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Abstract

Background: Bacteriocins are antimicrobial peptides that are produced by bacteria as a defense mechanism in complex
environments. Identification and characterization of novel bacteriocins in novel strains of bacteria is one of the important
fields in bacteriology.

Methodology/Findings: The strain GI-9 was identified as Brevibacillus sp. by 16 S rRNA gene sequence analysis. The
bacteriocin produced by strain GI-9, namely, laterosporulin was purified from supernatant of the culture grown under
optimal conditions using hydrophobic interaction chromatography and reverse-phase HPLC. The bacteriocin was active
against a wide range of Gram-positive and Gram-negative bacteria. MALDI-TOF experiments determined the precise
molecular mass of the peptide to be of 5.6 kDa and N-terminal sequencing of the thermo-stable peptide revealed low
similarity with existing antimicrobial peptides. The putative open reading frame (ORF) encoding laterosporulin and its
surrounding genomic region was fished out from the draft genome sequence of GI-9. Sequence analysis of the putative
bacteriocin gene did not show significant similarity to any reported bacteriocin producing genes in database.

Conclusions: We have identified a bacteriocin producing strain GI-9, belonging to the genus Brevibacillus sp. Biochemical
and genomic characterization of laterosporulin suggests it as a novel bacteriocin with broad spectrum antibacterial activity.
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Introduction

Bacteriocins are ribosomally synthesized antimicrobial peptides

and have drawn attention in recent years due to their potential

therapeutic applications in treating bacteria, including multiple

drug resistant bacteria [1–3]. Bacteriocins from lactic acid bacteria

have been in use for a while as natural preservatives in food

industry [4,5]. Although bacteriocins were originally found to be

produced by Lactobacillus only, it was subsequently shown to be

produced by different species and multiple strains. Consistent with

this, many species belonging to the genus Bacillus as well as other

Gram-positive and Gram-negative bacteria were shown to

produce bacteriocins and/or bacteriocin-like substances [6]. In

fact, it is observed that majority lineages of bacteria are shown to

produce at least one bacteriocin as part of their defense

mechanism [7,8]. Likewise many species belonging to the genus

Bacillus were reported to produce bacteriocins and/or bacteriocin

like substances [9–11].

Antimicrobial peptides produced by bacteria are categorized

into different classes based on structural and functional

characteristics [12]. The class I bacteriocins called as lantibiotics,

are well studied with wide applications in both therapeutic and

preservation of food products at industrial scale [1,13,14]. Class

II bacteriocins are further divided into different sub classes,

including antilisterial one-peptide pediocin like bacteriocin as

sub-class IIa [15–18], the two-peptide bacteriocins as sub-class

IIb [14,17–19], sub-class IIc containing cyclic bacteriocins and

sub-class IId composed of one-peptide non-cyclic bacteriocins

that show no sequence similarity to other bacteriocins [14,17,20].

Among these different classes of bacteriocins, lantibiotics are

found to undergo post translational modifications such as

dehydration of Ser and Thr to produce dehydroalanine (Dha)

and dehydrobutyrine (Dhb) respectively. The lantibiotics are

further divided into two groups based on their structure as group

A contains globular lantibioitics and group B composed of linear

lantibiotics. Both groups were also found to differ in their

mechanism of inhibition activity. Most of the bacteriocins

produced by Bacillus spp. belong to the class I lantibiotics and

exhibit broad range molecular mass, from smallest lichenin

(1.3 kDa) produced by B. licheniformis [21] to largest thuricin

(950 kDa) produced by B. thuringiensis [22]. Moreover, they were

found to be active at relatively high temperatures and over a wide

pH range [23] with potential for therapeutic as well as industrial

applications. For example, mersacidin is one such bacteriocin

produced by Bacillus sp., which inhibits the growth of methicillin

resistant Staphylococcus aureus [24].
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While several species belonging to genera Bacillus and Paenibacilus

are shown to produce different bacteriocins, the antimicrobial sub-

stances produced by few Brevibacillus taxa have not been characterized

in detail. Furthermore, B. brevis [25,26] and B. laterosporus [27] have

been shown to produce bacteriocin-like inhibitory substances (BLIS)

with wide pH and temperature stability. Other than these, B.

laterosporus strain SA14 was shown to produce two antibiotics [28]. In

the present study, we describe the isolation, purification and

characterization of a bacteriocin produced by Brevibacillus sp. strain

GI-9 exhibiting broad spectrum antibacterial activity.

Results

Phenotypic characterization
Most of the strains isolated from subsurface soil sample with

antimicrobial activity were found to be facultative anaerobes (see

Methods). Among these, a strain designated as GI-9, exhibited

broad spectrum antibacterial activity by inhibiting the growth of B.

subtilis (MTCC 121), S. aureus (MTCC 1430), E. coli (MTCC 1610),

P. aeruginosa (MTCC 1934) and L. monocytogenes (MTCC 839).

Phenotypic properties and 16 S rRNA gene sequence (EMBL

accession No. FR686596) BLAST analysis of the strain GI-9

assigned it to the genus Brevibacillus. It had high percent identity

(99%) of the strain GI-9 16 S rRNA gene to that of B. laterosporus

DSM 25 and showed less than 97% with other species of the

genus. However, it showed differences in phenotypic properties

such as growth at 50uC, positive reaction for Voges Proskauer test

and urea hydrolysis compared to B. laterosporus DSM 25.

Antibacterial activity assay
Cell-free fermented broth (CFB) collected at indicated time

intervals during growth of strain GI-9 were used to perform

antimicrobial activity assays. The results showed that bacteriocin

production initiated after 12 hours of lag phase. However, there

was a significant increase in bacteriocin production between 13 to

18 hours (Fig. 1) and the antimicrobial activity remained constant

thereafter as measured by inhibition zone. Although it displayed a

broad-spectrum antibacterial activity, it did not show any growth

inhibition against yeast or fungi. Notably, the medium composi-

tion did not influence antimicrobial activity of the bacteriocin as

similar results were obtained when GI-9 was grown in minimal

medium and subsequently assayed for antimicrobial activity. The

growth inhibition studies showed that test strains B. subtilis and S.

aureus were more sensitive than other strains.

Purification of laterosporulin
The CFB obtained after 48 hours growth was tested for

antimicrobial activity. The bacteriocin present in CFB was

extracted by affinity chromatography using Diaion HP-20 and

purified by a combination of chromatographic techniques. To

remove large proteins, the crude extract was passed through a

30 kDa protein concentrator. The filtrate obtained was found to

exhibit antimicrobial activity and the same was applied on to gel

filtration columns for purification. The predominant peak shown

in Fig. 2A exhibited antimicrobial activity on test strains. Re-

injection of this predominant peak gave only one peak at the same

retention time suggesting that the minor peaks observed in the

previous chromatogram were not degradation products of the

antimicrobial peptide. Based on the elution profile of standards,

the peak with antimicrobial activity may have mass in the range of

5.3 to 10.1 kDa. This peptide was finally purified on a semi-

preparative reversed-phase-HPLC. The purified peptide showed a

single peak at UV absorption of 220 nm and was positive for

antimicrobial activity. Tricine-SDS-PAGE analysis of this peptide

Figure 1. Comparison of bacteriocin production at different phases of growth curve. The growth curve analysis of strain Brevibacillus sp.
GI-9 indicates that the production of bacteriocin initiated at late logarithmic phase. Growth measured as absorption at 600 nm is indicated by
squares (left y axes), while the bacteriocin activity by triangles (right y axes).
doi:10.1371/journal.pone.0031498.g001
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yielded a single band (Fig. 2B) and the same was used for

molecular mass and N-terminal sequencing.

Determination of molecular mass and N-terminal
sequence analysis

The molecular mass observed for laterosporulin by MALDI-

TOF was 5605.8 Da (Fig. 3), which is in good agreement with

mass obtained by gel filtration chromatography (Fig. 2A). The N-

terminal sequence of laterosporulin yielded partial sequence of

1A(M)Q(C)QG(C/Q)PDAISGWTHTDYQCH19 for two inde-

pendently processed samples. The uncertainties at the 1st, 2nd

and 4th positions obtained in N-terminal sequences were

considered to predict the antibacterial activity of each possible

peptide sequence using a database of peptides with known

antimicrobial potency. Notably, one of the peptides (ACQCP-

DAISGWTHTDYQCH) predicted highest relative activity com-

pared to other combinations. To confirm the antimicrobial activity

of this partial peptide, it was custom synthesized, mass was

Figure 2. Gel filtration elution profile of laterosporulin (A) and analysis (B). (A) The major peak (highlighted fraction) in gel filtration
chromatography shows antimicrobial activity and the calibration curve obtained from protein standards indicates mass of the peptide in the range of
5.3 to 10.1 kDa. (B) Tricine-SDS-PAGE analysis of the major peak showed a single band; lane 1, molecular weight markers; lane 2, purified
laterosporulin.
doi:10.1371/journal.pone.0031498.g002

Figure 3. MALDI-TOF mass spectrometry analysis of laterosporulin. The purified bacteriocin from Brevibacillus sp. GI-9 shows the mass (m/z)
of 5.6 kDa.
doi:10.1371/journal.pone.0031498.g003
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confirmed by MALDI-TOF and the synthetic peptide was

examined in growth inhibition assays using indicator strains B.

subtilis and E. coli. The peptide exhibited weak antimicrobial

activity at significantly higher concentration. Upon extensive

bioinformatic analysis, no significant similarity was observed to

this partial sequence with available bacteriocins in the databases

like BACTIBASE or Antimicrobial Peptide database. Also, careful

inspection of peptide mass fingerprinting (PMF) data using the

databases such as MASCOT and PROWL revealed no similarity

with any antimicrobial peptides.

Minimum inhibitory concentration analysis
This was confirmed by MIC (minimum inhibitory concentra-

tion) analysis, where above strains were found to be inhibited at

lower MIC values compared to other test strains (Fig. 4). To gain

insight into the mode of bactericidal action of the laterosporulin on

indicator strain, we performed scanning electron microscopy

(SEM) of E. coli treated with lethal dose of bacteriocin. When

compared to untreated bacteria, E. coli cells pre-incubated with

500 mg/ml of purified peptide for 4 hours displayed significant

modifications in cell shape and morphology (Fig. 5). The

modifications included roughening of the cell surface with

accumulation of cell debris and lysis of bacteria.

Temperature, pH stability and resistance to proteolytic
enzymes

The results of heat stability assay for laterosporulin confirmed

that the bacteriocin was fully heat stable as there was no reduction

in antimicrobial activity even after exposing it to 120uC for

15 min. It was also found to be stable under a wide range of pH as

there was no reduction in antimicrobial activity observed between

2.0 to 10.0. However, the antimicrobial activity of laterosporulin

was reduced significantly above pH 10. The antimicrobial assay

performed upon incubation of laterosporulin with proteolytic

enzymes (pepsin, trypsin, chymotrypsin, proteinase K, pronase E)

did not show any reduction in its antimicrobial activity. Further,

no reduction in antimicrobial activity upon treatment of

laterosporulin with amylase indicates the absence of any sugar

moiety associated with antimicrobial activity.

Analysis of the laterosporulin encoding gene cluster
To identify the ORF that encodes the laterosporulin, we

identified a 4 kb region from the preliminary draft genome of GI9

(unpublished). We further confirmed the 4 kb region (HE579167)

by re-sequencing (see Methods). Genomic organization of the 4 kb

region that contains the putative structural gene encoding

laterosporulin and its flanking genes is schematically shown in

Fig. 6A. The predicted ORF of 153 nucleotides following the

putative Shine-Dalgarno sequence (Fig. 6B) most likely codes for

the antimicrobial peptide. In agreement with this, the deduced

amino acid sequence (of the ORF) fully matches with the partial

N-terminal sequence of the peptide. However, the homology

searches revealed that the ORF predicted is novel to our species

and there is no similar or identical homolog has been identified in

any other species of bacteria. Recently genome sequence of

another strain (LMG 15441) identified as Brevibacillus laterosporus

has been submitted in NCBI (GenBank accession No

AFRV01000005). Like in our strain, all the 4 kb sequence is also

present in the genome of this strain and shows 98.3% nucleotide

identity. Even though the genomic region is present in this strain,

the putative ORF that encodes the laterosporulin is not annotated

and missed by their annotation pipeline (although it is encoded in

the genome and is 100% identical at nucleotide sequence). The

region on the right side of this ORF is flanked by a putative

transcriptional regulator gene and on its left side by three putative

genes that encode a hypothetical protein, ABC transporter protein

and a dehydrogenase gene. The list of predicted ORFs and their

most similar homologs is given in Table S1. The transcriptional

orientation of all ORFs is in the same direction (Fig. 6a) and the

G+C content of this 4 kb region is only 36.6 mol%, which is

somewhat lower than the average G+C content of the genome of

Brevibacillus sp. strain GI-9 estimated to be 41 mol%.

Discussion

Members of the genus Bacillus are well known to produce

bacteriocins, largely classified as lantibiotics with many placed

within the class II bacteriocins [15,19]. Apart from Bacillus, genus

Paenibacillus is also known to produce antimicrobial substances

such as polymixins. However, species belonging to other genera

like Brevibacillus and Geobacillus are sparsely explored for antimi-

crobials [25–29]. Thus, exploration of these genera and other close

relatives for antimicrobials may result in isolation of novel

bacteriocins for various applications, in addition to increasing

the knowledge in this field. This study provides the first

characterization of a bacteriocin produced by Brevibacillus sp.

strain GI-9 with activity against a diverse range of bacteria. The

most essential parameter for characterization of a bacteriocin is

obtaining it in a pure form using different chromatographic

techniques [30,31] including size exclusion and affinity chroma-

tography [32–36] after ammonium sulfate precipitation. The

purification of laterosporulin involved extraction from a 48 hour

culture supernatant using Diaion HP-20 resins, followed by

filtration chromatography and reversed-phase high performance

liquid chromatography. As an alternative to the ammonium sulfate

precipitation few studies reported utilization of hydrophobic

interaction of resins to extract selective peptides [20,37]. Our

results clearly suggest that the utilization of Diaion HP-20 could

result in high yield and subsequent additional chromatography

resulted in obtaining the pure compound.

The purified laterosporulin showed a single band on Tricine-

SDS-PAGE, the molecular mass analysis of this peptide using

calibration curve obtained from gel filtration chromatography and

MALDI-TOF revealed low molecular weight which is generally

Figure 4. Determination of MIC for laterosporulin produced by
strain GI-9. The MIC assay for Gram-positive and Gram-negative
bacteria with purified laterosporulin using micro-titer plates in
triplicates revealed that B.subtilis and S. aureus are highly sensitive.
doi:10.1371/journal.pone.0031498.g004
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observed for bacteriocins. The broad elution profile obtained in

gel filtration chromatography could be due to conformational

polydispersity which is not too uncommon for peptides. To

ascertain the molecular mass with higher reliability, we carried out

MALDI-TOF of the active peak which gave a mass of 5.6 kDa. In

fact, the molecular weight of intact peptide obtained by gene

sequence slightly differed with the mass obtained by MALDI-

TOF. We speculate that this is a result of peptide maturation

where the N-terminal extension of precursor peptide is cleaved off

by the action of an enzyme like Met aminopeptidase (MAP) that

cleaves at a Met residue when the adjacent residue is a nonbulky

amino acid [38]. However, unlike the class II bacteriocins or some

of the class I lantibiotics where maturation proteases are associated

with an ABC transporter gene [39], strain GI-9 do not contain any

significant N-terminal protease domain in ABC transporter.

Nonetheless, four copies of genes exhibiting similarity with the

Figure 5. Bactericidal effect of laterosporulin on E. coli. The scanning electron micrographs of E. coli cells without laterosporulin treatment (A)
and after laterosporulin treatment (500 mg/ml) for 4 h (B). Note that the treatment of E. coli displaying roughening of cell surface with cell debris as a
result of treatment.
doi:10.1371/journal.pone.0031498.g005

Figure 6. Genetic organization of 4 kb region of the genome encoding laterosporulin (A) and nucleotide sequence of the ORF (B).
The putative ORF encoding laterosporulin structural gene is shown by filled arrow and flanking ORFs as shown by empty arrows (A). Panel B shows
the nucleotide sequence of the laterosporulin gene (encoding the indicated amino acids) with putative start codan, stop codons and ribosome
binding site (RBS) shown in bold.
doi:10.1371/journal.pone.0031498.g006
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MAP gene are found in different locations of the genome. The

maturation of peptide is also noticeable from the repeated N-

terminal sequences of the peptide which yielded Ala as the first

amino acid. The theoretical mass calculated for the peptide

obtained from gene sequence upon maturation of peptide

(5619.3 Da) is still 13.5 Da higher than the experimental mass

observed. However, Gaussian fit to the single peak observed in

MALDI-TOF experiment suggested that the peptide molecules

have a flight time corresponding to mass of 5605.8 633.6 Da and

this range covers the theoretical mass of the peptide. Low similarity

of the laterosporulin amino acid sequence with existing bacteriocins

suggests that it could be a novel bacteriocin. Moreover, the

continuous N-terminal sequence obtained in the present study

revealed the absence of modified amino acids like dehydrated Ser or

Thr which are formed as a result of post-translational modifications.

In addition to this, treatment of peptide with dithiothreitol (DTT),

used to disrupt disulfide bonds, did not affect laterosporulin’s

antimicrobial activity or result in any migration differences on SDS-

PAGE (data not shown). Further, the bacteriocin is neither

composed of two peptides nor contain YGNGVXC motif at N-

terminus, which is observed in anti-listerial pediocine like

bacteriocins. Interestingly, though laterosporulin did not show the

YGNGVXC motif, it could inhibit the growth of test strain L.

monocytogenes, supporting the hypothesis that YGNGVXC motif does

not play any role in inhibiting the growth of Listeria [40]. These

several lines of evidence suggest that the antimicrobial peptide in the

present study belongs to a novel heat stable class II bacteriocin

family [41]. In addition to this, the PMF analysis of the

antimicrobial peptide using MASCOT and PROWL database

analyses revealed no significant similarity with any of the known

bacteriocins or antimicrobial peptides produced by bacteria. This

was in agreement with the BLAST analysis of a partial N-terminal

amino acid sequence against the GenBank protein database and an

antimicrobial peptide database that did not reveal any similarity

with known antimicrobial peptides. Interestingly, the partial N-

terminal sequence of the peptide revealed the absence of cationic

amino acids such as Lys or Arg, but it still exhibited antimicrobial

activity. Recently, another N-terminal sequence was also reported

to lack cations in its partial sequence [20].

One of the hallmarks of the ORFs that encode bacteriocins is

their small size (50–70 aa). Due to their small size, genes encoding

bacteriocins are often difficult to identify. In our case, the

availability of the purified peptide, its partial N-terminal sequence

and the draft genome of the source strain helped to identify the

putative ORF that encodes the laterosporulin, along with adjacent

genes. As expected, the putative ORF that encodes the laterospor-

ulin is only 153 bp (50 aa). The other hallmark of a genomic region

that encodes a bacteriocin is the presence of genes necessary for

regulation, transport, modification, etc. The 4 kb region encodes

such genes and the fact that transcriptional orientation of all these

genes is in same direction suggests that they are part of a genetic

cassette responsible for laterosporulin production (Fig. 6A). Even

though bacteriocins are known to be strain specific, the presence of

an ORF with significant similarity to the putative laterosporulin-

encoding ORF in the genome of Brevibacillus laterosporus strain

LMG15441 [42] suggests that this strain may produce a related

bacteriocin. This highlights the importance of conducting a

functional screen to identify bacteriocins.

Many antibiotics are already in use to combat disease or to

avoid the food spoilage. Consequently, increased use of these

antibiotics resulted in multiple antibiotic resistance in pathogens

and food spoiling bacteria. Thus, it is essential to discover novel

antimicrobial substances to combat these drug resistant bacteria.

The properties such as thermo-stability, pH tolerance and

resistance to proteolytic enzymes observed for bacteriocins has

fostered their therapeutic and food preservation applications. In

this study, laterosporulin was found to be thermo stable, pH

tolerant and resistant to proteolytic enzymes. These properties of

laterosporulin can increase the potential applications of the

bacteriocin alone or in combination with other bacteriocins.

Materials and Methods

Isolation and growth media
The bacterial strain GI-9 was isolated from a subsurface

farmland soil sample in Chandigarh, located in northern part of

India. No specific permissions were required for sample collection

as the location is with in the institute’s campus and the study did

not involve any recombinant materials. The sample was collected

and immediately transferred to laboratory for processing. It was

serially diluted and plated onto tryptone soya agar (TSA) medium

with the following composition (g/l) pancreatic digest of casein,

15.0; papaic digest of soybean meal, 5.0; sodium chloride, 5.0;

agar 15.0 and the pH adjusted to 7.2. The plates were incubated

for 4 days at 30uC under anaerobic conditions. Colonies with

inhibition zones were isolated, purified and preserved at 270uC
for further studies. All test strains in the present study were

procured from Microbial Type Culture Collection (MTCC),

Chandigarh, India and grown on TSA.

Bacterial identification
Morphological characteristics of cell and spore were observed

under phase contrast microscope (Zeiss, Axiophot). Physiological

tests like growth at different temperature and pH were determined

using TSA as basal medium. Other biochemical tests were

performed according to the standard procedures [43,44]. PCR

amplification of the 16 S rRNA gene was done using universal

primers 8-27f (59-AGAGTTTGATCCTGGCTCAG-39) and

1492r (59-TACGGYTACCTTGTTACGACTT-39). Amplified

PCR product was purified and sequenced as described [45].

Almost complete sequence of 16 S rRNA gene (submitted to

EMBL under the accession No.FR686596) was used for BLAST

search using NCBI and EZ Taxon servers.

Determination of bacteriocin activity
The CFB of strain GI-9 was used to determine the antimicrobial

activity. Culture was grown for 48 hours in nutrient broth (NB,

Himedia) and subsequently cells were removed by centrifugation

(10,000 rpm for 10 min, 4uC). The supernatant obtained was

filtered by using 0.22 mm filter (Millipore). The filtrate was diluted

by two fold dilution and amounts of 100 ml of different dilutions

were used to test the activity. These dilutions were added to the

wells that are prepared in plates containing nutrient agar medium

seeded with test organism. Above test was also performed using

minimal medium to check influence of the medium components

on antimicrobial activity. A growth curve up to 24 hours was

prepared for strain GI-9 to examine the bacteriocin production at

different stages. One unit of bacteriocin was defined as the lowest

dilution that was given an inhibition zone around the well and

reciprocal of this dilution is defined as the unit of antimicrobial

activity per ml.

Bacteriocin production and purification
An isolated colony was used to inoculate 50 ml of NB medium

and incubated at 30uC with shaking at 120 rpm for 24 hours. This

culture was used to inoculate 1 liter flasks containing 500 ml of

NB. The culture was grown for 48 hours at 30uC and subsequently

cells were separated by centrifugation (10,000 g, 15 min at 4uC).

Laterosporulin Produced by Brevibacillus sp. GI-9
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The cell free supernatant was mixed with 2% (w/v) of Diaion HP-20

(Supelco) resin and the bacteriocin was eluted with methanol as

described [35]. Methanol was evaporated using a rota vapor

(BUCHI Rota vapor R-200) and the dried peptide content was

dissolved in Milli-Q water. This crude extract was passed through a

30 kDa protein concentrator (Millipore, USA) and the active

fraction obtained was applied onto a manually packed and

calibrated sephacryl HR-100 column 16/66 (GE Healthcare) linked

to an AKTA prime plus (GE Healthcare). The elution was done in

50 mM sodium phosphate buffer (pH 7.2) containing 50 mM NaCl

at flow rate of 0.5 ml/min and monitored through UV detector

(220 nm). Fractions of 5 ml were precipitated through TCA and re-

dissolved in Milli Q water to test the antimicrobial activity. The

active fraction was applied onto gel filtration HPLC column

(Shodex KW-803) along with molecular weight standards insulin,

ribonuclease A, chymotrypsinogen, ovalbumin, conalbumin, ferritin

and blue dextran. Finally the bacteriocin was applied onto reversed-

phase chromatography (Schimadzu Scientific Instruments, Japan)

and purified using semi-preparative C-18 column (Phenomenex,

Luna 5m C-18). The bacteriocin was eluted with 0–100% linear

gradient of acetonitrile containing 0.1% trifloroacetic acid (TFA)

with a flow rate of 0.5 ml/min. The purified bacteriocin was

collected, lyophilized and re-dissolved in water to appropriate

concentration. It was used to test antimicrobial activity and applied

on Tricine-SDS-PAGE (16.5%).

Determination of minimum inhibitory concentration
The MIC of bacteriocin for different strains was evaluated by

using a microtiter plate dilution assay. Test strains were grown to

logarithmic phase under optimal conditions (up to 0.3 OD) and the

test was performed in triplicates. Each well of the microtiter plate

was added with 200 ml of fresh nutrient medium and 50 ml of test

strains in different rows. Subsequently, different dilutions (50 ml) of

freshly prepared bacteriocin were added to each well. The first

column of the microtiter plate was left as a blank while reading

through an ELISA plate reader (Thermo Scientific). The microtiter

plates were incubated at 30uC incubator and OD was measured at

600 nm at different time intervals. The lowest concentration that

inhibited growth of test strains and did not show any increase in

absorption after 48 h was considered as MIC.

To examine the bactericidal activity, E.coli cells were grown in

NB to an exponential phase, harvested by centrifugation. The

pellet obtained was resuspended in fresh NB and aliquots of 5 ml

containing about 26107 cells/ml were incubated at 37uC for

4 hours with 500 mg/ml laterosporulin. Samples at 0, 2 and

4 hours interval were centrifuged and pellets were resuspended in

500 ml of phosphate buffer. Each sample was spread on a poly (L-

lysine)-coated glass slides (18618 mm) to immobilize bacterial cells

and incubated at 30uC for 90 min. They were fixed with modified

Karnovsky’s fixative [46] and dehydrated with a graded ethanol

series. After freeze drying and platinum coating, the samples were

observed with a Zeiss EVO 40 instrument.

Effect of pH, temperature and hydrolytic enzymes on
bacteriocin activity

The sensitivity of the purified bacteriocin towards different pH,

temperature and proteases was evaluated. To determine pH and

temperature resistance, the purified peptide was incubated at

different pH values between 2.0–12.0 and temperatures 80, 100uC
for 30 min and 120uC for 15 min. Different hydrolytic enzymes

including pepsin, trypsin, chymotrypsin, proteinase K, pronase E

and amylase were incubated with bacteriocin for 6 hours at 37uC
to ensure their effect. The enzyme activity was terminated by

heating at 80uC before the bacteriocin activity was confirmed.

Intact mass analysis and peptide mass fingerprinting
For intact mass analysis of bacteriocin, 1 ml of the peptide

sample was mixed with equal amount of a-cyano-4-hydroxycin-

namic acid in 0.1% (v/v) TFA. Sample was dried and analyzed on

an ABI voyager DE STR mass spectrometer (Applied Biosystems).

The HPLC purified, functional entity was loaded on to Tricine-

SDS-PAGE, upon electrophoresis the protein band was subjected

to overnight digestion (at 37uC for about 16 hours) using trypsin

and the mass of the generated fragments were analyzed [47]. The

observed mass and their relative intensities were used to identify

the parent sequence by peptide mass fingerprinting against profiles

of known sequences using MASCOT and PROWL servers.

N-terminal amino acid sequencing and analysis
After separation by Tricine-SDS-PAGE, the peptides were

transferred on to PVDF membrane (Bio-Rad), rinsed with Milli-

Q water, stained with amido black (Sigma) for 2-3 min and

destained with several changes of 50% methanol. The membrane

was finally rinsed in Milli-Q water. The excised peptide band was

subjected to N-terminal sequencing. The N-terminal sequence

was determined by automatic degradation in Procise 491 cLC

protein sequencer (Applied Biosystems). The partial sequence

obtained was analyzed for its ability to resemble profile of

antibacterial peptide by comparing with sequences of peptides

with known potency against microbes [48] (http://aps.unmc.

edu/AP/main.php).

Peptide synthesis
To evaluate antibacterial function of the N-terminal peptide, a

19-mer peptide representing the N-terminal sequence of the

bioactive protein was synthesized using standard Fmoc-chemistry

on 2-chlorotrityl resin (0.2 mmol/g). Synthesis was carried out on

a semi-automated synthesizer (PS-II) (Protein Technologies Inc.,

AZ USA). It was cleaved with TFA and purified by RP-HPLC

system (Dionex, Ultimate-3000) using C-18 analytical column.

The purified peptide was subjected to MALDI-TOF analysis for

confirmation of molecular mass.

DNA sequence analysis
The DNA was isolated as described by Sambrook et al. [49].

TBLASTN was carried out using the laterosporulin N-terminal

sequence against the draft genome of our strain GI-9 (unpublished)

to fish out region encoding the putative structural gene for the

bacteriocin and its flanking genes. Further, this region was re-

sequenced using a set of overlapping primers (Table S2) on an

ABI 310 Genetic Analyzer (Applied Biosystems) and annotated

using NCBI ORF finder (http://www.ncbi.nlm.nih.gov/projects/

gorf/). Homology searches were performed at NCBI (http://www.

ncbi.nlm.nih.gov/) and published bacteriocin databases such as

antimicrobial peptide database, BAGEL and BACTIBASE [50–

52]. The 4 kb sequence of laterosporulin gene cluster described in

the present study has submitted to EMBL under the accession

number HE579167.

Supporting Information

Table S1 Homologs of predicted products of ORFs in the of

4 kb genomic region encoding the putative structural gene for

laterosporulin.

(DOC)

Table S2 List of primer for re-sequencing of 4 Kb genomic

region encoding the putative structural gene for laterosporulin.

(DOC)
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