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Abstract

Since the report of a paralogous acetylcholinesterase (AChE, EC3.1.1.7) gene in the greenbug (Schizaphis graminum) in 2002,
two different AChE genes (Ace1 and Ace2) have been identified in each of at least 27 insect species. However, the gene
models of Ace1 and Ace2, and their molecular properties have not yet been comprehensively analyzed in any insect species.
In this study, we sequenced the full-length cDNAs, computationally predicted the corresponding three-dimensional protein
models, and profiled developmental stage and tissue-specific expression patterns of two Ace genes from the red flour
beetle (Tribolium castaneum; TcAce1 and TcAce2), a globally distributed major pest of stored grain products and an
emerging model organism. TcAce1 and TcAce2 encode 648 and 604 amino acid residues, respectively, and have conserved
motifs including a choline-binding site, a catalytic triad, and an acyl pocket. Phylogenetic analysis show that both TcAce
genes are grouped into two insect Ace clusters and TcAce1 is completely diverged from TcAce2, suggesting that these two
genes evolve from their corresponding Ace gene lineages in insect species. In addition, TcAce1 is located on chromosome 5,
whereas TcAce2 is located on chromosome 2. Reverse transcription polymerase chain reaction (PCR) and quantitative real-
time PCR analyses indicate that both genes are virtually transcribed in all the developmental stages and predominately
expressed in the insect brain. Our computational analyses suggest that the TcAce1 protein is a robust acetylcholine (ACh)
hydrolase and has susceptibility to sulfhydryl agents whereas the TcAce2 protein is not a catalytically efficient ACh
hydrolase.
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Introduction

Acetylcholinesterase (AChE, EC3.1.1.7) is an essential enzyme

at the synapses of cholinergic neurons in the central and peripheral

nervous systems in all animals. It catalyzes the hydrolysis of the

neurotransmitter acetylcholine (ACh), thus terminating neuro-

transmission. AChE has long been of academic and industrial

interest and studied extensively at the biochemical, biophysical,

and molecular levels in mammals because this enzyme is a target

of palliative Alzheimer drugs, nerve agents, and insecticides [1]. In

insects, AChE has also been extensively studied because it serves as

the target site for organophosphate and carbamate insecticides,

and involves in insecticide resistance known as target-site

insensitivity [2–8].

The first insect AChE gene (Ace) was sequenced from Drosophila

melanogaster in 1986 [9]. After the first Ace paralogous gene was

reported in the greenbug (Schizaphis graminum) in 2002 [10], the D.

melanogaster Ace gene was designated as Ace orthologous gene. It is

now clear that D. melanogaster has only one Ace gene as confirmed

by its genome sequence [11], whereas most other insect species

have two different Ace genes (i.e., Ace1 and Ace2) [12]. Ace1

commonly refers to the Ace paralogous (AP-Ace) gene and Ace2 the

Ace orthologous (AO-Ace) gene in relation to the D. melanogaster Ace

[8].

To date, the cDNAs encoding AChEs have been sequenced

from at least 43 insect species. Among them, both Ace1 and Ace2

have been reported from each of 27 species, including Bombyx

mandarina (GenBank accession numbers: EU262633 for BmAce1

and EU262632 for BmAce2); Sitobion avenae [13]; Rhopalosiphum padi

[13]; Anopheles gambiae [14]; Liposcelis decolor (GenBank accession

numbers: FJ647186 for LdeAce1 and FJ647187 for LdeAce2);

Orchesella villosa [15]; Liposcelis entomophila (GenBank accession

numbers: EU854149 for LeAce1 and EU854150 for LeAce2);

Blattella germanica [16]; Bemisia tabaci [17]; Culex pipiens quinquefascia-

tus (GenBank accession numbers: XM_001847396 for CqAce1 and

XM_001842175 CqAce2); Bombyx mori [18]; Acyrthosiphon pisum

(GenBank accession numbers: XM_001948618 for ApAce1 and

XM_001948953 for ApAce2); Nasonia vitripennis (GenBank accession

numbers: XM_001600408 for NvAce1 and XM_001605518 for

NvAce2); Pediculus humanus corporis [19]; Cydia pomonella [20];

Helicoverpa assulta [21]; Aedes albopictus (GenBank accession

numbers: AB218421 for AaAce1 and AB218420 for AaAce2); Aphis

gossypii [22]; Culex tritaeniorhynchus [23]; Myzus persicae [24]; Culex

pipiens [25]; Plutella xylostella [26–28]; Chilo suppressalis [29]; Pediculus

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32288



humanus capitis [19]; Aedes aegypti [30]; Liposcelis bostrychophila

(GenBank accession numbers: FJ647185 for LbAce1 and

EF362950 for LbAce2) and Alphitobius diaperinus [31]. The

remaining insect species may also have two Ace genes but only

one Ace gene (Ace1 or Ace2) has been documented.

The existence of two Ace genes in insects has attracted much

attention to the study of their functions, particularly their roles in

insecticide resistance [8,32] and as targets for developing new

insecticides [12,33–37]. Beetles (coleopterans) are the most

evolutionarily successful metazoans, accounting for 25% of all

known animal species, far more than any other taxonomic orders

[31]. Despite the diversity and economic importance of coleopter-

ans, Ace genes have been reported from only two species: Leptinotarsa

decemlineata [5,6] and Alphitobius diaperinus [31]. Although T. castaneum

(the red flour beetle) is one of the most notorious stored grain pests in

the world and is now regarded as an emerging model organism, its

Ace genes were only predicted from genomic sequence and detailed

information on these genes has been limited.

In this paper, we report two Ace genes from T. castaneum. Our

study of the two genes focuses on the genome organization, three-

dimensional (3D) protein models, phylogenies, and expression

patterns of the two genes at different developmental stages of the

insect, in an effort to better understand the functions of the two

genes and obtain insights into better strategies for insect pest control.

Results

AChE cDNA and deduced amino acid sequences
Based on the predicted sequences of two T. castaneum Ace genes

in NCBI (XM_968369 and XM_965681), we designed specific

primers (Table 1) to determine the full-length cDNAs of the two

genes from the brain of T. castaneum. Each of several polymerase

chain reaction (PCR) primer pairs was able to generate overlapping

fragments for each gene and it was then possible to assemble them into

its full-length cDNA of the protein coding region. The two deduced

amino acid sequences show significant similarities to AChE1 (AP-

AChE) and AChE2 (AO-AChE) proteins of other insects in GenBank

according to our BLASTP analysis. Therefore, the two T. castaneum Ace

genes are named TcAce1 (AP-Ace) and TcAce2 (AO-Ace), and their

protein products are named TcAce1 and TcAce2, respectively. The

TcAce1 cDNA contains 2148 base pairs (bp) and has an open reading

frame (ORF) of 1944 bp, encoding a protein of 648 amino acid

residues, whereas the TcAce2 cDNA contains 1,890 bp and has an

ORF of 1,812 bp, encoding a protein of 604 residues. However, we

were not able to obtain the 59-untranslated region (59-UTR) of the

TcAce2 cDNA (Fig. 1).

TcAce1 and TcAce2 belong to typical Ace1- and Ace2-type genes,

respectively, as judged by their sequence similarities with other

known insect Aces (Fig. 2). The deduced amino acid sequences

(TcAce1 and TcAce2) of TcAce1 and TcAce2 exhibit six and four N-

glycosylation sites (N-X-S or N-X-T) [38], respectively (Fig. 1).

Predicted isoelectric points (pI) and molecular masses of TcAce1

and TcAce2 are 6.58 and 5.39, and 72.81 and 68.15 kDa,

respectively (http://www.scripps.edu/,cdputnam/protcalc.html).

Both TcAce1 and TcAce2 are predicted to contain a cleavable

signal peptide, which suggests that these proteins can be secreted

and function in an extracellular environment. Both proteins have a

C-terminal Cys residue (C617 in TcAce1 and C600 in TcAce2)

that is likely to form an intermolecular disulfide bond. According

to the analysis using PredGPI (http://gpcr.biocomp.unibo.it/

Table 1. PCR primers used to amplify cDNA sequences of both TcAce1 and TcAce2 genes and to analyze their gene expressions.

Primer name Sequence (59-39) Tm (6C) Product size (bp) Locationa

PCR for cDNA sequences

TcAce1-Fb CGGCCTGCTTACTAGTGATTCTAC 60.66 1714 17-1730

TcAce1-R ACATCGAGGGTGAGAAACTCC 60.50

TcAce1S-F CAACGACCGTTGTGCAAATA 60.56 320 N/A-219

TcAce1S-R CAGGGGATCATCTTCGGAGT 61.39

TcAce1E-F CGTTTGGACACCCACTTTCT 60.01 402 1665-N/A

TcAce1E-R GTCGTGTTGATTTTGAATACCTCAC 60.99

TcAce2-F AGACCTCATCACGCTGTTTG 55.2 1034 750-1783

TcAce2-R CTGGGTTATCCCGAAGCTTG 61.86

TcAce2S-F GTCGTAGAGGCGTCGTCGT 61.44 1014 N/A-895

TcAce2S-R TCTCCCCCGACATGTAACTC 59.93

TcAce2E-F AACCAGTGACAGACGACGTG 59.78 267 1627-N/A

TcAce2E-R CGCAACCGATGCGTTTAATA 61.86

Quantitative real-time PCR

TcAce1(Q)-F CCGTTCGTCCCAGTCATTG 55.3 121 1069-1189

TcAce1(Q)-R AGTAGTAGCCTTCTTCTGTGTTAG 55.4

TcAce2(Q)-F AGACCTCATCACGCTGTTTG 55.2 179 750-928

TcAce2(Q)-R CCTCCACCAGGACCTTCC 54.9

TcRps3-F CCGTCGTATTCGTGAATTGAC 54.8 130 279-408

TcRps3-R TCTAAGAGACTCTGCTTGTGC 54.7

aProduct location refers to the PCR fragment corresponding to the Ace gene nucleotide sequence of T. castaneum from NCBI database (TcAce1: XM_968369; TcAce2:
XM_965681). N/A refers to the sequence based on the genomic sequence in Beetlebase (http://beetlebase.org/).

bF and R refer to forward and reverse primers, respectively.
doi:10.1371/journal.pone.0032288.t001
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predgpi/), TcAce1 appears to contain a GPI-anchor, which is

linked to the C-terminal residue after a proteolytic cleavage at the

v site (D619 in TcAce1), whereas TcAce2 doesn’t seem to contain

a GPI-anchor. Both proteins have relatively high sequence identity

(47% for TcAce1 and 59% for TcAce2) to the C-terminal residues

526–543 (i.e., QTCAFWNRFLPKLLSAT) of the recombinant

mouse AChE (mAChE) [39,40]. This level of sequence identity is

identical or higher than the corresponding sequence identity (47%)

between mAChE and D. melanogaster AChE (DmAChE). All these

suggest that residues 589–605 in TcAce1 and residues 578–594 in

TcAce2 are likely responsible for the formation of a dimeric four-

helix bundle at the C-terminus as seen in mAChE [40] and

DmAChE [41].

Chromosomal locations of TcAce1 and TcAce2
The exon-intron organizations of TcAce1 and TcAce2 were

revealed by comparisons of the full-length cDNAs with their

corresponding genomic sequences (http://beetlebase.org/). The

lengths of TcAce1 and TcAce2 genomic DNA sequences are

2,986 bp and 32,243 bp, respectively. Genome structure analysis

shows that the two genes are located on different chromosomes of

T. castaneum; TcAce1 is located on chromosome 5, whereas TcAce2

on chromosome 2. TcAce1 has two exons and one intron, whereas

TcAce2 has six exons and five introns (Fig. 3).

Phylogenetic relationship of T. castaneum AChE to other
AChEs

The phylogenetic tree of the deduced amino acid sequences of

AChEs from the Pacific electric ray (Torpedo californica), twospotted

spider mite (Tetranychus urticae), and all the insect species available in

GenBank was generated using the neighbor-joining method.

Phylogenetic analysis suggests that there are two major groups

(Ace1 and Ace2); TcAce1 and TcAce2 belong to the Ace1- and Ace2-

type genes, respectively (Fig. 4). As expected, the cDNA-deduced

TcAce1 has high protein sequence identities to BgAce1 (70%),

HaAce1 (64%), AgAce1 (61%), SaAce1 (57%), and SgAce1 (57%).

The cDNA-deduced TcAce2 has high protein sequence identities to

LdAce2 (84%), HaAce2 (69%), BgAce2 (68%), AgAce2 (60%),

SaAce2 (57%), and DmAce (55%) (Table 2). TcAce1 and TcAce2

exhibited 39% and 38% protein sequence identities to T. californica

AChE, respectively. However, the protein sequence identities of

Ace1 and Ace2 in the same insect species are 36% (between TcAce1

and TcAce2), 31% (between SaAce1 and SaAce2), 35% (between

AgAce1 and AgAce2), 35% (between BgAce1 and BgAce2), and

32% (between HaAce1 and HaAce2) (Table 2).

It is worth noting that, per the present nomenclature, the

reported PhAce1, PhcAce1, AgoAce1, MpAce1 and CtAce1 in the

Ace2 group should change to PhAce2, PhcAce2, AgoAce2,

MpAce2 and CtAce2, respectively, whereas the reported PhAce2,

PhcAce2, AgoAce2, MpAce2 and CtAce2 in the Ace1 group

should be named PhAce1, PhcAce1, AgoAce1, MpAce1 and

CtAce1, respectively (Fig. 4).

Three-dimensional models
TcAce1 (TcAP-AChE). Eighteen 10-ns molecular dynamics

simulations of the substrate-bound TcAce1 protein homology

model derived from a human butyrylcholinesterase (hBChE)

crystal structure (Protein Data Bank ID: 2J4C [42]) resulted in a

time-averaged model with a distorted catalytic triad and partial

unfold of the omega loop. This result indicates that the homology

model is structurally unstable, presumably due to the low sequence

identity of the omega loop between TcAce1 and hBChE that

results in gaps in the omega loop. Another homology model was

therefore built from a simulation-refined model of the African

malaria mosquito (A. gambiae) AP-AChE (Protein Data Bank ID:

2AZG) [33] that has a higher sequence identity to TcAce1 (73%)

than the identity between hBChE and TcAce1 (46%). Twenty-two

10-ns molecular dynamics simulations of this model liganded with

its substrate yielded a time-averaged model without distortions in

the catalytic triad and the omega loop. In this final model of

TcAce1 (Fig. 5), C354 is exposed to solvent and accessible to

covalent bonding at the opening of the active-site gorge [33]; R407

is enclosed by F143, F146, and F406 via cation-pi interactions;

Y189, Y396, and Y400 adopt conformations that make the gorge

relatively open; ACh adopts the fully extended conformation with

its ammonium group forming a cation-pi interaction with the

indole ring of W152 and its carbonyl oxygen atom anchored at the

oxyanion hole comprising of G186, G187, and A268; E266 forms

a hydrogen bond with Y198 at the bottom of the active-site gorge;

E393, H507, and S267 form the catalytic triad. The TcAce1 active

site is very similar to those of A. gambiae and S. graminum AP-AChEs

[33,34], and different from the human AChE active site in that

Y449 in the human enzyme is replaced by Asp creating void space

at the bottom of the TcAce1 active site (Fig. 6). In T. californica

AChE, rotation of Y442, which corresponds to Y449 of human

AChE, reportedly controls the opening of a 3.4-Å-wide channel

that enables rapid clearance of substrate hydrolysis products [43].

In DmAChE, the counterpart of Y449 is also mutated to Asp;

hence the crystal structure of DmAChE (Protein Data Bank ID:

1DX4 [41]) has a channel with a diameter of ,5 Å that is formed

by G79, W83, W472, L479, and D482 and connects the active-site

gorge to solvent [44]. Because of the mutation Tyr of human to

Asp of TcAce1, the final model of TcAce1 has a similar channel

that is comprised of G148, W152, W499, M506, and D509. The

TcAce1 channel is, however, partially blocked by M151 and P498.

TcAce2 (TcAO-AChE). A homology study identified the

crystal structure of DmAChE (PDB ID: 1DX4 [41]) as a

template with a sequence identity of 60% and generated a

homology model of TcAce2. This model has a protruded large

loop conformation for residues 145–162, which is due to the

omission of the corresponding loop (residues 103–136) in the

1DX4 crystal structure. An initial set of 21 10-ns molecular

dynamics simulations of the TcAce2 homology model without

residues 145–162 resulted in a time-average model with the

catalytic triad distorted.

In the loop of residues 145–162, there are two histidine residues,

four arginine residues, two lysine residues, one aspartate residue,

and one glutamate residue. At the physiological pH of 7.4, this

loop has a net charge of +4. To avoid a possible effect of the

highly-charged loop on the catalytic triad distortion, a second set

of 21 10-ns simulations of the TcAce2 homology model possessing

residues 145–162 was performed. The triad was still distorted in an

average conformation of all trajectories saved at 1.0-ps intervals

Figure 1. The cDNA and deduced amino acid sequences of two Ace genes from Tribolium castaneum. The amino acid sequences were
numbered from the start of the mature proteins. The start codon ATG were bold and underlined, and the stop codon TAA at the end of the coding
region were bold and marked with asterisks. The putative signal peptides of the deduced amino acid sequences were underlined with red dots.
Potential N-linked glycosylation sites were bold and shaded. The sequences were deposited in the GenBank (accession numbers: HQ260968 for
TcAce1 and HQ260969 for TcAce2).
doi:10.1371/journal.pone.0032288.g001
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during the last 1-ns period of all 21 simulations or in an average of

each cluster of the trajectories generated by a cluster analysis. As to

the loop conformation of residues 145–162, the cluster analysis

showed that 24% of the trajectories had residues 145–162 folded

in contact with surface residues such as R21, D148, D501, and

D203.

A third set of 22 10-ns simulations of TcAce2 with residues 145–

162 adopting the folded conformation was then carried out. The

initial conformation of the third set of simulations was obtained

from averaging all the trajectories of TcAce2 with the folded loop

conformation of residues 145–162 followed by manual adjustment

of the side-chain torsions to restore the hydrogen bond network of

the catalytic triad. A cluster analysis of all the trajectories saved at

1.0-ps intervals during the last 1.0-ns period of all 22 simulations

showed that residues 145–162 remain the folded conformation.

However, the average of all the trajectories had a distorted

catalytic triad. Visual inspection of all 22 simulations found that

conformations of the first of the 22 simulations have a catalytic

triad engaging in a hydrogen-bond network. The final model of

TcAce2 was then obtained from averaging all trajectories saved at

1.0-ps intervals during the last 1.0 ns period of the first simulation.

Although the homology model of TcAce2 was based on the

DmAChE crystal structure, the active site of the simulation-refined

TcAce2 model (Fig. 7) is very different from that of the DmAChE

crystal structure. It is also different from those of human AChE

and insect AP-AChEs (i.e., AChE1s). In the refined model of

TcAce2 (Fig. 7), Y114, Y345, Y395, and W342 form an aromatic

cluster that completely block the entrance of the active site; E388,

H502, and S259 form a catalytic triad; ACh has a cation-pi

interaction with W126, but it does not adopt the fully extended

conformation, nor is its carbonyl oxygen atom located in the

oxyanion hole. In contrast to the TcAce1 model with residues

146–154 and 493–509 that partially shield ACh from interacting

with solvent, the TcAce2 model has its corresponding residues

(120–128 and 488–504) adopt conformations that leave ACh to be

exposed to solvent (Fig. 8).

TcAce gene expression profiles
The transcript levels of TcAce1 and TcAce2 were evaluated by

reverse transcription PCR (RT-PCR) and quantitative real-time

PCR (qPCR) in tissues of T. castaneum at different developmental

stages (Fig. 9). Both TcAce genes were transcribed in all the stages

examined, including 1-day (d) and 3-d eggs; 5-d and 20-d larvae;

1-d, 3-d and 6-d pupae; and 2-d and 14-d adults. The lowest

expression levels of these genes were found in eggs, particularly for

TcAce2 whose expression level was undetectable by RT-PCR in 1-

d eggs (Fig. 9A and 9B). The expression patterns of TcAce1 and

TcAce2 were very similar. In addition, the TcAce1 and TcAce2 genes

also exhibited similar tissue-specific expression patterns (Fig. 9C

and 9D). As expected, these genes were predominately expressed

in the brain, although their expressions were also detected in the

gut and carcass after the brain and ventral nerve cord were

removed.

Discussion

Since the first insect AChE orthologous gene (i.e., the one later

named Ace2 or AO-Ace) and the first insect AChE paralogous gene

(i.e., the one later named Ace1 or AP-Ace) were reported in D.

melanogaster in 1986 [9] and in S. graminum in 2002 [10],

respectively, cDNAs encoding both Ace1 and Ace2 have been

sequenced from each of at least 27 insect species. However, the

gene models and the genomic organizations of Ace1 and Ace2 have

not been well established in insects. In this study, we confirmed the

two Ace gene (TcAce1 and TcAce2) models in T. castaneum by

sequencing the coding regions of their cDNAs followed by

comparative analyses of their cDNA and genomic sequences.

The TcAce1 and TcAce2 genes are significantly different not only in

the length of their genomic DNA (TcAce1 with 2,986 bp and

TcAce2 with 32,243 bp) but also in the intron/exon organizations.

Specifically, TcAce1 possesses only one intron whereas TcAce2 has

five introns. Furthermore, TcAce1 is located on chromosome 5

(ChLG5), whereas TcAce2 is on chromosome 2 (ChLG2; Fig. 3).

Apparently, the intron/exon organizations and the chromosomal

locations of these genes in T. castaneum are different from their

counterparts in other insect species [8,14,18,23,45].

Despite the significant differences in genomic structures and the

chromosomal locations of TcAce1 and TcAce2, the deduced protein

sequences of the two genes exhibit all the common features of an

AChE sequence wise. These features include (1) a conserved

active-site triad, including S267 in TcAce1 and S259 in TcAce2

(S200 in Torpedo), E393 in TcAce1 and E388 in TcAce2 (E327 in

Torpedo), and H507 in TcAce1 and H502 in TcAce2 (H440 in

Torpedo); (2) a choline binding site, W152 in TcAce1 and W126 in

TcAce2 (W84 in Torpedo); (3) three pairs of cysteines putatively

forming intramolecular disulfide bonding (C135,C162,

C321,C334, and C469,C591 in TcAce1; and C109,C136,

C313,C328, and C464,C580 in TcAce2); (4) a cysteine forming

intermolecular disulfide bonding (C617 in TcAce1 and C600 in

TcAce2); (5) 10 conserved aromatic amino acid residues out of 14

Figure 2. Alignment of deduced AChE protein sequences encoded by TcaAce (CAA27169, Torpedo californica Ace); TcAce1
(HQ260968, Tribolium castaneum Ace1, this paper); TcAce2 (HQ260969, T. castaneum Ace2, this paper); SaAce1 (AY819704, Sitobion
avenae Ace1); SaAce2 (AY707319, S. avenae Ace2); DmAce (X05893, Drosophila melanogaster Ace); AgAce1 (XM_321792, Anopheles
gambiae Ace1); AgAce2 (BN000067, A. gambiae Ace2); BgAce1 (DQ288249, Blattella germanica Ace1); BgAce2 (DQ288847, B.
germanica Ace2); HaAce1 (DQ001323, Helicoverpa assulta Ace1); HaAce2 (AY817736, H. assulta Ace2); SgAce1 (AF321574, Schizaphis
graminum Ace1) and LdAce2 (L41180, Leptinotarsa decemlineata Ace2). Numbering of the amino acid sequences was from the N-terminus of
mature proteins. Identical amino acids were indicated by asterisks and conservative substitutions by dots. The catalytic triad residues were marked
with arrowhead. The number 1, 2, 3 on the boxed amino acids indicated the residues forming intramolecular disulfide bonds. The positions of
aromatic residues lining the active site gorge in T. californica AChE were marked with block arrows. The cholinesterase signature sequence was
underlined.
doi:10.1371/journal.pone.0032288.g002

Figure 3. Schematic diagram of the organization of two Ace
genes from Tribolium castaneum. The full lengths of the two
genomic sequences were 2,986 bp for TcAce1 and 32,243 bp for TcAce2.
Genome structure showed that two different Ace genes in T. castaneum
located on different chromosomes. TcAce1 located on chromosome 5
and TcAce2 on chromosome 2. TcAce1 has two exons and one intron,
whereas TcAce2 has six exons and five introns.
doi:10.1371/journal.pone.0032288.g003
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aromatic residues lining the catalytic gorge of AChE; and (6) the

conserved sequence FGESAG, flanking S267 in TcAce1 and S259

in TcAce2 (Fig. 2).

Ethanolmine and glucosamine residues are characteristic of a C-

terminal glycolipid anchor in most G2 AChE [46,47]. Our

analysis by using PredGPI predictor suggests that DmAChE and

TcAce1 contain a GPI-anchor at the C-terminal. Although

TcAce2 has higher sequence identity level with DmAChE than

TcAce1, TcAce2 does not appear to contain a GPI-anchor at the

C-terminal. Because the C-terminal Cys residue in AChE is

reportedly for the intermolecular disulfide linkage [48], C617 in

TcAce1 and C600 in TcAce2 are likely involved in the

intermolecular disulfide linkage, although the corresponding Cys

residue is missing in DmAChE [46]. We also analyzed the

hydrophilic and hydrophobic of non-homologous amino acid

residues of TcAce1 and TcAce2 and compared homologous

Figure 4. Rooted phylogenetic tree of deduced Ace amino acid
sequences from the Pacific electric ray (Torpedo californica),
two-spotted spider mite (Tetranychus urticae) and 43 insect
species constructed by the neighbor-jointing method. The
name is made up of a species abbreviation (first letter of the genus
followed by the first one or two letters of the specific name). Sequences
used: TcaAce (CAA27169, T. californica Ace); TcAce1 (HQ260968,
Tribolium castaneum Ace1, this paper); TcAce2 (HQ260969, T. castaneum
Ace2, this paper); BmAce1(EU262633, Bombyx mandarina Ace1);
BmAce2 (EU262632, B. mandarina Ace2); SaAce1 (AY819704, Sitobion
avenae Ace1); SaAce2 (AY707319, S. avenae Ace2); RpAce1 (AY667435,
Rhopalosiphum padi Ace1); RpAce2 (AY707318, R. padi Ace2); DmAce
(X05893, Drosophila melanogaster Ace); AgAce1 (XM_321792, Anopheles
gambiae Ace1); AgAce2 (BN000067, A. gambiae Ace2); LdeAce1
(FJ647186, Liposcelis decolor Ace1); LdeAce2 (FJ647187, L. decolor
Ace2); OvAce1 (FJ228227, Orchesella villosa Ace1); OvAce2 (FJ228228, O.
villosa Ace2); LeAce1 (EU854149, Liposcelis entomophila Ace1); LeAce2
(EU854150, L. entomophila Ace2); BgAce1 (DQ288249, Blattella germa-
nica Ace1); BgAce2 (DQ288847, B. germanica Ace2); BtAce1 (EF675188,
Bemisia tabaci Ace1); BtAce2 (EF675190, B. tabaci Ace2); CqAce1
(XM_001847396, Culex quinquefasciatus Ace1); CqAce2 (XM_001842175,
C. quinquefasciatus Ace2); BmoAce1 (NP_001037380 Bombyx mori Ace1);
BmoAce2 (NP_001108113 B. mori Ace2); ApAce1 (XM_001948618,
Acyrthosiphon pisum Ace1); ApAce2 (XM_001948953, A. pisum Ace2);
NvAce1 (XM_001600408, Nasonia vitripennis Ace1); NvAce2
(XM_001605518, N. vitripennis Ace2); PhAce1 (AB266605, Pediculus
humanus corporis Ace1); PhAce2 (AB266606, P. humanus corporis Ace2);
CpAce1 (DQ267977, Cydia pomonella Ace1); CpAce2 (DQ267976, C.
pomonella Ace2); HaAce1 (DQ001323, Helicoverpa assulta Ace1); HaAce2
(AY817736, H. assulta Ace2); AaAce1 (AB218421, Aedes albopictus Ace1);
AaAce2 (AB218420, A. albopictus Ace2); AgoAce1 (AF502081, Aphis
gossypii Ace1); AgoAce2 (AF502082, A. gossypii Ace2); CtAce1
(AB122151, Culex tritaeniorhynchus Ace1); CtAce2 (AB122152, C.
tritaeniorhynchus Ace2); SgAce1 (AF321574, Schizaphis graminum
Ace1); MpAce1 (AF287291, Myzus persicae Ace1); MpAce2 (AY147797,
M. persicae Ace2); CpiAce1 (AJ489456, Culex pipiens Ace1); CpiAce2
(AM159193, C. pipiens Ace2); MdAce (AY134873, Musca domestica Ace);
PxAce1 (AY970293, Plutella xylostella Ace1); PxAce2 (AY061975, P.
xylostella Ace2); CsAce1 (EF453724, Chilo suppressalis Ace1); CsAce2
(EF470245, C. suppressalis Ace2); CmAce2 (FN538987, Cnaphalocrocis
medinalis Ace2); PhcAce1 (AB266614, Pediculus humanus capitis Ace1);
PhcAce2 (AB266615, P. humanus capitis Ace2); TuAce (AY188448, T.
urticae Ace); AaeAce1 (EF209048, Aedes aegypti Ace1); LmAce1
(EU231603, Locusta migratoria manilensis Ace1); LbAce1 (FJ647185,
Liposcelis bostrychophila Ace1); LbAce2 (EF362950, L. bostrychophila
Ace2); NlAce (FM866396, Nilaparvata lugens Ace); CcAce (EU130781,
Ceratitis captitata Ace); AmAce (AB181702, Apis mellifera Ace); BdAce2
(AY155500, Bactrocera dorsalis Ace2); HiAce (AY466160, Haematobia
irritans Ace); CppAce1 (AY762905, Culex pipiens pallens Ace1); HarAce2
(AF369793, Helicoverpa armigera Ace2); BoAce (AF452052; Bactrocera
oleae Ace); LcAce (U88631, Lucilia cuprina Ace); NcAce (AF145235,
Nephotettix cincticeps Ace); LdAce2 (L41180, Leptinotarsa decemlineata
Ace2).
doi:10.1371/journal.pone.0032288.g004
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sequences of TcAce1 and TcAce2 with mAChE and DmAChE at

the C-terminal for possible formation of the four-helix bundle.

Our analysis suggests that C-terminal sequences of both TcAce1

and TcAce2 may form the dimeric four-helix bundle.

According to comparisons of TcAce1 and TcAce2 with Ace

proteins from other insect species, TcAce1 showed high sequence

identities to the AChE1 (AP-AChE) proteins from Sitobion avenae

(57%), A. gambiae (61%), Blattella germanica (70%), S. graminum (57%),

and Helicoverpa assulta (64%; Table 2). Similarly, TcAce2 also

showed high amino acid identities to the AChE2 (AO-AChE)

proteins of S. avenae (57%), D. melanogaster (55%), A. gambiae (60%),

B. germanica (68%), Leptinotarsa decemlineata (84%), and H. assulta

(69%). Based on our analysis of deduced amino acid sequences

from the two genes among respective insect species, the sequence

identity levels within the paralogous (Ace1) or orthologous (Ace2)

genes range from 48 to 96%, whereas the sequence identity levels

between the Ace1 and Ace2 genes of the same insect species range

only from 31 to 36% in all insect species examined (Table 2).

These results support the hypothesis that the two Ace genes were

originated from an old duplication before the diversification of

insect species [32].

Furthermore, a phylogenetic tree, which was generated from

the highly conserved regions of all insect and T. urticae AChE

Figure 5. Close-up view of the active site of TcAce1 with a
perspective from the free cysteine at the opening of the active-
site gorge down to ACh and the catalytic triad at the bottom of
the gorge.
doi:10.1371/journal.pone.0032288.g005

Table 2. Percent identities of amino acid residues among the AChEs of Tribolium castaneum, Torpedo californica and other seven
insect species.

Name Tca TcAce1 SaAce1 AgAce1 BgAce1 SgAce1 HaAce1 DmAce TcAce2 SaAce2 AgAce2 BgAce2 LdAce2 HaAce2

Tca — 39 38 42 40 38 39 35 38 37 37 38 37 37

TcAce1 — 57 61 70 57 64 31 36 31 34 36 34 34

SaAce1 — 51 59 96 55 32 36 31 33 34 33 34

AgAce1 — 57 51 59 34 37 33 35 39 35 36

BgAce1 — 59 62 33 36 33 33 35 36 34

SgAce1 — 55 32 36 30 33 34 34 33

HaAce1 — 31 35 30 32 35 34 32

DmAce — 55 48 62 51 53 51

TcAce2 — 57 60 68 84 69

SaAce2 — 50 53 55 52

AgAce2 — 55 57 56

BgAce2 — 63 60

LdAce2 — 66

HaAce2 —

NOTE: TcaAce, Torpedo californica; TcAce, Tribolium castaneum; SaAce, Sitobion avenae; DmAce, Drosophila melanogaster; AgAce, Anopheles gambiae; BgAce, Blattella
germanica; HaAce, Helicoverpa assulta; SgAce, Schizaphis graminum; LdAce, Leptinotarsa decemlineata.
doi:10.1371/journal.pone.0032288.t002

Figure 6. Comparison of the bottom of the active-site gorge in
TcAce1 to those in human AChE and Anopheles gambiae AP-
AChE. Tyr449 in human AChE (yellow) is mutated to Asp509 in TcAce1
(green) and Asp441 in A. gambiae AChE (cyan).
doi:10.1371/journal.pone.0032288.g006
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amino acid sequences available in GenBank and the correspond-

ing one in T. californica using the neighbor-joining method,

revealed two insect AChE clusters. TcAce1 was grouped into the

insect Ace1 cluster and TcAce2 into the insect Ace2 cluster. The

significant divergence between TcAce1 and TcAce2 suggests that

these genes were evolved from their corresponding Ace gene

lineages in insect species [49]. These results also suggest, for the

first time, that the divergence of Ace1 and Ace2 might occur prior to

insect speciation and that the Ace1 gene might be lost in D.

melanogaster and other species in Cyclorrapha suborder of Diptera

during the evolutionary process [14,25,32]. Thus, it is likely that

both the Ace genes in insects may have different functions because

these genes have evolved during the evolutionary histories of these

insect species.

Using a reported simulation-refined model of A. gambiae AP-

AChE [33] and a crystal structure of DmAChE [41] with high

sequence identities to TcAce1 (73%) and TcAce2 (60%),

respectively, and the same multiple molecular dynamics simula-

tion method to model and refine TcAce1 and TcAce2, we

obtained models of TcAce1 and TcAce2 both which are in

complex with acetylcholine. The TcAce1 model has an active site

that is almost identical to those of A. gambiae and S. graminum AP-

AChEs, and it has C354 at the opening of the active-site gorge

just like the insect-specific C286 of A. gambiae and C289 of S.

graminum that are susceptible to sulfhydryl agents [33,34]. The

TcAce2 model has an active site with an entrance comprised of

G122, W126, W494, M501, and D504. This entrance corre-

sponds to the small opening at the bottom of the active-site gorge

of DmAChE [44] or T. californica AChE when Y442 moves away

from W84 [43]. In the TcAce2 model, the region that

corresponds to the entrance of TcAce1 is completely blocked

by Y114, Y345, Y395, and W342. Of the four aromatic residues,

Y395 and W342 correspond to Y334 and W279 of T. californica

AChE, respectively, and belong to the 14 conserved aromatic

residues that line the active-site gorge of T. californica AChE [50].

In other words, the entrance of the active-site gorge of TcAce2

appears to be reversed relative to that of TcAce1. Unlike ACh in

the TcAce1 model, ACh does not adopt the fully extended

conformation and its carbonyl oxygen atom is not placed in the

oxyanion hole in the TcAce2 model.

In addition, R576 in the TcAce2 model is close to E388 (the

separation between the side-chain N atom of R576 and the side-

chain O atom of E388 is 3.9 Å), a composite residue of the

catalytic triad, in contrast to the corresponding arginine residue

that is away from the catalytic glutamate residue in TcAce1, A.

gambiae AP-AChE and human AChE (Fig. 10). Analysis of all the

trajectories of the third set of simulations of TcAce2 showed that

95% of the trajectories has a hydrogen bond between R576 and

E388, accompanied by hydrogen bonds between H502 and E505

and between S259 and E258, leading to disruption of the catalytic

triad. These computational observations suggest that TcAce1 is a

robust ACh hydrolase and susceptible to sulfhydryl agents and that

TcAce2 is not a catalytically efficient ACh hydrolase, although

further study is needed to comprehensively elucidate physiological

functions of Ace1 and Ace2 genes. In view of these computational

results, it is logical to investigate whether TcAce2 functions more

as a cholinesterase-like adhesion molecule (CLAM) [51,52] than

TcAce1. However, our sequence analysis using ClustalW 2.0.12

shows that TcAce1 has a slightly higher sequence homology to D.

melanogaster gliotactin, which is one of the three D. melanogaster

CLAMs, than TcAce2 (Table 3); both TcAce1 and TcAce2 have

dipole moments that are comparable to those of other AChEs

(Table 4). The orientations of the dipole moments of TcAce1 and

TcAce2 are almost the same. The two dipole moments are

approximately along the beta strand that corresponds to Strand 5

of the T. californica AChE crystal structure [53] and nearly identical

to those of other AChEs but orthogonal to that of Galactomyces

geotrichum lipase [52,54]. These sequence and dipole moment

analyses do not support the hypothesis that TcAce2 functions as a

CLAM.

Figure 7. Close-up view of the active site of TcAce2 with a
perspective looking down to acetylcholine and the catalytic
triad at the bottom of the gorge.
doi:10.1371/journal.pone.0032288.g007

Figure 8. Comparison of loop conformations of residues 146–
154 and 493–509 in TcAce1 with the corresponding ones of
residues 120–128 and 488–504 in TcAce2.
doi:10.1371/journal.pone.0032288.g008
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Figure 10. Separation of Arg from the catalytic triad in TcAce2 (A), TcAce1 (B), Anopheles gambiae AP-AChE (C), and human AChE
(D).
doi:10.1371/journal.pone.0032288.g010

Figure 9. The two TcAce genes mRNA expression levels of developmental stages and different tissues were determined by RT-PCR
as shown by gel pictures at the bottom of each panel and quantitative real-time PCR as shown by histograms. Real-time PCR data
were normalized to TcRps3 gene expression. E1, 1-d eggs; E3, 3-d eggs; L5, 5-d larvae; L20, 20-day larvae; P1, 1-d pupae; P3, 3-d pupae; P6, 6-d pupae;
A2, 2-d adults; A14, 14-d adults. Gut (including midgut and hindgut), Carcass (not including head, gut and nerve system). Standard error bars were
base on three replicates. One-Way ANOVA-Fisher’s LSD was used in statistical analysis of quantitative real-time PCR data.
doi:10.1371/journal.pone.0032288.g009
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Materials and Methods

Insect culture
The Georgia-1 (GA-1) strain of T. castaneum was reared on

whole-wheat flour containing 5% (by weight) of brewers’ yeast at

30uC and 65% relative humidity under standard conditions in the

laboratory of Kansas State University (Manhattan, Kansas, United

States of America) based on the method of Haliscak and Beeman

[55].

Total RNA isolation and reverse transcription
Total RNA was isolated from T. castaneum samples using TRIzol

reagent following the recommended procedure by Invitrogen

(Carlsbad, California, United States of America). The RNA was

treated with DNase I (Fermentas, Glen Burnie, Maryland, United

States of America) according to the manufacturer’s instruction and

the first-strand cDNA template was synthesized from 3.0 mg of

total RNA by using First Strand cDNA Synthesis Kit (Fermentas)

with oligo (dT)18 as the primer.

Subcloning and sequencing of cDNA
To obtain the cDNAs corresponding to the entire protein

coding regions of TcAce1 and TcAce2, we designed specific primers

based on TcAce gene predictions and their genomic organization

(Table 1). The PCR products of each reaction were subjected to

electrophoresis on 1% agarose gel containing ethidium bromide.

The PCR bands were excised and purified using QIAEX II

Agarose Gel Extraction Kit (Qiagen, Valencia, California, United

States of America). The purified fragment was subcloned into a

pGEM-T Easy Vector (Invitrogen) according to the manufactur-

er’s instruction. The ligation DNA mixtures were used to

transform bacterial cells by using Z-Competent E. coli Transfor-

mation Kit and Buffer SetTM (Zymo Research Corporation,

Irvine, California, United States of America). Plasmids were

isolated from the bacterial cells and used for DNA sequencing

(KSU DNA Sequencing and Genotyping Facility, Manhattan,

Kansas, United States of America). Signal P software was used to

predict signal peptide [56].

Phylogenetic analysis of AChEs
ClustalW software (www.ebi.ac.uk/clustalw/) [57], was used to

perform multiple sequence alignments prior to phylogenetic

analysis. Phylogenetic analysis was done using MEGA 4.0 [58]

for construction a neighbor-joining tree to examine the evolution-

ary relationships among T. californica, T. urticae and 43 insect

species. To evaluate the branch strength of the phylogenetic tree, a

bootstrap analysis of 1000 replications was performed.

AChE model prediction
Model preparation. The starting conformations of TcAce1

and TcAce2 used in the multiple molecular dynamics simulations

were generated by the SWISSMODEL homology program using

a computer model (Protein Data Bank ID: 2AZG [33]) and a

crystal structure (Protein Data Bank ID: 1DX4 [41]) as templates,

respectively. ACh was manually docked into the active site of

TcAce1 or TcAce2 according to the bound ACh conformation in

the crystal structure of T. californica AChE (Protein Data Bank ID:

2ACE [59]). All His, Glu, Asp, Arg, and Lys residues of the ACh-

bound TcAce1 or TcAce2 were treated as HIP, GLU, ASP, ARG,

and LYS, respectively. The topology and coordinate files were

generated by the PREP, LINK, EDIT, and PARM modules of the

AMBER 5.0 program [60]. The complex was refined by energy

minimization using the SANDER module of the AMBER 5.0

program with a dielectric constant of 1.0 and 500 cycles of

Table 3. Percentages of amino acid sequence identity of TcAce1 and TcAce2 to cholinesterase-like lipase and adhesion proteins.

AChE GcNeutralLipase DmNeuroligin DmNeurotactin DmGliotactin

Torpedo californica AChE 23 19 17 25

TcAChE1 19 21 17 27

TcAChE2 20 20 18 25

The NCBI session numbers of GcNeutralLipase, DmNeuroligin, DmNeurotactin, and DmGliotactin are P79066, AAF52450, CAA37831, and AAC41579, respectively.
doi:10.1371/journal.pone.0032288.t003

Table 4. The electrostatic characteristics of TcAce1, TcAce2, and other proteins.

PDB ID (Species)
Total
atoms

Total
residues

Net charge
of N terminal
deletion (e)

Net charge
of C terminal
deletion (e)

Net charge of
deletion
between N and
C termini (e)

Net charge
of the
structure
or model (e)

Dipole
moment
(Debye)

Dipole
moment per
atom
(Debye)

TcAce1 (Tribolium castaneum, AP) 4201 529 25 0 0 23 1490 0.35

TcAce2 (Tribolium castaneum, AO) 4353 545 21 +1 0 219 1163 0.27

1QO9 (Drosophila melanogaster, AO) 4273 540 0 22 +1 218 669 0.16

2AZG (Anopheles gambiae, AP) 4243 536 0 21 0 28 1718 0.40

2HCP (Schizaphis graminum, AP) 4302 540 27 +2 0 28 1312 0.30

2ACE (Torpedo californica) 4143 527 22 21 21 28 1819 0.44

1J06 (Mus musculus) 4177 535 +2 22 0 29 867 0.21

2X8B (Homo sapiens) 4179 536 0 22 0 210 1384 0.33

1THG (Galactomyces geotrichum, lipase) 4287 543 +1 0 0 215 814 0.19

doi:10.1371/journal.pone.0032288.t004

Acetylcholinesterase Genes from Red Flour Beetle

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e32288



steepest-descent minimization followed by 10,000 cycles of

conjugate-gradient minimization. The energy-minimized ACh

complex with TcAce1 or TcAce2 was solvated with 5,897 or 6,744

TIP3P water molecules [61], leading to a system of 20,703 or

23,244 atoms, respectively. The water molecules were obtained

from solvating the complex using a pre-equilibrated box of

216,000 TIP3P molecules, whose hydrogen atom charge was set to

0.4170, where any water molecule was removed if it had an

oxygen atom closer than 2.2 Å to any solute atom or a hydrogen

atom closer than 2.0 Å to any solute atom, or if it was located

further than 10.0 Å along the x-, y-, or z-axis from any solute

atom.
Multiple molecular dynamics simulations. The solvated

protein complex was energy-minimized for 100 cycles of steepest-

descent minimization followed by 100 cycles of conjugate-gradient

minimization to remove close van der Waals contacts in the

system, then heated from 0 to 300 K at a rate of 10 K/ps under

constant temperature and volume, and finally simulated

independently with a unique seed number for initial velocities at

300 K under constant temperature and pressure using the

PMEMD module of the AMBER 8.0 program [62] with the

AMBER force field (ff99SB) [63,64]. All simulations used (1) a

dielectric constant of 1.0, (2) the Berendsen coupling algorithm

[65], (3) a periodic boundary condition at a constant temperature

of 300 K and a constant pressure of 1 atm with isotropic molecule-

based scaling, (4) the Particle Mesh Ewald method to calculate

long-range electrostatic interactions [66], (5) a time step of 1.0 fs,

(6) the SHAKE-bond-length constraints applied to all the bonds

involving the H atom, (7) saving the image closest to the middle of

the ‘‘primary box’’ to the restart and trajectory files, (8) formatted

restart file, and (9) default values of all other inputs of the PMEMD

module. All simulations were performed on a cluster of Apple Mac

Pros with 80 Intel Xeon cores (3.0 GHz) and a cluster of Apple

Xserves with 590 G5 processors (2.2/2.3 GHz).
Simulation analysis. Average structures were obtained by

using the CARNAL module of AMBER 5.0. Cluster analyses were

performed by using the PTRAJ module [67] of AMBER 10.
Dipole moment calculations. All dipole moment

calculations were performed using the Protein Dipole Moments

Server (http://bioinfo.weizmann.ac.il/dipol/indexj.html) [68].

Protein structures with minimal deletions were used and ligands

and structural water molecules were removed before the dipole

moment calculations.

Analysis of expression of TcAce1 and TcAce2 by RT-PCR
and qPCR

The expression patterns of both TcAce1 and TcAce2 genes were

analyzed at various developmental stages including embryos (1 day

and 3 days eggs), early larvae (5 days larvae), late larvae (20 days

larvae), early pupae (1 day pupae), middle pupae (3 days larvae),

late pupae (6 days pupae), early adults (2 days adults) and two

weeks old adults. To analyze tissue specific expression, we

collected samples from the following dissected late pupa tissues

(pooled from thirty late pupae): brain, gut (midgut and hind gut)

and carcass (the whole body excluding brain, ganglia and gut). For

all the samples, 3.0 mg of total RNA were treated with DNase I

(Fermentas) to remove any genomic DNA contaminations, and

then used as templates for the first strand cDNA synthesis. The

cDNAs prepared from total RNA were used as templates for

amplification and detection of specific TcAce sequences. The gene-

specific primers were designed by using the Beacon Designer 2.0

software (Premier Biosoft International, Palo Alto, California,

United States of America) and are shown in Table 1. For reverse

transcription PCR (RT-PCR), cDNA fragments of each TcAce

were amplified using the PCR conditions as follows: 94uC for

1.5 min followed by 30 cycles (26 cycles for TcRps3 gene) of 94uC
30 s, 55uC 30 s and 72uC 45 s. A final extension at 72uC for

5 min was added at the end of the PCR. The relative mRNA

expression of each TcAce was assessed by qRT-PCR using SYBR-

Green in the Bio-Rad iCycler iQTM multi-coclor real-time PCR

detection system (Bio-Rad Laboratories, Hercules, CA, USA)

based on the method of Giulietti et al. [69]. All the experiments

were performed in triplicate and normalized to the mRNA level of

ribosomal protein S3 (Rps3) as a reference gene for each sample

[70]. The relative mRNA expression levels were calculated

according to the 22DDCt method [71].

Statistical analysis
The data from the qPCR analysis were subjected to ANOVA

followed by Fisher’s least significant difference (LSD) multiple

comparisons to separate the means among the treatments by using

ProStat software (Poly Software International, Pearl River, New

York, United States of America).
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