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Abstract

A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The
principle that determines the abundance of different proteins in a proteome is of fundamental significance for an
understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide
distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases,
protein abundance is positively correlated with the protein’s origination time or sequence conservation during evolution; it
is negatively correlated with the protein’s domain number and positively correlated with domain coverage in protein
structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified
by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are
more abundant than those that act on information modulation (information category). Thus, protein abundance is
intrinsically related to the protein’s inherent characters of evolution, structure, and function.
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Introduction

As the endpoint of the central dogma of biology, proteins are

central players of most biological processes, and their abundances

are regulated precisely to meet with dynamic functional require-

ment [1]. As the result of regulatory and evolutionary processes, a

proteome may span 6 to 12 orders of magnitude among

abundance distribution [2]. Exploring the principle controlling

protein abundance is of great importance for the deep under-

standing of the building blocks of a bio-entity. Previous studies

have made great progress about this open question [3]. In general,

genes with higher mRNA/protein expression level tend to evolve

slowly [4–6], have less intronic DNA [7], code for smaller proteins

[8,9], have higher biases of amino acid composition [10,11] and

codon usage [11–13], and tend to carry out ‘‘core functions’’

[11,14]. However, these analyses are mostly based on high

throughput transcript expression data, or proteome data only from

single species. What’ more, previous studies didn’t pay attentions

to the relationship between protein abundance and its character of

domain composition. There is lack of systematic analysis to

explore the relationship between protein abundance and protein’s

inherent characters at whole proteome level across species.

To this end, it is necessary to identify and quantify proteins at

proteome-wide. With the fast advancement of quantitative

proteomics based on mass spectrometry, protein abundance can

be measured at the whole proteome level, making biological rule

discovery possible. The Human Liver Proteome Project (HLPP)

[15], orchestrated by the Human Proteome Organization

(HUPO), is the first global survey of proteomes for a human

organ, and has produced a comprehensive and reliable dataset

[16]. Moreover, some quantitative proteome datasets have been

generated from other species, such as M. musculus [17,18], D.

melanogaster [19], C. elegans [20], S. cerevisiae [21], and E. coli [11].

We analysed these data and uncovered three regular patterns

regarding the proteome-wide distribution of protein abundance in

the context of evolution, structure, and function.

Materials and Methods

1. Protein quantification
The quantification of protein abundance in the human liver was

estimated using the spectral counts (SC) method. The spectral

count index (SCI), an adjusted SC in accounting for the theoretic

tryptic-peptide number of protein, was calculated following the

reported methods [16]. To integrate data from multiple data

sources, various SCI values from different experimental batches

were normalized, and this normalized SCI value was termed the

spectral count index normalized (SCIN) [16]. The quantitative
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proteomes of the mouse liver [17], D. melanogaster [19], and C.

elegans [20] were also calculated according to the SCI method.

Protein abundance in the mouse renal cortex [18], S. cerevisiae [21],

and E. coli [11] proteome datasets were presented by their

normalized spectral abundance factor (NSAF) value and copies per

cell value from original papers, respectively.

2. Functional and subcellular categorization by Gene
Ontology

All the gene products of seven datasets (proteomes of human

liver, mouse liver, mouse kidney, D. melanogaster, C. elegans, and E.

coli) were categorized into given function and subcellular classes by

Gene Ontology (GO) annotations [22] according to the Generic

GO Slim v1.770 standard.

To obtain some specialized functional categories such as

‘‘meiosis’’ and ‘‘cytokinesis’’, functional and subcellular categories

of yeast gene products were assigned automatically by the GO

Slim Mapper system in the Saccharomyces Genome Database (SGD)

according to the ‘‘Yeast GO Slim’’ standard.

3. Estimation of protein origin time and sequence
conservation

Protein origin time was estimated by species diversity time [23].

Proteins of the seven proteome datasets were assigned orthology

group IDs by OrthoMCL v2. The origin time of an orthology

group was estimated by the latest diversity time that can cover all

the species involved. All the 87 species in OrthoMCL were used to

demarcate the orthology group origin time. The diversity time tree

of all the 87 species in OrthoMCL was constructed (Fig. S1A),

and then was simplified to 7 significant diversity time nodes (Fig.
S1B). The protein sequences of the seven proteome datasets were

extracted, and sequence conservation was determined using the bi-

BLAST method with BioEdit software.

4. Functional enrichment analysis
The analysis was carried out using the web-accessible DAVID

(Database for Annotation, Visualization and Integrated Discovery)

tool [24]. DAVID can recognize the IPI identifier from the human

liver and the mouse liver datasets, UniProt AC from the mouse

kidney, the D. melanogaster and the E. coli datasets, WBGene ID (a

type of ID in WormBase) from the C. elegans dataset, and the SGD

(Saccharomyces Genome Database) ID from the S. cerevisiae

dataset. Medium classification stringency and 12 items were

chosen for enrichment calculation: COG_ONTOLOGY,

SP_PIR_KEYWORDS, UP_SEQ_FEATURE, GOTERM_BP_

FAT, GOTERM_MF_FAT, KEGG_PATHWAY, BIOCARTA,

BBID, INTERPRO, PIR_SUPERFAMILY, SMART, and

OMIM_DISEASE. To avoid high enrichment score disturbance

of cellular component categories, GOTERM_CC_FAT was

neglected on purpose.

5. Definition of protein domain characteristic parameters
Protein domains were defined essentially as described previ-

ously [25], using RPS-BLAST against the Pfam [26] and

SMART [27] databases with the E-value ƒ0:001 after masking

low-complexity regions. The domain number (DN) in one protein

was calculated including the domain repeats in one protein.

Domain coverage (DC) refers the percentage of the entire length

of a protein occupied by domains. DC was divided by its

corresponding DN to get the DC/DN value. Protein-protein

interaction (PPI) domains were defined through the InterDom

database [28]. PPI domain number (PPI_DN) refers the number

of PPI domains in one protein, and PPI domain coverage

(PPI_DC) means the percentage of the entire length of a protein

occupied by PPI domains. PPI_DC/PPI_DN was calculated by

dividing PPI_DC by PPI_DN.

6. Statistical analysis
All difference-tests in our analysis were carried out by using the

Wilcoxon rank sum test, a non-parametric statistical hypothesis

test for assessing whether two independent samples of observations

have equally large values. All the correlations were defined on the

non-parametric Spearman rank correlation, which assesses how

well the relationship between two variables can be described using

a monotonic function. We perform Wilcoxon rank sum test and

spearman rank correlation using MATLAB 7.11.0. Predictive

power means the probability that any two random pairs of

proteins meet with the general trend. The predictive power value

of each correlation was calculated based on pairs of randomly

sampled proteins in each proteome dataset, and is represented by

the percentage of the true predictions over all the protein pairs

selected. We selected various subsets of protein pairs with a

minimum rank difference percentage from 0 to 95%, and obtained

the minimum and maximum predictive power values for each

correlation [29].

Results

1. Evolutionary rule in protein abundance: origination
and conservation versus abundance

An important evolutionary property of a protein is its

origination time, which reflects its evolutionary span. Taking a

proteome as a whole, we found that the abundance of proteins is

positively correlated with the protein’s origination time, though

sometimes the correlations are not so strong (Fig. 1 and Table
S1). That is, the earlier a protein is born, the higher its

abundance tends to be. This tendency exists in all the six species

examined, indicating that it might be a general rule of organism

phylogeny. One hypothesis is that the proteins that appeared

first are likely to carry out essential housekeeping roles and are,

therefore, required in higher abundance, whereas proteins that

evolved later tend to act in specialized functions that do not

need to be in high abundance. Enrichment analysis of the

functional categories in proteins supports the hypothesis that

proteins of housekeeping function or regulatory functions are

clustered with distinct origination time in all the six species

(Table S2).

An interesting question in molecular evolution is why proteins

evolve at different rates [4]. A negative correlation between

transcript abundance and the rate of sequence evolution, in which

highly expressed (transcripts level) genes evolve slowly, has been

shown to hold true across the species [6], while a positive

correlation between protein abundance and sequence conserva-

tion has been recently discovered from the quantitative proteomic

data of C. elegans and D. Melanogaster [30]. To determine whether

this phenomenon can be extended towards two evolutionary

directions beyond invertebrates, we investigated mammals and

single-cell organisms–species that lie in two evolutionary directions

from invertebrates–and indeed found a positive correlation

between abundance and sequence conservation on the proteome

level among most species examined (Fig. 2). Interestingly, we

found that the correlation between protein conservation degree

(human vs. mouse) and protein abundance is not significant (Fig. 2,

A5, B5), which was never reported before. As for comparison of

human and mouse, the two species showed high conservation and

the identity of most proteins is over 80%, which lead to no

relationship with abundance distribution. What’s more, as for E.

Regular Distribution Patterns of Protein Abundance
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coli, the statistic data was not powerful in case that the homologous

proteins were too little in the OrthoMCL database, which may

partly lead to the low correlation between conservation degree (E.

coli vs. mouse) and protein abundance (Fig. 2, B1 and F4).

2. Structural rule in protein abundance: domain versus
abundance

The function of a protein is determined by its structure, which is

mostly embodied in its domain architecture. We investigated the

Figure 1. Proteome-wide correlation of proteins’ abundance with their origin time across six species. The relationship between origin
time and abundance of proteins in H. sapiens (A), M. musculus (B), D. melanogaster (C), C. elegans (D), S. cerevisiae (E), and E. coli (F) were analyzed by
Spearman rank correlation method. Protein origin time are categorized according to the data in OrthoMCL database. For (A)–(E), I, ,1 Gya; II, 1–
1.58 Gya; III, 1.58–1.84 Gya; IV, 1.84–2.23 Gya; V, 2.23–4 Gya; VI, .4 Gya. For (F), I, ,2.6 Gya; II, 2.6–4 Gya; III, .4 Gya. R represents Spearman rank
correlation coefficient and P represents its P-value. The values of upper and lower quartile are indicated as upper and lower edges of the box, and the
values of median are indicated as a red bar in the box. The maximum whisker length is set as 1.5, which means points are drawn as outliers (dotted
individually outside the bars) if they are larger than q3+1.56(q32q1) (shown as the upper bar) or smaller than q121.56(q32q1) (shown as the lower
bar), where q1 and q3 are the 25th and 75th percentiles respectively. (SCIN: Spectral Count Index Normalized (11); SCI: Spectral Count Index (11);
NSAF: Normalized Spectral Abundance Factor (12)).
doi:10.1371/journal.pone.0032423.g001
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relationship between protein abundance and protein domain

characteristics, including DN [31,32] and DC [33]. DN is the

number of annotated domains in the sequence of a protein,

whereas DC is the percentage of the amino acid sequence that

defines the domain over the whole protein sequence. As additional

evidence, the number or coverage of domains mediating PPI

(PPI_DN or PPI_DC) [33] are also employed in the analyses.

We found that the DN or PPI_DN of a protein is negatively

correlated with its abundance, especially in higher eukaryotes

(Fig. 3A and Fig. S2A). Notably, the correlations are not strong in

the proteome data of S. cerevisiae and E. coli. This exception may be

partly due to the fact that the proportions of multi-domain

proteins in these two single-cellular organisms are much lower

than other multi-cellular organisms, which is revealed by our

analysis based on the data used in this study (Fig. S3A) and

previous related studies [32]. We found the proportions of multi-

domain proteins correlate well with the strengths of the

correlations between DN and protein abundance (R = 0.9252,

P = 0.0028, see Fig. S3B). In contrast, the DC or PPI_DC of

proteins positively correlated with their abundance in the

proteomes of all the six species (Fig. 3B and Fig. S2B).

DN can be regarded as the simplest parameter representing the

complexity of a protein structure [31,32,34], and PPI_DN

represents the complexity of the protein structure related to PPI.

The smaller the DN or PPI_DN, the simpler the protein is. It can

be inferred that proteins with simpler structures tend to be of

higher abundance. Similarly, DC is an index of the structural

compactness of a protein, and PPI_DC is an indicator of the

structural compactness of PPI [33]. The significantly positive

correlations between protein abundance and the proteins’ DC or

PPI_DC reveal that the more compact proteins are of higher

abundance. To represent the integrated structural character,

including complexity and compactness, we introduced a combined

parameter, DC/DN (or PPI_DC/PPI_DN). We found that the DC/

Figure 2. Proteome-wide correlation of proteins’ abundance with their sequence conservation across six species. The abundance of a
given H. sapiens protein was plotted with its orthologue sequence similarity: H. sapiens vs. E. coli (A1), S. cerevisiae (A2), C. elegans (A3), D.
melanogaster (A4), and M. musculus (A5), respectively. The next five rows are for M. musculus (B1–5), D. melanogaster (C1–5), C. elegans (D1–5), S.
cerevisiae (E1–5), and E. coli (F1–5), respectively. Medians of equal-sized bins are indicated as crosses; whiskers encompass the range from 25% to
75% of values. The orthologs of every two species are indicated as dots in the background. The correlation coefficients (R) between sequence
conservation and abundance are shown in the inset.
doi:10.1371/journal.pone.0032423.g002
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DN or PPI_DC/PPI_DN of proteins positively correlated with their

abundance in the proteomes of all the six species (Fig. 3C and

Fig. S2C). Thus, simple and compact proteins tend to exhibit

high abundance, which does have some predictive power

especially when proteins with vastly different domain characters

are compared (Table S3).

Interestingly, the strength of correlation coefficient increases

through the course of evolution (Fig. 3 and Fig. S2), which may

be related to the increasing of biological complexity. The

abundance of proteins in the higher multi-cellular organisms

may need more precise regulation, to meet with the complex

functional requirement. This may lead to the stronger correlation

between protein abundance and its complexity or compactness.

3. Functional rule in protein abundance: function versus
abundance

Cellular functions can be grouped into two categories: ‘‘mass

category’’ and ‘‘information category’’. Proteins in the mass

category act on material conversion and transportation, including

carbohydrate/lipid metabolism, amino acid/nucleotide metabo-

lism, and energy metabolism; proteins in the information category

act on information modulation and transduction, including

response from extracellular stimulus to intracellular signal

transduction, to gene regulation and expression. We found that

from H. sapiens to E. coli, the abundance of proteins in the mass

category is significantly higher than that of proteins in the

information category (Fig. 4A–F and Tables S4, S5). For

example, meiosis and cytokinesis proteins, which participate in a

typical information process of S. cerevisiae that instantly decide the

fate of a cell, have low abundance distributions (Fig. 4E). Many

proteins in processing information have lower abundance than

those in mass activities (Fig. 4G, 4H). Even in the metabolism

category, which belongs to the mass category, nucleic acid and

protein metabolisms, which are closer to information processing,

exhibit lower abundance distributions than proteins involved in

metabolisms of simpler compounds, such as lipid, amino acid, and

carbohydrates (Fig. 4I, 4J).

The distinction of mass category and information category in

protein abundance correlation is predicted by the evolutionary

and structural rules. For example, human proteins in the mass

category are highly enriched in proteins originating earlier than

4 Gya, and tend to be with lower DN, and higher DC and PPI_DC

Figure 3. Proteome-wide correlation between proteins’ abundance and their domain characters. Three parameters, namely, domain
number (DN) (A), domain coverage (DC) (B), and DC/DN (C), were employed in the analyses. R represents Spearman rank correlation coefficient and P
represents its P-value. Medians are indicated as black dots (A) or crosses (B, C), and whiskers encompass the range from 25% to 75% of values.
doi:10.1371/journal.pone.0032423.g003

Figure 4. Proteome-wide correlation of proteins’ abundance with their functional categorization across six species. Abundance
distribution of proteins in the mass and the information categories was compared by cumulative curves in H. sapiens (A), M. musculus (B), D.
melanogaster (C), C. elegans (D), S. cerevisiae (E), and E. coli (F). Stratified comparison: mass vs. information processing activities in H. sapiens (G) and S.
cerevisiae (H); metabolism subclasses in H. sapiens (I) and S. cerevisiae (J). Comparison among biogenesis machines of three bio-molecules in H.
sapiens (K), M. musculus (L), D. melanogaster (M), C. elegans (N), S. cerevisiae (O), and E. coli (P).
doi:10.1371/journal.pone.0032423.g004
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than those in the information category (Fig. S4, B1–D6). As

expected from the Functional Rule in Protein Abundance, the

central dogma of genetic information flow (DNARmRNARpro-

teins) follows the trend of protein abundance up-regulation

correlated with top/down information flow, in which proteins

participating in DNA replication are of the lowest abundance,

those in RNA transcription are of median abundance, and those in

protein translation are of the highest abundance across species

(Fig. 4K–P and Table S6). Also as predicted, along the biological

information flow of ‘‘signallingRtranscriptionRtranslationRme-

tabolism’’, downstream systems with higher abundance are of an

earlier origination tendency than upstream ones (Fig. S4, A1–6).

Discussion

Genome sequencing has enabled us to acquire a vast amount of

data, and this has accelerated the discovery of biological rules at

the genome level [35,36]. In comparison with the genome and also

transcriptome, the proteome is more dynamic and diverse in

composition, modification, interaction, and localization. There

remain many fundamental rules or regular patterns to be

discovered that may explain the diverse nature of the proteome.

With the advancement of proteomics, more and more studies

began to mine the rules behind the huge datasets [37].

Protein abundance is one of important phenotypic variables of

proteins, and is controlled precisely. Exploration for the proteome-

wide relationship between the intrinsic properties (such as evolution-

ary, structural or functional characters) and this phenotypic variable

will benefit to discovering the essential rules related to proteins. Here,

we described three correlations of protein abundance with the

protein’s intrinsic properties of evolution, structure, and function,

observed to be consistent from bacteria to yeast, worm, fly, mouse,

and human: (1) There is a positive correlation with both the protein’s

origination time and sequence conservation during phylogeny,

confirming the conclusions of previous studies at a wider range of

species [4–6]; (2) We found protein abundance negatively correlated

with the protein’s domain number, and positively correlated with

protein’s domain coverage, which indicates that proteins with simple/

compact structures tend to be high abundant. The finding that

proteins with more domains tend to be with lower abundance may be

due to the selection to reduce the risk of mis-translation [6] of the

multi-domain proteins. Another phenomenon that higher abundant

proteins tend to have higher domain coverage may result from the

selection to reduce the length of non-functional regions within the

abundant proteins to minimize transcriptional and translational costs,

just as the similar selection on the length of intronic DNA [7]. (3) The

abundances of proteins involved in the mass category tend to be

higher than those in the information category, which also is similar to

previous studies’ conclusions obtained from the data of bacteria [11]

or human cell line [14]. Our work firstly confirmed that this finding is

presented across species, and some new findings emerged based on

our new analyses. Intriguingly, the third pattern can be inferred from

the first two patterns, highlighting the importance of the structure and

function relationship.

Taken together, protein abundance distribution across the whole

proteome displays prominent regularities, even though there are

large discrepancies in protein composition and abundance among

various proteomes of diverse bio-entities. Such regularities seem to

be maintained in different organs as analysis of the mouse kidney

dataset yielded identical patterns with the analysis of the mouse liver

datasets (Fig. S5). The discovery of those regularities strongly

demonstrated that the quantitative and comprehensive proteomic

datasets could provide a rich ground for the exploration and

discovery of the fundamental rules in nature on the proteome scale.

Supporting Information

Figure S1 Diversity time of all 87 species in OrthoMCL
v2. (A) Detailed diversity time tree that was constructed according

to the reference (Hedges 2002). (B) Simplified diversity time tree

with 7 significant time nodes to keep proper time scale distances

(0.58 or 0.37, 0.26, 0.39, 1.77 and 1.40 Gya respectively) for

analysis. The 6 species analyzed were in red text.

(PNG)

Figure S2 Proteome-wide correlation between protein
abundance and its protein-protein interacting (PPI)
domain parameters. Three Parameters including PPI domain

number (PPI_DN) (A), PPI domain coverage (PPI_DC) (B) and

PPI_DC/PPI_DN (C) were employed for the analyses. R represents

Spearman rank correlation coefficient and P represents the P-value

of the spearman rank correlation analysis. Medians are indicated

as black dots (A), or crosses (B, C), and whiskers encompass the

range from 25% to 75% of values.

(TIF)

Figure S3 The proportion of multi-domain proteins in
each dataset (A) and its relationship with the correlation
coefficient values between domain number and protein
abundance (B). E. coli (Ec), S. cerevisiae (Sc), C. elegans (Ce), D.

melanogaster (Dm), M. musculus cortex of kidney (MmC), M. musculus

liver (MmL),and H. sapiens (Hs). R represents the pearson

correlation coefficient, and P represent the P-value.

(PNG)

Figure S4 Comparison of mass categorial proteins with
information categorial ones on distributions of origin
time and domain character among six species. Origin

time distributions of proteins in H. sapiens (a1), M. musculus (a2), D.

melanogaster (a3), C. elegans (a4), S. cerevisiae (a5) and E. coli (a6).

Domain character distributions of proteins in the same species: DN

(b1–6), DC (c1–6) and PPI_DC (d1–6).

(PNG)

Figure S5 Consistency of the three rules across tissues.
When replacing mouse kidney data by mouse liver data in

analyses, all rules were maintained. These analyses include:

correlations of protein abundance with origin time (A), sequence

conservation (B) domain characters (C), functional categories (D)

and biogenesis machines of three bio-molecules (E).

(TIF)

Table S1 Rank sum test p-values between origin time
categorized proteins’ abundance datasets.

(DOC)

Table S2 The functional enrichment results of differ-
ent origin time protein categories in 6 species by
DAVID.

(DOC)

Table S3 Predictive power of each domain character
parameter correlating with protein abundance.

(DOC)

Table S4 Rank sum test p-values between various
functional categorized proteins’ abundance datasets
across six species.

(DOC)

Table S5 Rank sum test p-values between various
functional categorized proteins’ abundance datasets in
H. sapiens and S. cerevisiae.

(DOC)
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Table S6 Rank sum test p-values between proteins’
abundance datasets of three bio-molecules biogenesis
machines across six species.
(DOC)
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