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Abstract

Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where
water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a
route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely
available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was
validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly
predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning
techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse
Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of
75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an
accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds
where the displacement of water molecules is being considered as a route to improved affinity.
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Introduction

Water is a key structural feature of protein-ligand complexes

and can form a complex hydrogen-bonding network between

ligand and protein [1,2]. Water-mediated binding is so common

that a study of 392 protein-ligand complexes found that 85% had

at least one or more water molecules that bridge the interaction

between the ligand and the protein [3]. Furthermore, the

displacement of an ordered water molecule can drastically affect

a ligand’s binding affinity [4,5]. As a result, it is common to

include explicit water molecules in computational drug design [6–

8]. The careful consideration of hydration sites has been shown to

aid the predictability of 3D QSAR models, [9–11] ensure stable

simulations with molecular dynamics [12], and improve the

accuracy of rigorous free energy calculations [13]. Continuum

solvent models have also been reported to improve with the

addition of explicit water molecules [14]. Traditionally, ordered

water molecules were ignored in ligand docking studies and

ligands were docked into desolvated binding sites. There are now a

number of docking protocols that include explicit water molecules

and claim to improve accuracy in many cases [15–20]. However,

it has also been reported that including such water molecules may

hamper efforts to predict a ligand’s correct binding mode [21].

A popular strategy in rational drug design is to modify a ligand

so that it displaces an ordered water molecule into the bulk solvent

[5,11,22,23]. This is due to the favorable entropic gain that can

result by increasing the water molecule’s translational and

orientational degrees of freedom. However, the targeted displace-

ment of an ordered water molecule may be unsuccessful [24,25],

can also lead to a decrease in affinity if the ligand is unable to

replace the water molecule’s hydrogen bonds correctly and fulfill

its stabilizing role [4,26]. This has important implications for lead-

optimization and rigorous theoretical studies have investigated

how changing a water displacing functional group affects a ligand’s

affinity [27,28]. In addition, water molecules are important

pharmacophoric features of a binding site [29], and the chemical

diversity of potential inhibitors generated in silico has been reported

to be greatly affected by the targeted displacement of ordered

water molecules [30–32]. Water molecule locations are typically

taken from X-ray crystal structures and may be validated by

observing the same position in other crystal structures of the same

protein. Nevertheless, there are inherent problems with identifying

hydration sites with crystallography. Water molecules can be

artifactual, may be too mobile to identify or not observed because

of low resolution [33–35]. In cases such as homology modeling,

there will be no structural knowledge of water molecules. Hence, it

is necessary to be able to accurately predict water locations within

binding sites.

Water sites can be predicted by running molecular dynamics or

Monte Carlo simulations with an explicit water model and taking

the peaks in water density or averaging over water molecule

locations [36]. These techniques have the benefit of including

entropic effects in the prediction but can be very time consuming

to run, especially with buried cavities due to the long time it takes

for water to permeate within the protein. Grand canonical Monte

Carlo methods can significantly reduce the length of the
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simulation [37], although can still be computationally demanding.

The grid-based Monte Carlo method JAWS attempts to strike a

balance between rapid solvation techniques and full molecular

simulations that explicitly treat entropic effects [28]. It has the

added advantage of producing an estimate of the free energy of

displacing the water molecule into bulk solvent although the value

may not be well converged [38]. A notable integral theory

approach, called the 3D reference interaction site model (3D-

RISM), has reported success in predicting the solvation structure

within protein cavities [39] and in ligand binding sites [40].

Inhomogeneous fluid solvation theory (IFST), as popularized by

Lazaridis [41,42], uses a short molecular simulation to calculate

the thermodynamics of water molecules in protein binding sites. A

great advantage of using IFST is that the free energy is broken

down into its enthalpic and entropic contributions and these values

are then used to understand the thermodynamics of ligand binding

[43–46]. IFST also forms the basis behind WaterMap [47,48],

which calculates the binding thermodynamics of displaced water

molecules and has been used to understand the affinity and ligand

selectivity in a number of different cases [49,50].

Fast solvation methods have also been pursued for a number of

years. A popular empirical method is GRID, which calculates the

interaction energy of a chemical probe around a protein [51]. The

water probe is able to make up to 4 hydrogen bonds with the

protein. A novel mean field method has been reported by Setny

and Zacharias that places potential water sites on a lattice and

iteratively solves the solvent distribution using a semi-heuristic

cellular automata approach [52]. The fact that water sites form

distinctive distributions around amino acids [53] has been

exploited by a number of knowledge-based methods. An early

example called AQUARIUS predicted solvent sites within a

protein by mapping each amino acid to a data set of crystal

structures [54]. SuperStar is another knowledge-based method

that combines structural data from the Protein Data Bank [55]

and the Cambridge Structural Database [56] (CSD) to predict

chemical propensity maps within protein cavities [57]. Schymko-

witz et al. similarly used water distributions around amino acids to

predict buried water molecules [58]. The distributions were

clustered and then optimized using the Fold X forcefield. When

water molecules that were coordinated by 2 or more polar atoms

were considered, Fold X reported a success rate of 76%. Most

recently, Rossato et al. developed AcquaAlta, which identified

favorable water geometries from the CSD and ab intio calculations

to predict the location of water molecules that bridge polar

interactions between the ligand and the protein [59]. AcquaAlta

predicted 76% of crystallographic water positions in the training

set and 66% in the test set.

As the affinities, binding modes and chemical diversity of a

series of ligands can be greatly affected by the water molecules in a

protein binding site, it is important to predict which water

molecules are displaced or conserved during the binding process.

Some docking procedures, although different in implementation,

involve switching explicit water molecules ‘‘on’’ and ‘‘off’’

[17,60,61]. Other approaches have used the structural features

of a water molecule’s environment to predict whether it will be

displaced or not without any prior knowledge of the ligand. Using

a K-nearest neighbors genetic algorithm, Consolv reported 75%

accuracy in predicting whether a binding site water molecule

would be displaced or not [62]. However, as Consolv used

crystallographic temperature factors as structural descriptors, it

cannot be applied to predicted water sites. Amadasi and co-

workers have combined the HINT forcefield [63] with the Rank

score [64] to classify water molecules into 2 broad categories;

conserved/functionally displaced and sterically displaced/missing

[65,66]. Their first study correctly classified 76% of the water

molecules tested while their second study reported a classification

accuracy of 87%. Their analysis included weakly bound water

molecules, which were a maximum of 4 Å away from the protein.

On the other hand, WaterScore used water molecules within 7 Å

of the bound ligand in protein-ligand binding sites [67]. Using

multivariate logistic statistical regression, WaterScore reported

67% accuracy in classifying displaced and conserved waters,

although water molecules that were displaced because of steric

clashes with the ligand were not included in their analysis. Barillari

et al. used the computationally expensive double-decoupling

method to calculate the binding energies of 54 water molecules

in protein-ligand complexes [68]. They found that water

molecules that could be displaced by a ligand were on average

less strongly bound than conserved water molecules by 2.5 kcal/

mol.

Despite the positive strides that have been made in understand-

ing the role of ordered waters, no single method is able to answer

how displaceable a water molecule is, and what is it likely to be

displaced by. When there is limited experimental knowledge of a

binding site’s solvation structure, addressing these questions

becomes even less clear. In this paper we develop a pipeline that

can accurately predict the location of water molecules and predict

whether they are likely to be conserved or displaced after ligand

binding. We also predict the probability that predicted water

molecules will be displaced by polar or non-polar groups.

Using a method we call WaterDock, we show that the freely

available AutoDock Vina tool [69] can be used to predict the

location of ordered water molecules in ligand binding sites to a

very high degree of accuracy. Crucially, a WaterDock prediction

only takes a matter of seconds to produce. WaterDock was

validated against high-resolution crystal structures, neutron

diffraction data and molecular dynamics simulations. Using a

validation set of proteins for which high resolution X-ray

structures have been determined at least twice, we found that

WaterDock was able to predict 88% of ‘‘consensus’’ water sites

with a mean error of 0.78 Å. Using 14 structures of OppA bound

to lysine-X-lysine tripeptides, WaterDock predicted 97% of the

ordered water molecules, with on average 1 false positive per

structure.

By combining data mining, heuristic and machine learning

techniques, we developed two probabilistic water molecule

classifiers that were designed to predict the role of our WaterDock

predictions. Water molecules were predicted in the binding sites of

the Astex Diverse Set [70] of protein-ligand complexes after the

ligands had been removed from the structures. By overlaying the

ligands back into the hydrated cavities, we studied the statistics of

hypothetically ‘‘displaced’’ water molecules. We could predict

whether water molecules were displaced or conserved to an

accuracy of 75% and whether water molecules were displaced by a

polar ligand group or a non-polar group to 80% accuracy, both

after cross validation.

The key advantages of the approaches we present here are that

they take only a few seconds to compute yet are able to maintain a

very high degree of accuracy. We hope that these techniques will

be useful in molecular modeling and rational drug design,

especially in cases where there is limited structural information

of the protein. Furthermore, they utilize freely available software.

Methods

1. Validation of WaterDock method
Docking is a multidimensional optimization problem so many

programs should be well adapted at balancing the various

Prediction of Water Molecules in Binding Sites
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energetic needs of a water molecule. The main benefit of using

AutoDock Vina (henceforth referred to as Vina) to predict water

locations is that the stochastic nature of its algorithm ensures that

many possible water sites can be generated in a single docking run.

Repeated independent dockings of a water molecule into a cavity

produces a diverse ensemble of locations that must be processed in

order to produce a single, coherent and reproducible solvation

structure. To ensure the prediction method is as fast as possible

(Vina only takes a few seconds to dock a water molecule), we chose

to experiment with different energetic filtering and clustering

procedures. We refer to the docking, filtering and clustering

procedure as WaterDock. Other docking programs can in

principle be used to predict hydration sites within proteins and

can be validated using the methods outlined in this paper.

We used two data sets to validate WaterDock and one

independent test set. The first validation set was used to find the

minimum score for accepting a docked water site and the second

validation set was created to establish the clustering procedure. By

using 2 data sets to validate WaterDock, we hoped to minimize

over-fitting the water placement method. The first set comprised

of 15 high-resolution, pharmacologically relevant protein crystal

structures and is shown in Table 1. As there can be some

inconsistencies regarding crystallographically observed water

molecules, it may be that Vina correctly predicts hydration sites

that are not observed experimentally. For this reason, three

proteins from Table 1 were chosen for molecular dynamics (MD)

simulations. The minimum distances from predicted water

molecules to an experimental or MD water molecule were used

to investigate the relationship between a prediction’s error and its

Vina score. In order to assess the magnitude of the errors, the

minimum distances were compared to those from a random

placement of water molecules (see Figure 1). The energy cutoff was

chosen as the Vina score that produced an error distribution that

was indistinguishable from the error distribution from the random

placement model.

Table 1 includes apo and holo crystal structures of some of the

same proteins in order to test whether Vina can predict the

location of bridging water molecules as well as water molecules in

unliganded binding sites. The proteins were also selected to have a

diverse number of water molecules in the binding site. For

example, trypsin has only one water molecule bridging the

interaction between the ligand (benzamidine) and the protein

whereas heat shock protein 90 has 9 bridging water molecules and

6 neighboring waters with its ligand, adenosine diphosphate

(ADP). The unliganded structures of heat shock protein 90,

penicillopepsin and PIM1 kinase were simulated using unre-

strained MD for 10 ns. These proteins were selected as their

binding sites vary in their hydrophobicity and are easily access-

ible to the bulk solvent. One hundred snap-shots were selected

at random from the 3 simulations and Vina was used to

predict the hydration sites in each snap-shot. Because of the

hydrophobic diversity of the binding sites and a total of 300

conformational snap-shots were used for docking, we felt the

number of simulations was sufficient to encapsulate different

water structure in MD. Details of the MD simulations are

provided in Text S1.

For each crystal structure or MD snapshot, Vina was used to dock

a single water molecule into the binding site and all the locations

and poses were recorded. The ensemble of different binding modes

that are generated form the basis of the water site predictions. In a

single run, Vina can generate a maximum of 20 conformations.

Vina was used twice on each structure so there were 40 water site

predictions for each binding site with overlap in many of the

predicted positions. Using the Python [71] script that accompanies

the software package AutoDockTools [72], the structures were

stripped of water molecules and prepared into the appropriate

PDBQT file format necessary for Vina. For holo-proteins, the search

space was defined to be a 15 Å around the geometric center of the

ligand. Apo-proteins were structurally aligned to the corresponding

holo structure and the ligand center was again used to define the

docking search space (See Text S1 for details).

As mentioned, Vina’s predictions were compared to a random

distribution of water molecules. Water molecules were placed at

random within the sterically allowed volume of each docking

search space. AutoGrid (part of the AutoDock 4 package) [73] was

used to create oxygen affinity grid maps and favorable points were

selected at random on grid locations that had affinities less than or

equal to 0 kcal/mol. Five hundred random points were selected

for each protein structure.

Repeated independent water molecule dockings creates many

overlapping and similar water predictions even after low energy sites

have been removed. A second data set was created in order to test

the accuracy of different clustering methods and different docking

procedures. An accurate water placement method is one in which

many experimental water positions are correctly identified (high true

positive rate) with very few predictions that are not experimentally

observed (low false positive rate). As discussed in the introduction,

the validity of water molecules seen in X-ray crystal structures is

often uncertain and many water molecules may be missing from the

structure. This complicates the proper assessment of the sensitivity

and specificity of a water placement method.

To circumvent these issues, the data set in Table 2 was

assembled in which each structure had been determined to a high

resolution more than once. Where possible, neutron diffraction

data was included because of its ability to resolve proton positions.

Each protein in Table 2 was structurally aligned and ‘‘consensus’’

water molecules were determined. A consensus water molecule

Table 1. The protein structures used to establish a cut-off
score that indicates whether or not a prediction is better than
random.

Protein PDB code
Resolution
(Å) Ligand

BRD4 2OSS 1.35 None

BRD4 3MXF 1.6 JQ1

Trypsin 1SOQ 1.02 None

Trypsin 1BTY 1.5 Benzamidine

HSP 90a 1AH6 1.8 None

HSP 90 1AM1 2 ADP

Penicillopepsina 3APP 1.8 None

Penicillopepsin 1BXQ 1.41 PPi3

Cytochrome P450 2B4 1PO5 1.6 None

Cytochrome P450 2B4 1SUO 1.9 4-(4-chlorophenyl) imidazole

PIM1 kinasea 1YWV 2 None

PIM1 kinase 1XWS 1.8 BI1

Purine nucleoside
phosphorylase

1V48 2.2 DFPP-G

GluA2 ligand binding
core

1FTM 1.7 AMPA

HIV-1 protease 1KZK 1.09 JE-2147

aStructures that were selected for molecular dynamics simulations.
doi:10.1371/journal.pone.0032036.t001
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was defined as one that was within 1 Å of another water molecule

seen in at least one other structure. These water molecules were

used to assess the true positive rate of WaterDock. The binding site

water molecules that were seen in only one structure were retained

in order to quantify the false positive rate of WaterDock. By

validating WaterDock in this way, WaterDock’s true positive rate

was assessed using only trustworthy water sites while its false

positive rate was assessed using all water sites, for which there is at

least some evidence for. Note that because of the difficulty in

experimentally resolving some water molecules, the false positive

rate is likely to be an upper estimate.

Each of the proteins in Table 2 were structurally aligned and

consensus water sites were identified using the statistical program-

ming language R [74]. Using a 15 Å cube to define each binding

site, 185 distinct water molecules were identified. Of these water

molecules, only 92 had been identified by at least twice by

experiment. Observing less than half of experimentally determined

water molecules in at least two structures highlights the uncertainty

regarding crystallographic water positions and underlies the need

for caution when validating a water prediction method.

To test WaterDock on an independent data set, we chose 14

structures of OppA bound to different KXK tri-peptides (see

Table S1 and S2). The data set was primarily chosen because the

same test set was used for a recent water prediction method called

AcquaAlta [59]. Doing so allows a direct comparison of the two

methods. In addition, the structures have been determined to a

high resolution and the ligands have varied water distributions

around the side chain of the central amino acid [2].

2. Investigating water displacement and conservation
When a ligand binds to a protein, water molecules that once

occupied the ligand’s position can be moved or displaced into the

Figure 1. Box-plot summarizing the Vina score (in kcal/mol) versus the minimum distance (in Å) between the prediction and a
crystallographic water (A) and MD water (B) from the data set in Table 1. Each box’s lower and upper limits are at the 25% and 75%
confidence limits. The solid black line within each box indicates the median. The width of each box is proportional to the square root of the number
of data points. Outliers are shown as black dots and are defined by points outside 1.5 times the interquartile range. For comparison, the results from a
random placement of water molecules are shown by the grey background box (light grey represents the whiskers, darker grey represents the 25%
and 75% confidence limits and the darkest grey line represents the median). The accuracy of the placement increases with a more negative score and
all predicted sites with scores less than 20.5 kcal/mol are better than random.
doi:10.1371/journal.pone.0032036.g001
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bulk solvent. As discussed in the introduction, the displacement of

certain water molecules can have a profound effect on the affinity of

a ligand. Hence, for each WaterDock prediction, we created a

model to assign the probability that it will be either displaced or

conserved during ligand binding. Such a probability effectively acts

as a physically meaningful ‘‘score’’ that would help to identify which

water sites are structurally important. We developed probabilistic

models rather than discrete classifiers because whether a water

molecule is displaced or not depends on the size, type and scaffold of

a ligand. Classifying a water molecule as either always displaceable

or only conserved we felt was an oversimplification.

As described in more detail below, we established three

structural descriptors of water molecules in a binding site. Using

a data mining protocol outlined below, we found a descriptor that

correlates with the binding energy of a water molecule as

calculated by thermodynamic integration. The two other descrip-

tors were designed heuristically to encapsulate the hydrophilicity

and lipophilicity of a water molecule’s protein environment. As we

wanted our probabilistic classifier to apply to our WaterDock

predictions, we predicted water sites in a high quality data set of

protein ligand complexes after the ligands had been removed from

the structures. By overlaying the ligands back into the WaterDock

solvated cavities and comparing the predicted water sites to

crystallographic water molecules, we marked WaterDock predic-

tions as either conserved or displaced. The hypothetically

displaced water molecules were also recorded as being displaced

by hydrogen-bonding groups or non-polar ligand groups. This

approach allowed us to create a classifier that was consistent with

our water placement method and circumvented issues relating to

the displacement of water by protein side chain movements. Also,

since WaterDock was found to be very accurate (see Results and

Discussion), we were confident in our predictions of ‘‘apo’’

hydration sites.

Using a tree-based machine-learning algorithm, we created two

models. The first assigned the probability that a water molecule

will be either displaced or conserved. The second model assigned

the probability that a water molecule will be displaced by a

hydrogen-bonding group or a non-polar group.

Establishing a water energy score. Using the double

decoupling method, Barillari et al. calculated the absolute

binding free energies of 54 water molecules from 35 ligand-

protein complexes [68]. The data set was made up of 6 proteins

and 11 conserved water molecules. They found that conserved

water molecules had statistically significant lower binding energies

than displaceable water molecules. We considered this data set to

be ideal to find the water energy score because of the size of the

set, the diverse range of proteins and the consistent manner in

which the binding energies were calculated. Each of the 54 water

molecules were initially scored using the scoring functions from

Vina and AutoDock 4 and correlations with R2 values of 0.01 and

0.31 were found. We felt these correlations were not strong

enough to capture the calculated water energetics so we used a

combination of AutoDock 4’s force-field based scoring function

and Vina’s empirical scoring function as the starting point for a

data mining procedure to find a new water energy model. All

unique combinations of the terms in AutoDock 4 and the

AutoDock Vina scoring functions were combined and fitted to

Barillari’s calculated binding data, creating 255 linear models. The

models omitted terms relating to rotatable bonds, as they are not

applicable to a water molecule. In order to avoid over-fitting, to

reward model simplicity and hence find the most ‘‘meaningful’’

combination of terms, the models were then ranked by their

Akaike information criterion (AIC) [75]. The AIC is a measure of

the goodness of fit that penalizes models for the number of

parameters they contain. The preferred model being the one that

minimizes the AIC. The top 30 models with the lowest AICs were

then selected for an extensive cross validation study.

To cross-validate the models, all the calculated binding data for

one of the 11 conserved water molecules was partitioned from the

training set to form a test set. The top 30 models were then re-fit to

the training set and the mean error of the model on the test set was

recorded. The process was repeated until each of the 11 conserved

water molecules was used as the test set. The model that had the

lowest mean error after cross-validation was selected as the final

water energy model.

Creating heuristic hydrophilic and lipophilic scores. By

analyzing 10,837 surface bound water molecules in 56 high

resolution crystal structures, Kuhn et al. established the individual

hydration propensities for each amino acid atom type [76]. They

determined the propensities by dividing the total number of water

molecules that hydrated an atom by the number of surface

exposed occurrences. Building on their work, we created a

hydrophilicity model and a lipophilicity model intended to

encapsulate the local chemical environment of a water molecule.

This information was intended to be distinct from the water

energy model. The hydrophilicity model is a distance weighted

sum of the propensities from all the atoms within 4 Å of a water

molecule and is given by:

XN

i~1
hie

{
ri

d0 , ð1Þ

Table 2. The proteins and set of structures used to establish the docking and clustering procedures for the water placement
method.

Protein PDB codes Resolution (Å) Ligand

HIV-Protease 3FX5, 1HPX, 2ZYEa 0.93, 2,1.9 KNI-272

Ribonuclease A 1KF5, 1FS3, 5RSAa 1.2, 1.4, 2 None

GluR2 ligand binding core 1FTMb, 1MY2b 1.7, 1.8 AMPA

Trypsin 1S0Q, 1UTQ, 1TPO 1.0, 1.2, 1.7 None

Concanavalin A 1NLS, 1GKB, 1JBC, 1QNYa 0.9, 1.6, 1.2, 1.8 None

Glutathione S-transferase 1K3Yb, 1K3Lb 1.3, 1,5 S-hexyl glutatione

Carbonic Anhydrase 3KS3, 3MWO, 2ILI 0.9, 1.4, 1.1 None

aStructures that have been determined by neutron diffraction.
bStructures where multiple chains have been used to validate ordered water molecules.
doi:10.1371/journal.pone.0032036.t002

Prediction of Water Molecules in Binding Sites
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where N is the number of protein atoms within 4 Å of the atomic

position, ri is the distance (in Angstroms) of atom i to a water

molecule, hi is the hydration propensity of atom i and d0 is the

distance scale of the interaction, set at 1 Å. We chose the

weighting function because previous work have suggested that

hydrophobicity decays exponentially with distance [77]. The

hydration propensities of cofactor atoms were assigned the same

value as the most similar protein atom. Because of the high

magnitude of ion hydration free energies, ion hydration

propensities were assigned the same as the highest value in the

Kuhn data set. For the lipophilic score, we chose the same form as

(1) and it is given by

XN

i~1
lie

{
ri

do , ð2Þ

where the terms are as before except li which is the carbon

propensity of atom i. As atomic carbon propensities have not been

established as they have been for hydrophilicity, as a working

hypothesis, we set all carbon atoms a propensity score of 1 and all

other atom types a score of 0.

Finding displaced water molecules retrospectively with

WaterDock. The Astex Diverse Set contains 85 high-resolution

crystal structures of pharmacologically relevant ligand-protein

complexes [70]. The ligands are drug-like and have a diverse

range of scaffolds. Importantly, the electron density of the ligands

in the crystal structures accounts for all parts of the ligand, leaving

little ambiguity over the binding mode. This makes the Astex

Diverse Set an appropriate data set to investigate what types of

ligand atoms ‘‘displace’’ the WaterDock predictions.

The protein-ligand complexes were prepared for docking as

previously described in this article. Ligands and water molecules

were removed from the binding sites and cofactors were retained.

Water sites were predicted in the binding site using the WaterDock

method. A predicted water molecule was classified as conserved if

it was seen within 1.5 Å of a water molecule seen in the crystal

structure of the protein-ligand complex. Predicted water molecules

that were not within 1.5 Å of a crystallographic water molecule

but within 1.5 Å of a ligand atom were classified as displaced. The

distance cut off was chosen as this represents an acceptable water

prediction error and is within the van der Waals radius of a water

molecule [78].

Creating a probabilistic water classifier. We expected

that the displacement probability of a water molecule depended on

a non linear combination of the 3 structural descriptors (binding

energy, hydrophilicity and lipophilicity) and that certain regions of

parameter space would generally correspond to different classes of

water molecule. Classification trees meet these requirements by

recursively partitioning the parameter space such that each region

defines a class. Classification trees are particularly well suited to

our problem because the proportion of a class in a partitioned

region can be readily interpreted as a conditional probability.

However, because of a tree’s hierarchical nature, small changes in

the data can result in a different series of splits, making single

classification trees unstable. The method of bootstrap aggregation

(known as ‘‘bagging’’) alleviates this issue by fitting many trees to

bootstrapped samples (sampling with replacement) of the data.

The probability of a class is found by averaging the class

proportions from each classification tree.

Using the free statistical language R with the package ‘‘rpart’’

[74], a bagged classification tree was written and was trained on

the predicted water positions in Astex Diverse Set to classify them

as conserved or displaced. In addition, a second model was trained

to classify displaced WaterDock predictions as displaced by

hydrogen-bonding groups or by non-polar groups. To assess the

accuracy of the models, we used ‘‘leave-protein-out’’ cross

validation. This involved partitioning the Astex Diverse Set into

a training set and a test set, where the test set comprised of all the

water molecules from a single protein. Each water molecule in the

test set was classified by both models and the fraction of correct

predictions were recorded. This process was repeated until all 85

proteins had been used as the test set. The accuracies quoted in the

results are the mean accuracies from all the partitions. This

validation procedure was chosen so that the models were tested on

structures that were distinct to the structures in the training set.

Results and Discussion

1. Validation of WaterDock as a Water Placement Tool
Determining the energetic cutoff. The minimum distance

of each docked water molecule from a crystallographic or

molecular dynamics (MD) water molecule was computed in

order to assess how placement prediction error depended on the

water position’s Vina score. In particular, we sought to find a score

cutoff that identified well-determined sites by comparing the

predictions to a random placement of water molecules. Figure 1

shows how each Vina score has an error distribution associated

with it and how the median and the range of the error distributions

decreases for more negative scores. In particular, as the scores

increase, the distributions tend to the error distribution from the

random placement model. It is apparent that the lower the Vina

score, the closer the agreement with crystallographic water

locations.

When predicting water locations in the X-ray crystal structures

of Table 1, the error distributions were always better than the

error distribution from the random model. During the MD

simulations, large numbers of water molecules filled the cavities.

This meant that placing a water molecule at random within the

cavity has a much greater chance of being near a simulated water

molecule. While this meant that the prediction error was also

reduced, improving on the random model provided a more

stringent test. As a result, a cut-off of 0.6 kcal/mol was chosen by

inspection as the minimum acceptable score of a predicted water

molecule.

Establishing the docking and clustering method. Using 7

crystal structures that had been resolved multiple times (Table 2),

different docking and clustering protocols were experimented with

in order to find the method that predicted the largest number of

consensus water molecules for the fewest number of false positives.

Here, we summarize the most accurate protocol while the results

for different docking and clustering regimes are included in Table

S3.

We found that independently docking a water molecule 3 times

into the binding site was enough to sufficiently sample the

configuration space of the water molecule while docking only once

did not. The ‘‘exhaustiveness’’ parameter in Vina determines how

rigorous the docking search is and is roughly proportional to

elapsed docking time. We found that setting this parameter to 20

significantly improved the accuracy of the subsequent clustering

methods when compared to an exhaustiveness value of 10. Three

independent docking runs with an exhaustiveness value of 20 was

also very fast and took no more than 15 seconds to complete on a

2.33 GHz Intel Xeon quad core processor.

Independently docking a water molecule 3 times with Vina

generates a maximum of 60 binding modes. Many of the positions

overlapped or were in close proximity to one another. Clustering

the water positions is a time efficient way of producing a solvation

map of the binding site from an ensemble of water positions. A

Prediction of Water Molecules in Binding Sites
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number of different hierarchical clustering methods were exper-

imented with, including complete linkage, single linkage and

Ward’s minimum variance method. Distance cutoffs of each

clustering method were varied to find the one that gave the best

accuracy. The average position of a docked water molecule cluster

was used as the predicted water molecule location.

The most accurate clustering method was found to be with 2

rounds of single linkage clustering with different distance cutoffs.

The results are summarized in Tables 3 and 4. The first clustering

round used a distance cutoff of 0.5 Å and was designed to remove

the most overlapping sites and to reduce the ‘‘chaining’’ of clusters

in the second docking round. The output was clustered again with

a distance cutoff of 1.6 Å. While these distance cutoffs were

established empirically so as to maximize accuracy, it is interesting

to note that the second clustering cutoff is around the van der

Waals radius of a water molecule [78].

Using a maximum placement error of 2 Å the final WaterDock

method identified 88% of consensus water molecules within 3.3 Å

of the protein. The distance of 3.3 Å was chosen from the water-

water radial distribution function so as to define the first hydration

shell [79]. Out of the 80 consensus water molecules correctly

identified, only 8 were over 1.5 Å away from the experimental

position and 54 were within 1 Å of a consensus water molecule.

When only tightly bound water molecules (within 3 Å of the

protein) were considered, WaterDock predicted 94% of these

consensus water molecules.

Given that only protein-water interactions and not water-water

interactions were used to generate the initial ensemble of positions, it

is perhaps surprising that WaterDock was able to predict the vast

majority of consensus water sites. Even in examples that contain a

complex network of water molecules, such as Ribonuclease A, and

Carbonic Anhydrase, WaterDock was still able to predict 80% of the

consensus sites (see Table 3). It is clear therefore, that the protein is

the most important factor in determining a water molecule’s

position. However, the omission of water-water interactions was

likely to be responsible for some of the errors. In a few cases, an

experimental water site was found to lie between 2 predicted

locations (see Figure 2), resulting in a false positive. In examples such

as Ribonuclease A, Concanavalin A and Carbonic Anhydrase, it was

found that water-water interactions were very subtle and consensus

sites were observed to be slightly displaced with respect to the

WaterDock predictions, possibly to accommodate and interact with

another water molecule.

Water-water interactions could be included in the WaterDock

method if a second sampling procedure, akin to the JAWS method

[28] could switch the predicted sites ‘‘on’’ and ‘‘off’’. We also

considered sequentially docking a water molecule into a cavity to

account for water-water interactions. However we found that the

point at which to stop docking was ambiguous and that subsequent

predictions were biased to regions near previous predictions.

Importantly, neither of these methods adapt the positions of water

molecules to optimize both the protein-water and the water-water

interactions. A second energy minimization step would be required

to achieve this. Given the high accuracy and speed of the current

method, we felt these improvements were unnecessary. Table 4

shows the number of correctly predicted consensus water molecules

and the number of mis-predictions for each individual protein.

Applying WaterDock to the test set. We decided to use to

same data set used by the water prediction method, AcquaAlta

[59], as our test set so as to allow a direct comparison of the

methods. The test set comprised of fourteen crystal structures of

OppA bound to different KXK tri-peptides. AcquaAlta reported

that they could predict 66% of the water molecules that bridged

the interaction between the ligand and the protein to a maximum

error of 1.4 Å. Using the same maximum error, WaterDock

predicted 87% of the crystallographic water molecules. When the

results were visually inspected (Figure 3), 11 additional predictions

were found to be within 2.0 Å of crystallographic water molecules

that made the same interactions with the ligand and protein.

When these water molecules were included in the analysis,

WaterDock identified 97% of the crystallographic water sites with

a mean error of 0.68 Å. On average, WaterDock predicted just

under 1 water molecule per structure that was not seen

experimentally. The false positive rate was not reported for

AcquaAlta.

2. Predicting displaceable water molecules using
WaterDock

Water energy model from a data mining procedure. The

54 water molecules that Barillari’s et al. calculated the binding

Table 3. The performance of the final WaterDock method on
the second validation set.

Max
Error
= 1.5 Å

Max
Error
= 2.0 Å

Maximum
distance of
experimental
waters from
protein (Å)

Consensus
water
molecules
predicted
(%)

False
Positives
(%)

Mean
Error
(Å)

Consensus
water
molecules
predicted
(%)

False
Positives
(%)

Mean
Error
(Å)

3 88 24 0.69 94 16 0.77

3.3 81 24 0.69 88 16 0.78

doi:10.1371/journal.pone.0032036.t003

Table 4. The individual protein results using the final WaterDock method.

HIV ProteaseRibonuclease A GluR2 Trypsin Concanavalin A GST{
Carbonic
Anhydrase Total

Consensus Waters 9 10 15 14 17 13 15 93

Predicted Consensus Waters 9 8 15 13 13 12 12 82

False Positives 2 3 3 2 4 3 4 21

Water Molecules Predicted* 18 20 20 17 21 19 18 133

*The number of correctly predicted non-consensus water sites can be calculated by finding the difference between the number of water molecules predicted and the
sum of the predicted consensus waters and false positives.
{Glutathione S-transferase.
doi:10.1371/journal.pone.0032036.t004
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energy for using the double decoupling method [68] were scored

with the AutoDock 4 and the Vina scoring functions. All linear

combinations of the scoring functions energetic terms were used to

create 255 energy models. After selecting the top 30 models based

on model simplicity and goodness of fit (as denoted by the model’s

AIC), cross validation was used to find the model that yielded the

lowest error. It was found that a single term, the hydrogen bonding

term from Vina’s scoring function had the lowest mean error in

the cross-validation (CV) study, with an error of 1.7 kcal/mol. The

standard error of the fit was 1.6 kcal/mol and had an R2 value of

0.50. For comparison, if the average calculated energy of the

Barillari data set is used to predict each water molecule’s energy,

the mean error would be 2.5 kcal/mol. The coefficient and

intercept of the re-weighted Vina hydrogen bonding term is shown

in Table 5.

Figure 2. Two examples from the data set used to validate the
WaterDock method. Yellow spheres: predicted water sites, red
spheres: water molecules observed in at least two experimental
structures, blue spheres: water molecules observed in only one
experimental structure. HIV-1 protease bound to the inhibitor KNI-272
(A). All 9 consensus water molecules and all 6 non-consensus water
molecules are correctly identified. One non-consensus water molecule
is in between two predictions, resulting in a false positive. This water
molecule was resolved only in 3FX5 with a temperature factor of 42 Å2,
so the over-prediction may be due to the uncertainty in the water
molecule’s position. GluR2 ligand binding core bound to AMPA (B). All
water molecules within the binding site are correctly predicted.
doi:10.1371/journal.pone.0032036.g002

Figure 3. An example from the test set used to validate
WaterDock. OppA is shown bound to the tripeptide KNK, PDB code
1B5I as shown in (A). Red spheres: crystallographic water molecules;
blue spheres: water molecules seen in other related structures; yellow
spheres: WaterDock predictions. All water molecules are correctly
predicted with 2 false positives. An example from the retrospective
displacement study: human methionine aminopeptidase-2 bound to an
inhibitor (blue transparent sticks), PDB code 1R58 as shown in (B).
Yellow spheres: water sites predicted in the absence of the ligand; black
spheres: predicted water sites that overlap with the ligand; red spheres:
crystallographic water molecules seen in the protein-ligand complex,
purple spheres: manganese ions. Predictions that correspond to water
molecules seen in the crystal structure are considered to be
‘‘conserved’’ and water molecules that overlap with the ligand are
considered to be ‘‘displaced’’. Three predicted water molecules are
observed to be displaced by 2 oxygen and 1 nitrogen ligand atoms.
doi:10.1371/journal.pone.0032036.g003
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Vina’s hydrogen bonding term is the sum over hydrogen

bonding pairs [69]. For each pair, the value ranges from 1 to 0 and

varies linearly with distance. The significant correlation despite the

simplicity of the model result is likely to be due to a strong

enthalpy-entropy compensation effect, where the number and

strength of hydrogen bonds correlates with the translational and

orientational freedom of the water molecule.

Classifying the role of water. As displaced water molecules

can greatly affect a ligand’s affinity and specificity, it is of great

interest to quantify the probability that a WaterDock prediction

will be displaced or conserved. If a water is displaceable, it useful

to know whether is likely to be displaced by a polar group or a

non-polar group. In order to develop a water classifier that is

consistent with our water placement method, we used a high

quality data set of protein ligand complexes to predict the locations

of water molecules after the ligands had been removed from the

structures. By overlaying the ligands back onto the hypothetical

‘‘apo’’ solvation structure, we investigated the displacement

statistics of our water predictions (See Figure 2B). In total, 545

predicted apo water molecules were within 1.5 Å of a water

molecule seen in the crystal structure of the protein-ligand

complex and so were classified as conserved. Also, 459 predicted

water molecules were classified as displaced as they were within

1.5 Å from a ligand. Of these displaced water molecules, 216 were

displaced by polar groups and 243 were displaced by non polar

groups.

Using the re-weighted Vina hydrogen bond term, the

hydrophilicity model and the lipophilicity model as descriptors

in a probabilistic machine learning classifier, water molecules were

predicted to be either being displaced or conserved. Using ‘‘leave-

protein-out’’ cross validation (as described in Methods), 75% of the

WaterDock predictions were correctly classified as either con-

served of displaced when the class with the highest probability was

used for the prediction. Similarly, when waters predicted to be

displaced by WaterDock were classified as being displaced by a

polar group or by a non-polar group, 80% of the WaterDock

predictions were correctly classified in cross validation. Table 6

shows that there was little bias in predicting each individual class.

One benefit of using a probabilistic classifier is that the certainty

of a prediction is naturally quantified. One would therefore expect

that the higher the classification probability is, the lower the

chance of misclassification. For both of our models, we found that

classification probabilities of 0.8 or above correctly classified the

water in 94% and 95% of cases in both models after cross

validation. This emphasizes the usefulness of the probabilistic

approach taken.

Figure 4 shows the distributions of the three scores for

WaterDock predictions displaced by polar and non polar groups

as well as for conserved and displaced water molecules. While each

score could be used individually to distinguish between water

classes, we found that the highest accuracy in the cross validation

could only be achieved using all three energy scores (Tables S4

and S5).

In Figure 4, it seems counter intuitive that conserved Water-

Dock predictions are more likely to have a higher lipophilic score

than displaced water molecules. This is due to the fact that

conserved water molecules tend to be more buried and so have

more contacts with the protein, which also explains the higher

hydrophilicity scores and the stronger hydrogen bonds. The

opposite is true when one compares WaterDock predictions that

were displaced by polar groups to water predictions that were

displaced by non-polar groups. Water molecules displaced by non-

polar groups tend to reside in slightly more lipophilic and less

hydrophilic environments and tend to make fewer and weaker

hydrogen bonds.

It is interesting to note that even though Vina’s hydrogen-

bonding term was established using a data mining protocol and

the hydrophilicity score was designed heuristically, both scores

were strongly correlated with an R2 of 0.72. These very different

approaches have converged to describe a related property of

water. Despite the high correlation, the combination of the two

scores in the machine learning algorithm increased the classifica-

tion accuracy by around 7% compared to when each term was

fitted individually (see Table S4). Because the increase in accuracy

is seen after cross-validation, it indicates that it is not a result of

over-fitting and, that despite the high correlation, the terms

sufficient are sufficiently distinct so as to improve the classification

success rate.
Ligand water displacement propensities. As well as

predicting the role that WaterDock predictions play in ligand

binding, we also investigated the propensities for ligand chemical

groups to occupy predicted water sites. Given the very good

agreement with WaterDock’s predictions and experimentally

determined water sites, we expect these displacement statistics to

be similar for water molecules seen in crystal structures.

Figure 5 shows the probability of finding ligand functional

groups at various distances from hypothetically displaced water

sites. For a given distance cutoff, each point can be considered as

the propensity that a ligand atom will displace a water molecule.

Hydrogen bond donors and acceptors were equally likely to

displace predicted water molecules and were found to be around 9

times more likely to be within 0.5 Å of a water site than aromatic

Table 5. The gradient and intercept of the Vina’s hydrogen-
bonding term after refitting it to the calculated binding
energy of water according to Barillari et al.

Term Weight (kcal/mol)

Intercept 1.77

H-bond 22.58

doi:10.1371/journal.pone.0032036.t005

Table 6. The results of the models that classify water molecules as displaced or conserved and as displaced by a polar group and
displaced by a non-polar group.

Model 1 correctly classified (%) Model 2 correctly classified (%)

Total Conserved waters Displaced waters Total
Waters displaced by
polar groups

Waters displaced by
non-polar groups

75 70 81 80 82 79

doi:10.1371/journal.pone.0032036.t006
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and aliphatic carbons. This indicates that it is important for water

displacing ligand groups to replicate water’s hydrogen bonding

capacity. Interestingly, when the occupation probabilities were

computed for ligand atoms, rather than atom functions, oxygen

atoms were over twice as likely to be found within 0.5 Å of a

displaced water site than nitrogen atoms. At 1.5 Å (the distance

cutoff we previously used to define whether a water molecule was

displaced or not) the displacement propensities of oxygen and

nitrogen are roughly the same. The higher probability for a ligand

oxygen atom to more closely occupy a displaced water site further

emphasizes the importance for ligands groups to mimic the water

molecule they displace.

As the distance from a predicted water site increases further, the

less one can consider a ligand atom to have displaced a water

molecule. As a result, the propensities tend to the same value.

Ligand atoms such as halogens, sulfur and phosphorous were not

included in this study due to their small number in the data set.

From Figure 5, it is tempting to conclude that ligand

modifications designed to displace a water molecule should always

be made with an hydrogen-bonding group. However, in this study

we have seen that many water molecules, depending on their local

environment, are preferentially displaced by non-polar groups.

However, since carbon is the most abundant ligand element in the

Astex Diverse Set and representative of drug-like ligands, the per

atom displacement probability is significantly less for carbon than

for polar atoms.

Conclusions
Using three data sets, we have shown that by using a method we

call WaterDock, the docking software AutoDock Vina can be used

to predict the binding positions of water molecules in an accurate

manner. Using structures that have been determined more than

once by either X-ray crystallography or by neutron diffraction, we

found WaterDock could predict 88% of consensus water

molecules. In order to understand the structural importance of

WaterDock’s predictions, we combined data mining, heuristic and

machine learning techniques to assess the probability that a

prediction is either conserved or displaced. After cross-validation,

this model had a classification accuracy of 75%. Similarly, we

found we could predict whether WaterDock predictions were

displaced by polar or non-polar ligand groups to an accuracy of

80%.

These models allow one to predict not only the location of water

molecules, but also if a water is likely to be displaceable by oxygen

or nitrogen atoms only or whether in fact there is scope for

displacement by something more non-polar, like a methyl group.

Such knowledge could be advantageous in the context of lead-

optimization. Work is underway to see how this water scoring

information can be used to improve the prediction of ligand-

protein binding affinities. An example water-placement prediction

script is available (Supporting Information S1) and all water

classifiers are available on request.

Supporting Information

Text S1 Full details of the molecular dynamics proce-
dure and the docking procedures used for specific
proteins.

(DOC)

Figure 4. The distribution of energies of water molecules
displaced by polar groups (purple) and by non-polar atoms
(black) for the hydrogen bond score (A), hydrophilicity score
(B) and the lipophilicity score (C). Overlaid are the distributions of
energies of conserved water molecules (dashed orange) and displaced

water molecules (dashed cyan). While each score can be used
individually to classify water molecules, to obtain the accuracies shown
in Table 6, all scores must be included in the machine learning classifier.
doi:10.1371/journal.pone.0032036.g004
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Table S1 The X-ray crystal structures of OppA used as the test

set for the water placement method. Fourteen crystal structures of

OppA were used as the WaterDock test set. This test set was

chosen to match the test set used by the water prediction method

Acqua Alta. The water molecules used in our study are shown in

Table S4. These water molecules bridge the interaction between

OppA and the ligands. The listed water molecules were used to

test the true positive rate of WaterDock. As all the ligands are

lysine-X-lysine tripeptides, all the water molecules around the

lysine residues were used to calculate WaterDock’s false positive

rate.

(DOC)

Table S2 Water molecules used in the OppA test set.

(DOC)

Table S3 Results of different water docking methods (performed

on structures in Table 2 of the main manuscript). The final

WaterDock method was chosen as the one that predicted the most

number of consensus water molecules for the lowest false positive

rate. Various docking parameters were experimented with as well

as different clustering methods. To demonstrate how changing the

docking or clustering parameters affects the prediction accuracy,

some of the results of different water prediction methods are

shown. The success rates shown are for a maximum error of 2 Å.

The final method, shown in the bottom row of this table, was

chosen after an exhaustive parameter and methods search.

(DOC)

Table S4 Classification accuracies for conserved and displaced

waters. Three water scoring energy terms were established to

describe a water molecules binding energy (AutoDock Vina’s

hydrogen bonding term) and the water molecules’ local environ-

ment with our hydrophilic and hydrophobic terms. These scores

were used in 2 bagged tree classifiers that predicted whether water

molecules were displaced or conserved. The probabilistic classifiers

were fit using all combinations of the water scores. Cross validation

results are shown and demonstrate that all three scores must be

included for maximum accuracy.

(DOC)

Table S5 Classification accuracies for waters displaced by polar

and non-polar groups. The probabilistic classifiers were fit using all

combinations of the water scores as for Table S5.

(DOC)

Supporting Information S1 A gzipped archived of the water-

placement scripts used.

(ZIP)
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