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Abstract

Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders
later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure
impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying
the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure
are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to
elicit voluntary binge alcohol drinking early in adolescence (,postnatal days 28–42) in genetically heterogeneous male
Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in
dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the
central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge
drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and
non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when
access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on
the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect
that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral
CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system
with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting
neural and behavioral effects with implications for anxiety and alcohol use disorders.
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Introduction

Binge drinking is defined by the National Institute on Alcohol

Abuse and Alcoholism (NIAAA) as heavy episodic drinking that

brings a person’s blood alcohol levels to 0.08 gram% (g%, g/dL)

or higher (,4 drinks in women, ,5 drinks in men within a 2-hour

period [1,2]). This type of drinking is highly prevalent in teenagers

[3,4], possibly due to the high sugar content and packaging of

alcoholic beverages (‘‘alcopops’’ [4]). Adolescent binge drinking

has been linked to stress, addiction, and mental health problems

throughout the lifespan [5–8]. In fact, early onset of heavy

drinking is one of the strongest predictors of a lifetime prevalence

of alcohol dependence, with children who start drinking at age 14

and younger being four times more likely to become alcohol

dependent than those who began drinking at age 20 and older [9–

15].

The epidemiological literature in humans suggests several

possible links between adolescent binge alcohol drinking and

negative mental health outcomes such as alcoholism during

adulthood. The first possibility is that individuals who binge drink

at this early age already have a predisposition to engage in

excessive, risky drinking behaviors in adulthood independent of

their prior experience with alcohol during adolescence (i.e., binge

drinking is an early sign of vulnerability); the second is that

adolescent binge drinking results in alcohol exposure (specific

pattern of intake, accumulated amount consumed, etc.) that causes

long-term neurochemical or neuroanatomical changes within

addiction-related brain circuits to increase the risk of alcohol

dependence in adulthood; and the third is that both factors

(exposure and predisposition) contribute to increased risk of

addiction in adulthood. Epidemiological studies suggest increased

dependence risk in individuals who begin drinking early in

adolescence may be due, at least in part, to the level of alcohol

exposure itself, although it is challenging to prove a causal role of

adolescent binge alcohol exposure on vulnerability to dependence

and related mental health issues in humans [8,12].
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Animal studies provide some support for the correlative findings

observed in humans. Adolescent rats and mice engage in higher

levels of drinking compared to adults [16–19]. In addition, high

alcohol consumption early in adolescence correlates with high

alcohol consumption later in adolescence [20] and in adulthood

[16,17,19]. A recent study used scheduled fluid availability [17] in

an inbred alcohol-preferring strain of mice to elicit binge-like

consumption of alcohol and found that baseline drinking and

alcohol preference was higher in animals that began drinking as

adolescents compared to animals that began drinking as adults [16].

In the present study, we developed an operant self-administra-

tion model to investigate the impact of adolescent binge drinking

on vulnerability to heavy drinking and dependence in adulthood.

This work was done in male Wistar rats, an outbred strain without

a predisposition to addiction. The operant approach was used in

part because involuntary exposure to binge-like alcohol via systemic

injections (but not saline injections or voluntary alcohol drinking)

caused long lasting reductions in voluntary drinking of alcohol in

adulthood (data shown herein). The model also aimed to better

mimic the binge alcohol intake observed in many teenagers:

heavy, episodic, voluntary oral consumption of sweetened alcoholic

beverages [4]. The binge drinking exposure period was timed to

occur during the first ‘‘half’’ of adolescence (28–42 days of age) to

coincide with the pubertal maturation phase [21] of the ,4-week

long developmental period in rodents [21–23]. This developmen-

tal period in rats is comparable to the age at which the onset of

alcohol drinking is associated with the greatest risk for developing

alcohol dependence in adulthood in humans (14 years old and

under; [3,13,24,25]).

In this study, chronic intermittent alcohol vapor inhalation was

used to produce mild physical dependence [26] but robust

motivational/emotional dependence (reviewed in [27]). This

dependence model elicits an acute withdrawal syndrome similar

to what is observed in many human alcoholics: affective

disturbances [28], attenuated function of the hypothalamic pituitary

adrenal axis [26], and relapse to excessive drinking when alcohol is

made available [29], which is sufficient to produce binge-like blood

alcohol levels [26,30]. The present study investigated whether

adolescent binge alcohol drinking impacted adult drinking before

and after dependence (via chronic intermittent alcohol vapor), as

well as passive anxiety-like behavior on the elevated plus maze one

month into abstinence from chronic alcohol.

After behavioral testing was completed, corticotropin-releasing

factor (CRF) cells were immunolabeled and counted in the lateral

portion of the central amygdala (CeA). The CeA is an inhibitory

(i.e., GABAergic) structure with lateral and medial subdivisions.

The lateral CeA sends dense GABAergic projections to the medial

CeA where high quantities of peptides, including CRF, are

released (reviewed in [31]). The medial aspect of the CeA is the

major output region of the amygdala and sends dense GABAergic

projections to downstream effector regions responsible for

producing behavioral responses to stress- and alcohol-related

stimuli [31]. We counted CRF cells in the CeA because these

peptide-producing cells increase in number and mRNA produc-

tion just prior to adolescence [32,33], and also because CRF and

its receptors have been linked to binge drinking and alcohol

dependence [5,9,34–38].

Results

Involuntary binge alcohol exposure during early
adolescence reduces baseline drinking in adulthood

Experimenter-administered (involuntary) alcohol delivery has

been useful for studying how different doses of alcohol affect the

brain and behavior. During the development of an adolescent

binge alcohol model, we first investigated the effects of voluntary

vs. involuntary exposure to alcohol in early adolescence (postnatal

days 27, 30, 33, 36, and 39) on drinking in adulthood (tests began

on postnatal day 72) in male Wistar rats. Alcohol-injected rats

were administered a single intraperitoneal (ip) injection of 2.0 g/kg

of alcohol immediately after the final of four 30-min bouts of

access to sweetened water on each of the adolescent treatment

days. Voluntary sweetened alcohol intake (home cage drinking)

ranged from 0.0 to 2.1 g/kg of alcohol in a single 30-min bout,

and the average total intake was 1.760.5 g/kg per day. Thus, the

two alcohol groups were exposed to comparable levels of alcohol

in a single day, although the method and pattern of alcohol

delivery differed. Blood-alcohol levels (BALs) in voluntary alcohol

drinking rats ranged from 0.0 to 0.1 g/dL. BALs in alcohol-

injected rats ranged from 0.10 to 0.20 g/dL (averaged

0.1760.02 g/dL). Fig. 1 shows drinking behavior in adulthood

from the four adolescent treatment conditions: 1) ‘‘Control

drinking’’ (sweetened water), 2) ‘‘Alcohol drinking’’ (sweetened

Figure 1. Involuntary alcohol exposure during adolescence
reduces baseline drinking in adulthood. Adult drinking data from
male Wistar rats previously exposed to involuntary alcohol (‘‘alcohol
injected, 2 g/kg ip) or voluntary alcohol drinking (four 30-min bouts of
home cage drinking of sweetened 5% w/v alcohol) early in adolescence
(postnatal days 27, 30, 33, 36, 39). Control animals either received saline
injections or voluntary sweetened water drinking on the same
adolescent treatment days. Previous exposure to involuntary binge-
like alcohol during adolescence via ip injections (but not control
injections or voluntary alcohol drinking) significantly reduced drinking
of sweetened water (a), 5% w/v alcohol sweetened with 3% glucose/
0.125% saccharin (left graph, b) but not when the glucose was removed
(right graph, b), and 5% w/v unsweetened alcohol (c) in adulthood.
Data are expressed as mean 6 SEM (n = 8/group). *p,0.05 relative to all
control groups.
doi:10.1371/journal.pone.0031466.g001

Adolescent Binge Drinking: Adult Behaviors and CRF
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5% w/v alcohol, ,1.7 g/kg daily intake), 3) ‘‘Control injected’’

(saline, ip) paired with sweetened water drinking, and 4) ‘‘Alcohol

injected’’ (2.0 g/kg of alcohol, ip) paired with sweetened water

drinking. In adulthood, all animals were tested for consumption

levels of an experimental solution vs. tap water in daily two-bottle

choice home cage drinking tests. Adult drinking data are shown for

the following solutions: 1) sweetened water (3% glucose/0.125%

saccharin for first three days of testing, Fig. 1a), 2) sweetened 10%

w/v alcohol (sweetened with 3% glucose/0.125% saccharin for the

first two days of testing followed by 0.125% saccharin sweetened

alcohol for the next two days, Fig. 1b, left and right graphs

respectively), and 3) unsweetened 10% w/v alcohol (last 13 days of

testing, Fig. 1c). Previous exposure to involuntary binge-like

alcohol during adolescence via ip injections (but not control

injections or voluntary alcohol drinking) significantly reduced

drinking of sweetened solution in adulthood (effect of adolescent

treatment on sweetened water consumption in adulthood;

(F(3,84) = 32.20, p,.0001; with post-hoc analyses indicating the

alcohol injected group had reduced consumption compared to the

alcohol drinking and saline injected groups, p,.0001). Adolescent

treatment also affected consumption of glucose/saccharin-sweet-

ened alcohol in adulthood (F(3,56) = 3.42, p = .02, with post-hoc

analyses indicating the alcohol-injected group had reduced

consumption compared to the saline-injected and voluntary alcohol

drinking groups, p,0.05, *, Fig. 1b, left graph). Saccharin-

sweetened alcohol consumption was not different between the

groups. Finally, adolescent treatment affected unsweetened alcohol

(10% w/v) consumption in adulthood (F(3,364) = 5.67, p = .0008,

with post-hoc analyses indicating that alcohol-injected rats consumed

less alcohol compared to saline-injected rats, p,.004, and voluntary

alcohol drinking rats, p,0.01, *, Fig. 1c).

Operant model of voluntary binge drinking in adolescent
rats

We circumvented the need for involuntary passive delivery of

alcohol by developing an operant self-administration model of

binge drinking in adolescent rats (Fig. 2). Following a short

training period (details in methods) adolescent male Wistar rats

underwent overnight voluntary binge sessions (six 30-min bouts

per night, separated by 90-min time-out periods where the lever

was retracted). Animals either had access to sweetened alcohol

(10%w/v ethanol made with 3% glucose/0.125% saccharin

sweetened water, ‘‘Binge’’) or sweetened water (responses were

capped to equal the sugar intake of the Binge rats, ‘‘Control’’) in

the presence of ad libitum food and water during early adolescence

(postnatal days 28–42). Fig. 2b shows the pattern of alcohol intake

(estimated by lever responses) over the two-week period (84

sessions) from representative high (n = 8; 76.863.5 g/kg total

intake; 27.162.1 total number of binges), medium (n = 6;

63.663.3 g/kg total intake; 22.562.7 total number of binges,

which were defined as 1.25 g/kg or higher alcohol intake as

described below), and low (n = 6; 35.362.8 g/kg total intake;

9.560.9 total number of binges) binging rats. Fig. 2c shows a

scatter plot of the simple regression analysis for a single bout on

PN42, indicating that approximately 1.25 g/kg intake results in

binge-like ($0.08 g%) blood alcohol levels. It should be noted that

not all animals binge within a single session and instead vary

regarding the bout(s) in which they binge (as estimated by

$1.25 g/kg intake) within each overnight session and the total

number of binges over the two-week treatment period. Further-

more, 1.25 g/kg is only an estimate of the amount of alcohol self-

administered that would produce $0.08 g% blood alcohol levels

within a bout, and may be an overestimate in some cases and an

underestimate in other cases. Importantly, as is evident in Fig. 2

(b, d), this model elicits episodic drinking patterns and high

cumulative voluntary alcohol intake (,50–60 g/kg) over the short

course of early adolescence in outbred rats without a predisposition

to binge drinking or dependence.

Effect of adolescent binge drinking on baseline drinking
in adulthood

Fig. 3 shows the timeline of treatment, behavioral measures, and

brain collection for the voluntary binge drinking experiments. After

adolescent treatment, rats were left in the home cage for one month

and then tested for self-administration behavior in adulthood

(beginning on postnatal day 78). Fig. 4 shows baseline operant self-

administration of 1) sweetened water (3% glucose/0.125%

Figure 2. Operant model of binge alcohol self-administration
in adolescent male Wistar rats. (a) Illustration of the binge self-
administration apparatus. (b) The pattern of alcohol intake (g/kg) from
representative high (n = 8; 76.863.5 g/kg total intake; 27.162.1 total
number of binges), medium (n = 6; 63.663.3 g/kg total intake; 22.562.7
total number of binges), and low (n = 6; 35.362.8 g/kg total intake;
35.362.8 total number of binges) binging rats over the two week
treatment period (14 overnight sessions66 bouts = 84 sessions total). (c)
A scatter plot showing the relationship between g/kg intake and
resultant blood alcohol levels in a single bout on the last binge day in a
subset of rats. A linear fit trend line is used to estimate the average g/kg
intake that results in $0.08 g% blood alcohol levels (i.e., ,1.25 g/kg
would be classified as ‘‘binge drinking’’). As shown in (b) and (c) not all
animals binge within a single session and instead vary regarding the
bout(s) in which they binge within each overnight session and the total
number of binges over the two-week treatment period. (d) By the time
animals reach postnatal day (PN) 42 the cumulative intake approaches
50–60 g/kg. Data are expressed as mean 6 SEM (c: n = 8 binge rats; d:
n = 20 binge rats).
doi:10.1371/journal.pone.0031466.g002
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saccharin/water, Fig. 4a), 2) sweetened alcohol (two days of 3%

glucose/0.125% saccharin/10% w/v alcohol, left graph, Fig. 4b;

three days of 0.125% saccharin/10% w/v alcohol, right graph,

Fig. 4b), and 3) thirteen days of unsweetened alcohol (10% w/v

alcohol, Fig. 4c) self-administration in adulthood. Testing occurred

in 30 min sessions approximately five days per week, followed by

two days off in the order stated above. Alcohol consumption was

normalized to individual body weights and expressed as g/kg intake.

Importantly, adolescent binge history did not affect body weight in

adulthood (data not shown). Animals with an adolescent history of

drinking sweetened water (Control) self-administered significantly

more sweetened water in adulthood compared to animals with a

history of binge alcohol (F(1,31) = 6.54, *, p = .02, Fig. 4a).

However, Control and Binge animals exhibited similar baseline

self-administration of 10% w/v alcohol whether it was sweetened

with glucose and saccharin (Fig. 4b, left graph, p.0.05), sweetened

with saccharin (Fig. 4b, right graph, p.0.05), or unsweetened

(Fig. 4c, p.0.05). Subsequent measures of baseline home cage

drinking was also similar among the groups (data not shown).

Effect of adolescent binge drinking on dependence-
induced alcohol drinking

Rats were next tested for sensitivity to dependence-induced

elevations in drinking. Alcohol intake varied across the post-vapor

testing period, with g/kg consumption averaging 0.6560.24 g/kg

in Control Dep rats and 0.7760.15 g/kg in Binge Dep rats

overall. Fig. 5 shows alcohol intake during intermittent (14 hours

daily) self-administration tests across weeks 2–5 of chronic

intermittent alcohol vapor (‘‘Dependent’’ or ‘‘Dep’’) or ambient

air (‘‘Non-Dependent’’ or ‘‘NonDep’’) in animals that binge drank

sweetened alcohol (‘‘Binge’’) or sweetened water (‘‘Control’’)

during early adolescence. To establish whether adolescent binge

drinking augmented dependence-induced increases in alcohol

intake, drinking levels were normalized to baseline (% increase in

g/kg alcohol intake from baseline levels). Alcohol self-administra-

tion of 10% w/v alcohol was measured in 30-min tests, 6–8 hours

into withdrawal as described previously [26]. This period of

withdrawal was chosen because it is a time when dependent

animals display mild somatic signs of dependence [26], but robust

emotional/motivational signs of dependence that mimic the

human condition. These signs include increased anxiety-like

behavior [39], enhanced sensitivity to CRF type I receptor

(CRF1R) antagonists [40,41], blunted function of the neuroendo-

crine stress system [26], blunted function of the reward system

[42], relapse to binge drinking when alcohol is made available

(BALs$0.08 g/dL [26,30]), and increased willingness to work for

access to alcohol [43]. The first withdrawal operant test occurred 10

Figure 3. Illustration of the timeline of treatment, behavioral measures, and brain collection for the voluntary binge drinking
experiments in male Wistar rats. Voluntary binge alcohol self-administration took place during early adolescence (postnatal days 28–42) and
dependence induction (chronic exposure to intermittent alcohol vapors) took place after baseline drinking testing in adulthood. In adulthood,
drinking behavior was measured in 30-min operant self-administration tests before and during dependence induction by intermittent vapors.
Anxiety-like behavior was measured in the elevated plus maze in abstinence (approximately one month after removal from intermittent alcohol
vapors). Brains were collected for CRF immunoreactivity one week after testing for anxiety-like behavior.
doi:10.1371/journal.pone.0031466.g003

Figure 4. Voluntary binge drinking early in adolescence does
not affect baseline drinking in adult male Wistar rats. (a)
Responses for sweetened water (3% glucose/0.125% saccharin, 1 day),
(b) sweetened 10% w/v alcohol intake (g/kg) with (3 days, left graph)
and without (2 days, right graph) glucose, and (c) unsweetened 10% w/
v alcohol intake (g/kg, 14 days). Daily operant self-administration tests
lasted 30-min in adult rats with an adolescent history of voluntary binge
alcohol (red) or control (yellow) drinking alcohol during early
adolescence. Data are expressed as mean 6 SEM (n = 15–20/group).
*p,0.05 relative to rats without a history of adolescent binge alcohol
drinking.
doi:10.1371/journal.pone.0031466.g004

Adolescent Binge Drinking: Adult Behaviors and CRF
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days into intermittent alcohol vapor exposure. On day 10 of vapor

exposure, all rats exhibited increases in lever pressing for alcohol

relative to baseline, but this increase was much greater in animals

that self-administered sweetened water during adolescence (%

increase in g/kg alcohol self-administration relative to the average

of last three days of baseline: 147%646 for Control NonDep;

248%647 for Control Dep, 113%646 for Binge NonDep,

114%638 for Binge Dep; F(1,29) = 3.45, p = 0.07). All animals

had a complex memory of the reward lever at this point in the study,

having pressed for sweetened water or sweetened alcohol as

adolescents, as well as different combinations of sweeteners and

alcohol as adults. The trend of a greater increase in responding by

controls relative to juvenile binge animals on the 1st day of lever

access following a period without access may reflect a transient

recovery of the association between the reward lever and sweetened

water. Because of this, dependence-induced elevations in drinking

were analyzed from two weeks of vapor treatment onward (17–33

days) based on previous data showing that this amount of exposure is

sufficient to significantly increase drinking levels [29]. Dependence

elicited a significant elevation in alcohol self-administration overall

(main effect of vapor condition, F(1,173) = 18.24, #, p,0.01, Fig. 5,

bar graph). Furthermore, animals with a history of adolescent binge

drinking consumed more alcohol as adults during intermittent self-

administration testing (main effect of adolescent binge condition,

F(1,173) = 5.12, #, p = 0.02, Fig. 5). The adolescent treatment6a-

dult treatment interaction was not significant (p = 0.34); however, an

a priori planned comparison between the two dependent groups

indicated that the percent increase from baseline was higher in the

Binge Dep group compared to the Control Dep group (with

Bonferroni correction, p = 0.02). Binge NonDep and Control

NonDep rats did not differ in this measure (p = 0.33).

Effect of adolescent binge drinking on anxiety in
adulthood

To test the hypothesis that adolescent binge drinking had long-

lasting effects on passive anxiety-like behavior, rats were tested on

the elevated plus-maze (EPM) one month after removal from

intermittent alcohol vapors (or control air). Figure 6 illustrates the

percent of entries in open arms, percent time spent in open arms,

and locomotor activity (closed arm entries) in non-dependent rats

with (Binge NonDep) or without (Control NonDep) a history of

adolescent binge drinking and alcohol-dependent rats with (Binge

Dep) or without (Control Dep) a history of adolescent binge

drinking. There was a significant interaction of binge history and

alcohol dependence on the percent of time spent on the open arms

(F(1,29) = 4.25, p,0.05). Post-hoc analyses indicated that non-

dependent animals with a history of alcohol binge self-adminis-

tration exhibited a significant increase in time exploring the open

arms relative to non-dependent animals without binge history

(p = 0.02, *, Fig. 6), signifying binge drinking during early

adolescence and moderate drinking in adulthood leads to long

term reductions in anxiety-like behavior and/or increases in

impulsivity [44–47]. Subsequent induction of dependence reversed

the effects of adolescent binge drinking on anxiety-like behavior in

adulthood (a priori planned comparison with Bonferroni correction,

p = 0.005). Dependence effects were not observed in animals

without a previous history of alcohol exposure during early

adolescent development (control animals) at this protracted

abstinence time point (p.0.05). Closed arm entries were not

significantly different among the groups (p.0.05, Fig. 6).

Effect of adolescent binge drinking and alcohol
dependence on CRF cells in CeA

Fig. 7 shows photomicrographs of CRF peptide-expressing

neurons (Fig. 7a, b, c; a NonDep rat without a history of binge

alcohol self-administration at 22.56 mm relative to Bregma) and

cell counts (Fig. 7d) within the lateral CeA. Cells were counted at

various anterior-posterior distances from Bregma. Adolescent

binge alcohol self-administration produced a significant decrease

in CRF-ir cell number (F(1,24) = 5.19, p = 0.03, *, Fig. 7d).

Alcohol dependence did not exacerbate or rescue the effect of

binge alcohol history on CRF-ir cells (p.0.05) or affect CRF-ir

cells in animals without binge history at the protracted abstinence

time point examined here (p.0.05).

Figure 5. Voluntary binge drinking early in adolescence
augments relapse-like drinking in adult non-dependent and
dependent male Wistar rats. Chronic intermittent alcohol vapor
produced significant elevations in alcohol self-administration by
Dependent rats (black) during 30-min operant tests relative to Non-
dependent rats. Animals with a history of adolescent binge alcohol
drinking (right panel of line graph) also drank more than non-binge
controls during adulthood. Data are expressed as mean 6 SEM (n = 6–
10/group). Dependent and non-dependent groups did not differ in
adolescent consumption levels (p = 0.34). *p,0.05 main effect of
adolescent alcohol binge drinking. #p,0.05 main effects of adult
alcohol dependence.
doi:10.1371/journal.pone.0031466.g005

Figure 6. Voluntary binge drinking early in adolescence
decreases anxiety-like behavior on the elevated plus maze in
non-dependent male Wistar rats. A history of adolescent binge
alcohol drinking produced a decrease in anxiety-like behavior
(increased percent of time spent in the open arms) that was reversed
by alcohol dependence. Data are expressed as mean 6 SEM (n = 7–10/
group). *p,0.05 main effect of adolescent alcohol binge drinking;
a,bp,0.02, with different letters indicating individual group differences
(i.e., Binge NonDep is different from BingeDep and Control NonDep).
doi:10.1371/journal.pone.0031466.g006

Adolescent Binge Drinking: Adult Behaviors and CRF
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Discussion

The primary objectives of this series of experiments were to

develop an adolescent binge alcohol-drinking model in rodents

and to empirically test how binge alcohol exposure during

adolescence affects addiction risk in adulthood. This research

was motivated by a large epidemiological literature suggesting a

strong link between these two factors in humans [5–15]. A few key

findings emerged from this work. First, involuntary binge-like

exposure to alcohol may be aversive, as alcohol injections during

early adolescence caused significant and long-lasting reductions in

drinking of sweetened and unsweetened alcohol in adulthood.

Second, genetically heterogeneous strains such as Wistar rats do

not spontaneously drink large quantities of alcohol in traditional

self-administration procedures, but the present voluntary operant

binge-drinking model rapidly initiated high levels of alcohol

consumption during early adolescence in the presence of ad libitum

food and water. All animals reached binge levels (as defined by

NIAAA) and cumulative intake averaged 50–60 g/kg within a

two-week period. Third, binge alcohol self-administration during

early adolescence caused prolonged changes in behavioral and

neural measures in adulthood. Adolescent binge drinking

significantly increased alcohol drinking in alcohol-dependent and

non-dependent adult rats during intermittent testing. Interestingly,

Binge NonDep animals exhibited an unexpected high level of

exploration (,60%) into the open arms of the EPM compared to

Control NonDep and Binge Dep animals (presumably reflecting

either reduced passive anxiety-like behavior or increased impulsivity

[44–47]). Subsequent analysis of brains indicated that, several

months following end of adolescence, binge animals had fewer

CRF immunolabeled cells in the lateral CeA compared to Control

animals. Alterations in the CeA CRF system were specific to

adolescent alcohol exposure (dependence in adulthood did not

affect the number of CRF cells in lateral CeA one month following

end of alcohol vapor). Overall, the present findings suggest that

binge drinking during early adolescence impacts alcohol con-

sumption during adulthood in a complex way. Further work using

voluntary binge alcohol drinking in adolescent animals will clarify

how alcohol-induced neural and behavioral changes functionally

relate to vulnerability to addiction and other stress-related

disorders in adulthood.

Our data indicate that animals intermittently and involuntarily

injected with bolus alcohol during adolescence engaged in the

lowest level of intake of rewarding solutions in two-bottle choice

tests in adulthood. One possible explanation for this effect is that

involuntary alcohol exposure during adolescence was aversive and

produced a conditioned taste aversion for the glucose/saccharin

mixture paired with those injections. The alcohol-injected group

consumed significantly less sweetened water compared to other

groups several weeks following adolescent alcohol exposure. They

also consumed less sweetened alcohol, suggesting a persistent taste

aversion for the solution paired with alcohol injections during

adolescence. This interpretation is supported by earlier reports

showing bolus alcohol injections produce robust conditioned taste

aversions for sweet solutions in rats [48]. Finally, involuntary

exposure to binge-like alcohol during early adolescence resulted in

long-lasting reductions in unsweetened alcohol drinking in adult-

hood. Because adult alcohol drinking was not altered in animals

either consuming sweetened alcohol voluntarily or injected with

saline during adolescence, the effects observed in alcohol-injected

animals may be attributable to the fact that their first experience

with alcohol was involuntary. Involuntary administration of drugs

can be aversive, especially if ‘‘binge-like’’ doses (or higher) are

administered before animals have self-administered the drug

Figure 7. Voluntary binge drinking early in adolescence
reduces the number of CRF-ir cells in the lateral division of
the central amygdala (lCeA) one month into abstinence from
vapors in adult dependent and non-dependent male Wistar
rats. Photomicrograph of CRF immunoreactive (CRF-ir) cells and fibers
in the lateral portion of the CeA (22.56 mm posterior to Bregma) in a
Control NonDep male rat (a) and high magnification photomicrographs
of CRF neurons with dark (b) and light (c) immunolabeling (magnifi-
cation indicated by bars within the photomicrographs). (d) Shows CRF-ir
cell counts (expressed as cells/section) in lateral CeA at various anterior-
posterior distances from Bregma in abstinent adult male rats with
(Binge) or without (Control) a previous history of binge self-
administration in early adolescence and with (Dep) or without
(NonDep) chronic intermittent vapor exposure in adulthood. Binge
alcohol exposure reduced CRF-ir cell counts in lateral CeA in a manner
that was not affected by subsequent chronic intermittent alcohol
exposure. Data are expressed as mean 6 SEM (n = 4–9/group). *p,0.05
main effect of adolescent alcohol binge drinking. Abbreviations: BLA,
basolateral amygdala; lCeA, lateral division of the central amygdala,
mCeA, medial division of the central amygdala; opt, optic tract.
doi:10.1371/journal.pone.0031466.g007
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themselves, resulting in decreased self-administration ([49,50],

present data). The present data highlight the importance of

considering the method of alcohol delivery and its impact on

drinking behavior. For example, neural changes in alcohol-

injected rats might reflect decreased rather than increased addiction

vulnerability. Our research ultimately aims to understand how

voluntary binge alcohol drinking affects the developing brain and

risk for addiction later in life; therefore, we developed an operant

binge alcohol self-administration model in adolescent rats.

In the adolescent operant binge self-administration model, rats

had access to sweetened alcohol in spurts, which elicited voluntary

episodic alcohol intake, blood-alcohol levels exceeding 0.08 g% in

a number of sessions, and high cumulative alcohol intake during

early adolescence. The control group was exposed to the same

operant conditions as the binge group except only sweetened water

was self-administered (lever presses were capped to be equivalent

to the amount of sweetener consumed by the binge group). This

allowed us to directly assess the specific effects of adolescent

alcohol exposure on brain and behavioral measures in adulthood.

One limitation of the present study is that we do not know how

adolescent exposure to sweetened water specifically affects

drinking in adulthood. A recent report showed that sugar intake

during adolescence is protective against alcohol drinking later in

adulthood [51]. Yet, as the present study shows, when sugar is

combined with alcohol, it promotes binge-like alcohol drinking

and high cumulative intake in young animals. Thus, the

suppressive effect of adolescent sugar exposure on alcohol drinking

in adulthood appears to be overshadowed by the facilitatory effect

of adolescent alcohol exposure on alcohol drinking in adulthood.

Adolescent binge drinking had prolonged effects on drinking

behavior in adulthood, but the alterations were only evident under

certain testing conditions. Binge and control rats had similar

drinking behavior during daily baseline testing (before chronic

vapor/air exposure) in adulthood. However, when animals were

tested every 3–7 days during the vapor phase of the experiment, a

history of adolescent binge alcohol drinking produced a moderate,

but significant increase in adult alcohol responding. This

augmentation occurred regardless of vapor condition suggesting

that adolescent binge drinking exacerbates the relapse to drinking

that occurs after a few days without access to alcohol self-

administration in non-dependent and dependent animals [30].

Past studies have shown that intermittent operant alcohol testing

in non-dependent rats produces increases in alcohol drinking that

are sensitive to pharmacological manipulation of brain stress

systems [52,53]. This effect is reminiscent of the alcohol

deprivation effect, which is a well-established phenomenon

wherein rats exhibit transient increases in alcohol consumption

following a period of alcohol deprivation [54–56].

Chronic exposure to alcohol intoxication/withdrawal cycles

(dependence induction) increased alcohol drinking in all rats 6–

8 hours into withdrawal from vapors, as previously reported

[26,30,43]. The effect of binge on relapse-like drinking may have

been slightly enhanced in alcohol-dependent rats relative to non-

dependent controls, although this result was not statistically

significant (a main effect of adolescent treatment and an a priori

planned comparison between the control and binge dependent

groups were significant, but the adolescent treatment6adult

treatment interaction was not). One of the challenges with the

operant binge model is dealing with reduced statistical power

because of increased variability in the experimental treatment

(e.g., adolescent alcohol is delivered via self-administration).

Consequently, larger sample sizes may be required to detect

significant interaction effects of adolescent and adult alcohol

histories on alcohol drinking behavior in genetically heterogeneous

rats. Regardless, the present study showed that adolescent binge

alcohol drinking affects relapse-like drinking in adulthood.

Previous studies suggest that alcohol drinking during adolescence

does not affect baseline (consistent with our results) or deprivation-

induced/relapse drinking during adulthood (not consistent with

our results), but does render rats more sensitive to stress-induced

increases in alcohol drinking during adulthood ([57,58], not

measured in the present study). The pattern and level of voluntary

alcohol exposure (i.e., binge drinking vs. non-binge drinking) may

have contributed to the observed changes in relapse-like drinking

in adulthood in the present study. Prior alcohol experience (e.g.,

repeated withdrawals) and stress exhibit additive and substitutive

effects on alcohol-related behaviors (e.g., self-administration and

anxiety-like behavior; [59,60]), and the magnitude of these effects

depends on the age of the animal [61]. Together, these results

suggest that rats with a history of adolescent binge alcohol drinking

may be more susceptible to the facilitatory effects of acute stress on

relapse to heavy drinking after a period of abstinence.

Adolescent binge drinking had long-lasting (i.e., several months)

effects on exploratory behavior on the elevated plus maze (EPM).

Early binge drinking elicited an unexpected high level of

exploration onto the open arms if animals had limited exposure

to alcohol in adulthood (i.e., non-dependent drinking). Binge

NonDep rats spent 60% of their time exploring the open arms,

suggesting either decreased passive anxiety-like behavior or

increased impulsivity [44–47] in these animals. Subsequent

exposure to repeated daily cycles of high-dose alcohol vapor

inhalation and withdrawal (i.e., dependence) significantly reduced

open arm exploration in Binge Dep rats relative to the non-

dependent comparison group (Binge NonDep rats). There was no

effect of dependence on anxiety-like behavior in animals without a

history of adolescent binge drinking (Control NonDep and

Control Dep rats exhibited similar behavior on the EPM) at this

protracted abstinence time point (,1 month). Open arm

exploration in Binge Dep, Control Dep, and Control NonDep

rats was ,40%, which is similar to the levels observed one month

into abstinence from alcohol in previous studies ([62], but see

[59]). Weeks or months into abstinence, an external stressor

[62,63] or stimulation of CRF/CRF type I receptor system

[60,61,63,64] is usually necessary to reveal the long-term effects of

alcohol dependence induction on the behavioral stress system.

Strict interpretation of the interaction between adolescent and

adult treatment in the present study would suggest that adolescent

binge drinking increases sensitivity to chronic alcohol vapor

exposure on open arm exploration in the EPM, but the difference

in EPM behavior in the two binge groups appears to be

attributable to an exceptionally high level of open arm exploration

in the NonDep Binge rats rather than a low level of open arm

exploration in the Dep Binge rats.

CRF immunolabeled cells were counted in the lateral division of

the CeA. The lateral and medial divisions of the CeA differ in

terms of their neuropeptide content, origin of incoming afferents,

and target sites of efferent projections (reviewed in [65]). Relative

to the medial CeA, the lateral CeA contains a much higher density

of neuropeptides such as CRF [66–69]. The medial CeA receives

prominent inputs from the lateral CeA and other amygdaloid

nuclei and sends dense projections to effector regions such as

hypothalamus and brainstem nuclei [65]. Medial CeA projection

neurons receive excitatory inputs from BLA as well as inhibitory

inputs from lateral CeA and intercalated GABA cells, although it is

not yet known precisely which synaptic connections govern

emotion- and alcohol-related behavior [70,71]. In a series of slice

electrophysiology experiments, it has been shown that alcohol, as

well as pro-anxiety and anti-anxiety neuropeptides, modulate
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GABAergic transmission in the medial CeA of rats, and these

effects are often up-regulated following the transition to alcohol

dependence [52]. More generally, the amygdala receives strong

inputs about emotionally relevant stimuli in the external

environment and internal milieu, and communicates between

nuclei and also within the CeA to convert sensory information into

appropriate behavioral and physiological responses.

Adolescent binge alcohol drinking produced decreases in CRF-

labeled cells in lateral CeA that were evident months following end

of adolescence. A recent study showed that consumption of

alcohol-containing liquid diet produced decreases in CRF-

immunoreactive content (cells were not individually counted) in

the CeA of adolescent rats, but not in adults [61] shortly after

alcohol liquid diet treatment ended at 45 days of age. This change

in immunoreactivity was interpreted to be reflective of increased

release of CRF. In the present study, however, alterations in the

CRF population within the CeA were evident long after the

adolescent exposure occurred (several months after the initial two-

week long binge drinking period). Together the studies suggest

CRF cells in the CeA may be particularly sensitive to moderate-to-

high alcohol exposure during adolescent development.

A reduction in peptidergic immunolabeled cells and fibers may

be interpreted in different ways, depending on the experimental

procedure used to label those cells. Subthreshold concentrations of

antiserum have been used as an approach to decrease immuno-

labeling (i.e., detectability) of cells with depleted peptide store [72–

75]. Under these experimental conditions, highly active neurons

are continually releasing peptide, and consequently peptide stores

within the soma fall below the level of detectability. Thus,

increased cellular activity in a brain region results in a lower (not

higher) number of cells detected by sub-threshold immunolabeling

[72–75]. In the present study, we intentionally used an antiserum

with high specificity for CRF and optimal staining conditions

(including ideal post-fixation time, concentration of antiserum, and

nickel enhancement) to produce a strong signal in CRF-producing

neurons with even low peptide content. In addition, a more

detailed analysis of CRF immunoreactivity indicated reduced

CRF-ir cell number came primarily from a loss of darkly stained

cells (containing high stores of peptide) rather than CRF cells with

medium/light immunoreactivity (within which peptide release

would more likely result in peptide stores low enough to fall below

detectability, data not shown). This suggests that the reduction in

CRF-ir cell number may reflect a long-term loss in CRF-

producing cells in the lateral CeA following adolescent binge

drinking. Future studies utilizing alternate cell-labeling procedures

(e.g., in situ hybridization to measure CRF mRNA) could provide

evidence for or against this interpretation.

It is difficult to draw meaningful conclusions from the present

data about the relationship between amygdalar CRF cell number,

alcohol drinking, and anxiety-like behavior. However, an

abundance of data suggests that alterations in amygdalar CRF

relate to alcohol drinking and anxiety-like behavior in rodents,

particularly those with a history of chronic high-dose alcohol

exposure. Alcohol-preferring rats exhibit high levels of anxiety-like

behavior and excessive drinking [76], and have lower CRF mRNA

expression and peptide content, but exhibit higher sensitivity to

CRF administration in the CeA relative to non-preferring rats

[76,77]. CRF immunoreactivity is reduced in alcohol-dependent

rats two hours into withdrawal from chronic intermittent vapors, a

time when these animals engage in heavy alcohol consumption

(interpreted as increased CRF release [35]). Slice electrophysiology

experiments suggest that alcohol dependent rats are more sensitive

to the facilitatory effects of CRF on GABAergic transmission in

CeA during acute withdrawal compared to alcohol naı̈ve rats,

which is paralleled by increased CRF mRNA in CeA at the same

time point [53]. Rats made dependent on alcohol via liquid diet

exhibit increased CRF-like immunoreactivity in amygdala six (but

not three) weeks into abstinence from alcohol liquid diet [37].

Finally, CRF knockout mice consume significantly more alcohol

than wild-type mice [78]. It is not known whether the complex

relationships between changes in CRF peptide expression in the

amygdala, heavy drinking, and anxiety are corollary or causal in

nature. The functional connection between reduced CRF peptide

expression in CeA and behavioral effects observed in animals with

adolescent binge alcohol history is a topic that warrants further

investigation.

In summary, the current study showed that intermittent bouts of

moderate-to-high voluntary alcohol drinking early in adolescence

(postnatal days 28–42) had long-lasting effects on addiction-related

behaviors and brain circuitry in male rats. An important direction

of future work should be to determine whether there are sex

differences in the behavioral and neural consequences of

adolescent binge drinking, as binge drinking is higher in adolescent

females (Karanikas and Richardson, unpublished findings). At this

point it is also unknown whether the neural and behavioral effects

observed in males were dependent on the pattern (i.e., episodic

drinking) and/or level (i.e., blood alcohol levels reaching 0.08 g%

and .50 g/kg total intake) of exposure to alcohol. However, an

important advantage of the operant model is that such variables

can be manipulated to determine the specific behavioral

characteristics and exposure thresholds that impact the developing

brain during adolescence to alter mental health risks in adulthood.

Thus, the voluntary adolescent binge model described here is

expected to be a useful tool for identifying the neurobiological

mechanisms underlying links between early episodes of heavy

drinking and neurological and behavioral deficits later in life.

Materials and Methods

Ethics statement
All procedures adhered to the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and were approved by

the Institutional Animal Care and Use Committee. All efforts were

made to reduce the number of animals used and to minimize pain

and suffering.

Animals
Sixty adolescent male Wistar rats obtained from Charles River

(Kingston, NY) were used in this study. Animals were 21 days old

upon arrival and weighed between 52–72 g (mean body

weight = 62.0860.85 g) at the start of the experiment. Animals

were single-housed in the involuntary binge alcohol experiment

and group-housed (2–3 rats/cage) in the voluntary binge alcohol

drinking experiments. Animals were housed in standard plastic

cages with wood chip bedding under a 12 hour light/12 hour dark

cycle (lights off at 8 AM) and were given ad libitum access to food

and water. All experiments were conducted in the dark cycle.

Effect of involuntary vs voluntary alcohol exposure
during early adolescence on non-dependent drinking in
adulthood

To develop a binge alcohol model, we first compared the effects

of involuntary vs. voluntary exposure to alcohol during adoles-

cence on drinking in adulthood. Adolescent male Wistar rats were

allowed four 30-min bouts of access to a single bottle of sweetened

alcohol on each of five separate days during adolescence.

Adolescent drinking took place in the home cage in the absence

of food and water on postnatal days 27, 30, 33, 36, and 39. Three
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other groups were allowed to drink sweetened water in parallel

with the first group. Immediately after the fourth bout on each

treatment day, rats were injected with either 2.0 g/kg alcohol

(alcohol injected) an equivalent volume of saline (control injected)

or nothing (control drinking).

Sweetened alcohol was made up of 5% w/v ethanol plus 3%

glucose/0.125% saccharin in tap water. In the 60-min breaks

between each bout the experimental bottles were removed from

the cage, and food and water were available. Several weeks later in

adulthood (,postnatal day 72), rats were allowed to drink the

following during daily 30-min sessions (1 session per day): 1)

sweetened water (3% glucose/0.125% saccharin, first three days of

testing), 2) sweetened alcohol (3% glucose/0.125% saccharin/10%

w/v alcohol for the first two days of testing followed by 0.125%

saccharin/10% w/v alcohol for the next two days), 3) and

unsweetened 10% w/v alcohol (last 13 days of testing).

Measurement of blood alcohol levels. Plasma (5 ml)

collected by cutting the tip of the tail was used for measurement

of blood alcohol levels using an Analox AM 1 analyzer (Analox

Instruments, Lunenburg, MA). The reaction is based on the

oxidation of alcohol by alcohol oxidase in the presence of

molecular oxygen (alcohol+O2Racetaldehyde+H2O2). The rate

of oxygen consumption is directly proportional to the alcohol

concentration. Single-point calibrations were done for each set of

samples with reagents provided by Analox Instruments (0.025–

0.400 g% or 5.4–87.0 mM).

Voluntary (self-administered) binge alcohol drinking
experiments

Operant Boxes. The operant boxes (Coulbourn Instruments,

Allentown, PA) utilized in the present study had two retractable

levers located 4 cm above a grid floor and 4.5 cm to either side of

a two-well acrylic drinking cup. Operant responses and resultant

fluid deliveries were recorded by custom software running on a PC

computer. A single lever-press activated a 15 rpm Razel syringe

pump (Stanford, CT) that delivered 0.1 ml of fluid to the

appropriate well over a period of 0.5 sec. Lever presses that

occurred during the 0.5 sec of pump activation were not recorded

and did not result in fluid delivery. Operant boxes were

individually housed in sound-attenuated ventilated cubicles to

minimize environmental disturbances. The right lever always

produced a delivery of experimental solution and the left lever,

when available, always produced a water delivery.

Adolescent model of binge self-administration: Training

(postnatal days 25–27). The adolescent binge-drinking period

was 14 days long, beginning on postnatal day 28 and ending on

postnatal day 42. During the three days prior to the start of the

treatment period (postnatal 25–27) all animals were trained to self-

administer sweetened water. On the first training day (postnatal

day 25), Wistar rats were placed in operant boxes for the first

overnight session at the start of the dark cycle. Rats were placed in

operant boxes in pairs for 12 hours (dark cycle); a single lever was

available for 12 consecutive hours and presses on that lever

resulted in delivery of 0.1 ml sweetened solution (3% glucose,

0.125% saccharin, and tap water). On the second training day

(postnatal day 26), all rats were again placed in operant boxes, this

time single-housed, and allowed 12 consecutive hours of access to

a single lever that, when pressed, resulted in access to 0.1 ml of

sweetened solution. The third training day (postnatal day 27) was

similar to the previous day with a single exception: rats were

introduced to the ‘‘binge’’ schedule of lever access. In the binge

schedule, rats were allowed access to a single lever in six separate

30-min mini-sessions distributed across the 12-hour operant

session, and separated by 90-min periods with no lever access.

During the training period (postnatal days 25–27), rats were given

ad libitum food access but no water was available during operant

sessions. During the adolescent binge exposure period (postnatal

days 28–42), food and water were available to the rats ad libitum.

Adolescent model of binge self-administration: Binge

drinking (postnatal days 28–42). On postnatal day 28, rats

were divided into two groups matched for operant responding for

sweetened solution: one group (alcohol binge group) would be

allowed 14 days of 12-hour operant sessions (six 30-min mini-

sessions per 12-hour period) in which lever presses would result in

delivery of 0.1 ml of a solution that contained sweetened 10% (w/

v) alcohol, and the second group (sweetened water control group)

would be allowed 14 more days (postnatal days 29–42) of 12-hour

operant sessions in which lever presses would result in delivery of

0.1 ml sweetened water solution. Beginning with the sixth of those

binge sessions, operant responding by sweetened water control rats

was capped such that rats were only allowed eight lever presses in

each of the six mini-sessions during the 12-hour operant session;

the purpose of this cap was an attempt to match rats in the two

groups for operant responding history. Water and food were

always available ad libitum during and following operant sessions

from postnatal day 28 onward. On postnatal day 43, rats were

once again placed in operant self-administration boxes for binge

sessions, except that alcohol binge rats were immediately removed

from boxes following mini-sessions (‘‘bouts’’) during which they

exhibited high alcohol responding (levels anticipated to produce

BALs = 0.08 g%), bloods collected, and rats returned to the home

cage. For each alcohol binge rat that was removed from the

operant box, a single control rat was also removed from its operant

box and blood collected in parallel to control for the effects the

blood sampling procedure on subsequent measures in adulthood.

Following blood collection, all rats were returned to the home cage

and, with the exception of body weight measurements, left

undisturbed (one month period with no access to alcohol or

sweetened water before behavioral testing began in adulthood,

,postnatal day 78). Adult rats were then tested for spontaneous

operant alcohol self-administration (baseline, non-dependent

drinking), dependence-induced alcohol self-administration during

acute withdrawal from chronic intermittent vapors (Control Dep

and Binge Dep rats; air control exposure was used for Control

NonDep and Binge NonDep rats), and post-dependent anxiety-

like behavior (measured after one month after removal from

vapors), as described below.

Baseline drinking in adulthood. On postnatal day 78, rats

were again placed in operant boxes (4 hours into the dark cycle)

for 30-min operant sessions. During 30-min operant sessions

conducted in adulthood, all rats were allowed to respond for

sweetened water (3% glucose/0.125%saccharin in tap water, 1

day, Fig. 4a), sweetened alcohol (2 days of 3% glucose/0.125%

saccharin/10% w/v alcohol left graph, Fig. 4b; 2 days of 0.125%

saccharin/10% w/v alcohol, right graph, Fig. 4b), and

unsweetened alcohol (10% w/v alcohol, 13 days, Fig. 4c) in a

concurrent, two-lever, free-choice contingency. Lever-presses were

reinforced on a continuous fixed ratio-1 (FR1) schedule such that

each response resulted in delivery of 0.1 ml of fluid.

Dependence induction in adulthood (intermittent alcohol

vapor inhalation). To induce alcohol dependence, standard rat

cages were housed in separate, sealed, clear plastic chambers into

which alcohol vapor was intermittently injected. This procedure

has been described in detail elsewhere [29,79]. The target range

for BALs in dependent rats during vapor exposure was 150–

200 mg% [30]. Non-dependent rats were treated in parallel except

they were continuously exposed to ambient air. Vapor was

delivered on an intermittent schedule (14 hours on/10 hours off).
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Typically, rats are exposed to vapor for four weeks before post-

vapor testing begins because this schedule of exposure has been

shown to induce mild physical dependence [26] and robust

emotional/motivational dependence (see [30] for details about the

physiological parameters of the model and [27] for a review of the

clinical relevance of the model). However, in this study, rats were

tested earlier in the vapor exposure protocol to determine drinking

behavior during the transition to alcohol dependence [52,53].

Alcohol drinking during the transition to dependence in

adulthood. The alcohol dependence model used in these

studies reflects the natural progression of alcohol dependence in

which alcohol exposure occurs in a series of extended exposures

followed by periods of withdrawal [27]. In this model,

experimental groups of rats are made dependent on alcohol

using chronic intermittent alcohol vapor exposure (e.g., several

weeks of daily cycles of intoxication by alcohol vapors followed by

withdrawal; physiological parameters are described in [30]).

Groups of animals with and without history of binge alcohol

self-administration in adolescence were divided into two groups

matched for baseline operant self-administration behavior. Those

two groups were then exposed to either chronic intermittent

(14 hours on/10 hours off) alcohol vapor (dependent group) or

ambient air (non-dependent group), starting on postnatal day 130.

Dependence-induced drinking was measured 8–10 hours after

withdrawal from vapors every 3–7 days, as previously described

[26].

Elevated Plus Maze (EPM) test of anxiety-like behavior in

adulthood. The EPM is a widely used test of anxiety-like

behavior [44], which is sensitive to putative anxiogenic and

anxiolytic drugs [39,80,81]. The methods used here were as

previously described [59,82]. The maze was made of black

Plexiglas and consisted of four arms (50 cm long610 cm wide);

two arms had 40 cm high dark walls (closed arms), and two arms

had 0.5 cm high ledges (open arms). The floor of the apparatus

was 50 cm high. Testing occurred in a dimly lit room where open

arms received 1.5 to 2.0 lux of illumination and closed arms

received ,1 lux of illumination. Animals were tested 4 weeks

following termination of alcohol vapor exposure in alcohol-

dependent rats and 2–4 hours into the dark cycle. Rats were

placed individually onto the center of the maze facing a closed arm

and removed after a 5-min test period. Behavior was recorded and

scored by one experimenter blind to the treatment condition of the

animals. The apparatus was wiped clean with water and dried

between subjects. The primary measures were the percent of total

arm time and number of entries (defined as all four paws entering

an arm) into the open arms (i.e., 1006open arm/(open

arm+closed arm)), which are validated indices of anxiety-related

behavior or ‘‘unprotected exploration’’ [45]. The number of

entries into the closed arms and total arm entries are validated

indices of locomotor activity based as documented in factor

analysis studies [45,46]. Thus, we measured these variables to

assure that a reduction in open arm entries indicates a reduction in

risky exploration (heightened anxiety-like behavior) and not a

reduction in locomotor activity overall.

Brain tissue collection and immunohistochemistry. Rats

were deeply anesthetized with chloral hydrate (35%, 2 ml/kg, a

drug that does not affect stress-related immediate early genes or

peptides mRNA levels), and intracardially perfused with 4%

paraformaldehyde/0.1 M borate buffer, pH 9.5. Brains were post-

fixed for 4 hours, submerged in 20% sucrose solution for 24–

48 hours at 4uC, snap frozen in isopentane (2-methylbutane,

Sigma), and stored at 280uC until sectioning on a microtome into

35 mm coronal sections. Tissue sections were then stored at

220uC in a cryoprotectant solution (50% 0.1 M phosphate

buffered saline, 30% ethylene glycol, and 20% glycerol) until

immuohistochemistry. Free-floating sections were processed for

immunohistochemical labeling of CRF cells and fibers in the CeA.

Sections underwent several rinses with 0.1 M PBS and 0.1 M

PBS-Triton X-100 (PBS-TX) followed by a 30-min incubation in a

0.3% hydrogen peroxide/PBS solution to block endogenous

peroxidase activity. Sections were rinsed several times in PBS-

TX and non-specific binding was then blocked with a 60-min

incubation in 5% milk/PBS. Sections were rinsed again in PBS-

TX, then incubated 18–20 hours 4uC at with 10% normal goat

serum in a milk/PBS-TX solution containing primary rabbit anti-

h/rCRF antibody (1:5000, generously donated by Dr. Wylie Vale,

The Salk Institute). The following day, sections were rinsed in a

series of PBS-TX before a 2-hour incubation at room temperature

in biotin-tagged secondary antibody solution (goat anti-rabbit,

1:200, catalog no. W0117; Vector Laboratories, Burlingame, CA)

at 4uC followed by a 60-min incubation at room temperature in

avidin-biotin complex solution (1:200:1; catalog no. PK-6100,

Vector Laboratories). Staining was visualized with NiCl-enhanced,

3,39-Diaminobenzidine tetrahydrochloride (catalog no. 078K8200,

Sigma-Aldrich Co., St Louis, MO). After immunohistochemical

labeling, sections were slide mounted, dried overnight, then

coverslipped, for microscopic analysis.

Microscopic Analysis. CeA CRF-immunoreactive (-ir) cell

bodies were counted by an experimenter blind to the conditions of

the animals of the study using a Leica microscope and a standard

thumb-operated tally counter at 4006 magnification (406
objective and 106 eyepiece). The sections analyzed were

22.12 mm, 22.30 mm, 22.56 mm, and 22.80 mm relative to

Bregma according to the Rat Brain in Stereotaxic Coordinates

Atlas [83,84]. Many cells within the CeA had dark

immunolabeling on the outside of the cell, which appeared to be

coming from immunoreactive dendritic or axonal fibers and not

dark immunoreactivity within the soma itself. Cells were only

counted as CRF-ir if they had immunolabeling throughout the cell

body.

Statistical Analysis. Simple regression analyses were used to

analyze the correlative relationship between g/kg intake and

resultant blood alcohol levels in adolescent binge animals.

Drinking data (number of responses, g/kg intake, etc.) and body

weight (g/kg) were analyzed using a two-factorial multivariate

analysis of variance (MANOVAs) with adolescent binge drinking

treatment as between- and day as within-subjects variables.

Dependence-induced drinking (% increase in g/kg from baseline

in 30-min tests 6–8 hours into withdrawal from alcohol vapors for

dependent groups and air control for non-dependent groups) was

analyzed using a three-factorial MANOVA with adolescent binge

drinking treatment and adult dependence treatment as between-

subject factors and test day as a within-subjects factor. Behavioral

measures on the elevated plus maze were analyzed using two-

factorial ANOVAs with adolescent binge drinking treatment and

adult dependence treatment as between-subject factors. CRF-ir

cell number was analyzed using three-factorial ANOVAs with

adolescent binge drinking treatment and adult dependence

treatment as between-subject factors and anatomical location

relative to bregma as a within-subject factor. Bonferroni

corrections were used for a priori planned comparisons and post-

hoc comparisons. Differences were considered significant when

p#0.05. Wherever appropriate, data are expressed as mean 6

SEM.
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