipped with HELIOS x-ray

optics (Bruker AXS, Karlsruhe, Germany) and a ‘‘mar345’’ image

plate detector (MARresearch, Norderstedt, Germany).

Three datasets were collected from the same crystal. For

‘‘dataset A’’ 65 exposures (exposure time: 1200 seconds) were

Table 1. Crystallographic parameters.

Wavelength 1.54 Å

Space group C 1 2 1

Unit cell a = 311.61 Å, b = 246.58 Å, c = 251.10 Å

a = 90.00u, b = 90.02u, c = 90.00u

Resolution limits 26.8- 6.5 Å (6.7 – 6.5 Å)

Number of unique reflections 36109 (2694)

Rmerge 0.18 (0.76)

I/s(I) 7.5 (2.0)

Completeness 97.3% (99.2%)

R (after PHASER) 0.43

doi:10.1371/journal.pone.0032548.t001

Figure 1. Emperor scorpion hemocyanin crystal. The crystals
have the form of small bipyramids and grow to a maximum dimension
of 500 mm within weeks after their appearance. The light blue color of
the crystals indicated that hemocyanin molecules in the crystal are at
least partially oxygenated. This crystal was used to measure the dataset.
doi:10.1371/journal.pone.0032548.g001
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collected for 49u with an increment of 0.75u and a crystal detector

distance of 350 mm. For ‘‘dataset B’’ 106 exposures (exposure

time: 2400 seconds) were collected for 106u with an increment of

1.00u and a crystal detector distance of 400 mm. For ‘‘dataset C’’

63 exposures (exposure time: 2400 seconds) were collected for 63u
with an increment of 1.00u and a crystal detector distance of

400 mm. Data was processed with the XDS program package

(Version: January 30, 2009) and data statistics are shown in Table 1

[43]. The space group was determined using the program

POINTLESS (Version 1.4.2) from the CCP4 program suite

[44]. For molecular replacement with PHASER a search model of

Pandinus hemocyanin was built. Briefly, homology models of the

different subunits types (2, 3a, 3c, 4, 5a, 5b, 6) were calculated with

MODELLER (v9.9) using the structure of a hemocyanin subunit

of Limulus polyphemus (PDB code: 1NOL) [8,45]. The model of the

24-meric hemocyanin was obtained by rigid body fitting of the

homology models of the respective subunits into the electron

density of the resting state of Pandinus hemocyanin (EM-databank

code: 5100) obtained by Cryo-EM reconstruction [33]. For rigid

body fitting of the homology models into the electron density

CHIMERA was used [46].

Results and Discussion

Crystals of the 24-meric hemocyanin of the emperor scorpion

(Pandinus imperator) were grown by the hanging-drop vapor

diffusion method. Small bipyramidal shaped single crystals

appeared between three and ten weeks after setup of the

experiment. The crystals grew to a maximum dimension of

500 mm within weeks after their appearance (Fig. 1). The light blue

color of the crystals indicated that hemocyanin molecules in the

crystal are at least partially oxygenated. A complete dataset of a

crystal, which diffracted to a resolution of 6.5 Å, was recorded.

The crystals are monoclinc with space group C 1 2 1 and cell

dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å

(a= 90.00u, b= 90.02u, c= 90.00u). The content of the asymmet-

ric unit was analyzed by molecular replacement. A first analysis

suggested that the asymmetric unit contains one copy of the 24-

meric hemocyanin with a Matthew’s coefficient (Vm) of 2.79 Å3/

Da and a solvent content of 56%. For molecular replacement

search a pseudoatomic model of the 24-meric hemocyanin taking

into account the different subunit types was calculated based on

the electron density of a recent 6.8 Å cryo-EM reconstruction [33]

(Fig. 2). In order to keep preexisting information about the

quaternary structure to a minimum, a first search was conducted

searching for four copies of a hexamer cut out from the 24-meric

hemocyanin model. However, this search did not produce a

meaningful result. Accordingly a second attempt was made by

searching for two copies of 12-mer cut out from the 24-mer. This

search successfully produced a 24-mer model having the same

quaternary structure as the 24-mer from the cryo-EM reconstruc-

tion. Thus the molecular mass in the asymmetrical unit of emperor

scorpion hemocyanin crystals is one of the largest in the PDB

Figure 2. Pseudoatomic model of Emperor scorpion hemocy-
anin used for molecular replacement. The 24-meric hemocyanin
model was obtained by rigid body fit of homology models of the
respective subunits into a electron density obtained by cryo-EM
reconstruction [33]. For molecular replacement a 12-mer consisting of
hexamers H1/H2 was successfully used as search model. Color legend
(in brackets the corresponding subunit name in Eurypelma hemocyanin
is given [47]): SU-3a (Eury-a) = green, SU-5b (Eury-b) = grey, SU-3c (Eury-
c) = brown, SU-5a (Eury-d) = yellow, SU-6 (Eury-e) = pink, SU-2 (Eury-
f) = blue, SU-4 (Eury-g) = red.
doi:10.1371/journal.pone.0032548.g002

Figure 3. Electron density at the active site. Calculated electron density (2F0-FC map, 1s contour level) of SU-5b A) with all copper and
dioxygen atoms included in all 24 subunits of the molecular replacement model, B) with all copper and dioxygen atoms omitted in the molecular
replacement model. The molecular replacement model included all side chains, but for reason of clarity only the six histidines coordinating the active
site are shown. Color coding: backbone atoms = green, carbon = grey, nitrogen = blue, copper = orange, oxygen = red.
doi:10.1371/journal.pone.0032548.g003
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databank comparable to ribosomes, human DNA-dependent

protein kinase and erythrocruorin [39,40,41].

Quality of the electron density and model bias
The R-factor of the model after molecular replacement was

0.43, which is not unreasonably high taking into account the

resolution of the dataset and the fact that no further refinement of

the model was made. The quality of the electron density obtained

as a result of molecular replacement is very good taking into

account its resolution of 6.5 Å (Fig. 3). However, the resulting

electron density is likely to be biased by the phases of the search

model. A detailed evaluation of model bias as well as refinement of

the complete structure are difficult given the enormous size of the

protein complex and thus are objective of future work.

In order to get a first estimate of the model bias the electron

density was calculated from models, which lacked certain parts.

Thus electron density in the spatial volume of the lacking part of

the model is not influenced by phase information from the lacking

part of the model. This consequently allows within a certain range

to distinguish if observed structural features originate from the

model or not. In a first trial all active sites were omitted from the

model used for calculating phasing. The oxygenated active site of

hemocyanin consists of a dioxygen molecule and two copper

atoms, which are coordinated by six histidine residues. In the

electron density obtained with the 24-meric hemocyanin model

obtained from molecular replacement, which includes the

oxygenated active site in all 24 subunits, electron density is

present in the region, where the active site is expected (Fig. 3A). If

in a modified model the copper atoms and dioxygen molecules are

deleted in all 24 subunits and electron density is recalculated,

electron density is still present in the region normally occupied by

copper and dioxygen (Fig. 3B). This indicates that the electron

density in the region of the active site is essentially independent

from the model input, an excellent indication of the trustworthi-

ness of the model. Nevertheless, the form of the electron density

varies to a small extent if the molecules of the active site are

present or absent.

In a second trial even bigger parts of the model used for phasing

were omitted. The hemocyanin of the emperor scorpion is a 24-

mer made up from seven paralogous subunit types (Fig. 2). To

check the effect of omitting a bigger substructure one copy of

subunit 5b (75 kDa), which is located in the center of the

hemocyanin molecule, was deleted from the model used for

calculating phases. This means that a 23-mer instead of a 24-mer

was used for calculating the electron density (Fig. 2, circled subunit

5b). Unexpectedly in the empty space, which formerly was

occupied by subunit 5b, almost the complete electron density

accounting for a-helices and even that active site could be

identified (Fig. 4). This result indicates that model bias in the

electron density is not as big as might be suspected, because no

preexisting information (i.e. model or non crystallographic

symmetry) was used for subunit 5b.

Hemocyanin conformation in the crystal
The pseudoatomic model of emperor hemocyanin obtained

from cryo-EM and the model, which is the result of molecular

replacement, are almost identical with respect to their conforma-

tion (Table 1). This shows that emperor scorpion hemocyanin

crystallizes in the same conformation which is also found in

solution (i.e. cryo-EM). The blue color of the crystals confirms that

the active sites are oxygenated, which is also suggested by the

clearly visible electron density observed in the region of the active

site (Fig. 3). Small angle x-ray scattering (SAXS) experiments,

which were made previously with the closely related 24-meric

hemocyanin of tarantula, also suggest that emperor scorpion

hemocyanin in the crystal is in a oxygenated conformation and not

in a deoxygenated conformation (Table 2) [20].

Crystal packing
Despite the enormous size of the 24-meric hemocyanin

molecule (20620610 nm) the crystals are packed as most other

protein crystals and do not contain an above average amount of

water (Fig. 5). This is indicated by their Matthews coefficient (2.79

A3/Da), which relates to a solvent content of the crystal of 56%.

Within the crystal a manifold of different contacts exist between

hemocyanin molecules such as for instance an extensive contact

region between the outer corner of the 24-mer (subunits 2, 4 and

Figure 4. Electron density within the spatial volume of a subunit omitted in the model. One copy of SU-5b (Fig. 2, circled), which forms
the central ring of subunits, was omitted from the 24-mer and electron density were calculated from the resulting 23-mer. Electron density, which
accounts for secondary structure elements such as a-helices, can clearly be identified in the free space of the omitted subunit 5b.
doi:10.1371/journal.pone.0032548.g004

Table 2. Conformation of the 24-mer hemocyanin molecule.

Method Qdode (6) ddode (Å) Sdode (Å)

X-ray, MR result 12 110 14

Cryo-EM 13 110 14

SAXS (oxy) 19 104 18

SAXS (deoxy) 6 103 4

Qdode = tilt angle between 12-mers; ddode = distance between centers of 12-
mers, Sdode = distance of parallel shift of 12-mers against each other. SAXS data
taken from [20]. Cryo-EM data based on a model constructed from [33].
doi:10.1371/journal.pone.0032548.t002
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6) and the central cavity (subunits 3c and 5b) of an adjacent

hemocyanin molecule (Fig. 5C). Interestingly an association of two

24-mers in a way similar to the 48-mer hemocyanin molecule of

the horseshoe crab (Limulus polyphemus) is not observed [38]. We

note however that a more detailed analysis of interactions will only

be possible when a refined structure is available in the future.

These detailed analyses are under way and we anticipate that they

will shed important light not only on hemocyanin but also on the

structure, assembly and function of organelle-sized macromolec-

ular complexes found in living cells.
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