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Abstract

Background: The quantity of transcriptome data is rapidly increasing for non-model organisms. As sequencing technology
advances, focus shifts towards solving bioinformatic challenges, of which sequence read assembly is the first task. Recent
studies have compared the performance of different software to establish a best practice for transcriptome assembly. Here,
we adapted a simulation approach to evaluate specific features of assembly programs on 454 data. The novelty of our study
is that the simulation allows us to calculate a model assembly as reference point for comparison.

Findings: The simulation approach allows us to compare basic metrics of assemblies computed by different software
applications (CAP3, MIRA, Newbler, and Oases) to a known optimal solution. We found MIRA and CAP3 are conservative in
merging reads. This resulted in comparably high number of short contigs. In contrast, Newbler more readily merged reads
into longer contigs, while Oases produced the overall shortest assembly. Due to the simulation approach, reads could be
traced back to their correct placement within the transcriptome. Together with mapping reads onto the assembled contigs,
we were able to evaluate ambiguity in the assemblies. This analysis further supported the conservative nature of MIRA and
CAP3, which resulted in low proportions of chimeric contigs, but high redundancy. Newbler produced less redundancy, but
the proportion of chimeric contigs was higher.

Conclusion: Our evaluation of four assemblers suggested that MIRA and Newbler slightly outperformed the other
programs, while showing contrasting characteristics. Oases did not perform very well on the 454 reads. Our evaluation
indicated that the software was either conservative (MIRA) or liberal (Newbler) about merging reads into contigs. This
suggested that in choosing an assembly program researchers should carefully consider their follow up analysis and
consequences of the chosen approach to gain an assembly.
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Introduction

454 transcriptome sequencing is widely used as a cost effective

sequencing method, especially for non-model organisms [1–31].

Concentrating the sequencing effort on the expressed part of the

genome not only saves costs, it allows analysis of the expressed part

of the genome, which is not easily predicted from the genome

sequence alone. Splice patterns, versatile combinations of exons,

can be identified, and gene expression rates can be estimated and

compared. In addition, single nucleotide polymorphisms (SNPs)

and simple sequence repeats (SSRs) within the coding part of the

genome can be determined.

Most analyses that utilise transcriptome data require assembled

reads. With next generation sequencing (NGS), DNA molecules

are fragmented, size-selected, amplified, and high-throughput

sequenced resulting in reads of a length which is specific for the

respective NGS technology. This fragmentation procedure is

reversed in silico by merging overlapping reads into contigs during

the assembly process. The study presented here focuses on the

performance of software for de novo assembly of cDNA reads

generated by 454 sequencing. In studies lacking a sequenced

genome, it is not possible to assemble the reads by mapping them

onto a reference genome. Instead all reads have to be aligned

against each other, i.e. de novo assembled. Despite the higher costs

compared to other NGS technologies, 454 is still widely used

because of the long reads it produces, facilitating read alignment

during the de novo assembly. Other sequencing technologies, such

as Illumina, are constantly increasing their read length and

supersede 454 especially in terms of throughput and per base pair

costs. In addition, new technologies being developed for example

the semiconductor technology of Ion Torrent. Therefore, the

assembly of around 200 bp long reads, as evaluated in the study

presented here, likely will persist as a bioinformatics challenge.

For the de novo assembly of 454 transcriptomic reads the

following assemblers are most widely used: CAP3 [32] (TGICL

[33], wrapper for CAP3), MIRA [34] (est2assembly [35], wrapper

for MIRA), Newbler [36], Seqman NGen� , CLC bio�, and the

web application EGassembler [37] (see Table 1). Not all of these

assemblers are specifically intended for transcriptome data. In

contrast to a genome consisting of few long continuous stretches
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(linkage groups or chromosomes), the transcriptome is comprised

of many transcripts that are variable in length. The complexity of

assembling a transcriptome is further exacerbated by varying

expression levels, resulting in an uneven distribution of reads

amongst the diverse transcripts. Even if experimental cDNA

normalization aims to reduce the dynamic range of expression it

usually does not result in an even distribution of transcripts [8]. In

addition, alternative splicing results in multiple isoforms, which

share partial sequence information [38].

These intrinsic features of the transcriptome pose special

challenges for any assembly software. A recent study by Kumar

and Blaxter compared transcriptome assemblers by analysing 454

cDNA reads from Litomosoides sigmodontis, a nematode, and

evaluated the resulting contigs [1]. The quality of read assemblies

were assessed for basic assembly metrics, such as various

measurements of bases used, contig number, and length. In

addition, contigs were compared with previously existing sequence

databases. Besides presenting a very comprehensive evaluation of

different software solutions, some aspects have not been addressed

exhaustively: (1) The analysis of basic assembly metrics usually

suffers from the fact that optimal values are not known when only

using real data. Although it may seem tempting to simply assume

that longer contigs represent a better assembly, this might not

necessarily be the case, e.g. if reads of different transcripts are

concatenated. (2) The comparison of assemblies with pre-existing

sets of reference sequences from other organisms might be

misleading. The best performing assembler does not necessarily

always match well with reference sequences, even when these

references originate from the same species because the transcrip-

tome varies depending on tissue, time point, and abiotic factors

[39–42]. (3) Due to some sequence similarity between transcripts,

reads originating from different transcripts can be merged into one

contig during the assembly process. Without knowledge of the

origin of reads, it is difficult to determine the extend to which an

assembler produces chimeric contigs, i.e. contigs containing reads

from different transcripts.

We used a novel approach to assess the performance of

assembler software. By applying a simulation approach we

circumvent some of the problems mentioned above. Given a

transcriptome, the simulator carried out in silico gene expression,

reverse transcription, fragmentation and 454 sequencing. In

contrast to real 454 reads, the exact origin of each simulated read

was known. Utilising this information it was possible to merge

reads with a minimum of one base pair overlap, independent of

sequence information. This way, we knew an ideal solution (Model

Assembly MA), which was assigning all reads to their original

transcripts while merging reads as efficiently as possible with the

given amounts of data (one single 454 plate). Therefore the MA

was the optimal solution of the assembly problem given the data.

The same simulated reads were assembled using assembly software

which operated on sequence information only. The resulting

assemblies could be compared to the MA. The MA provided

reference values for basic assembly metrics, such as contig count

and contig length. Additionally, the MA could be used as a

reference data set against which to compare the output contigs of

the assemblers to determine specificity and sensitivity measure-

ments. Assessing the amount of reads aligning back to multiple

contigs identified alignment ambiguity and redundancy in the

assemblies. As we knew from which transcript each simulated read

originates, it was, in addition, possible to identify reads of different

origin joined to form one chimeric contig and quantify the extent

of chimera formation in the different assemblies.

In our study we created simulated reads based on a description

of the human transcriptome (GRCh37.58). The human data set

was chosen due to the comprehensive amount of data available

and the complexity and size of the transcriptome. In addition, we

used real 454 reads from a human tissue pool in order to compare

the simulation approach with a realistic experimental setup. The

assemblers tested in this study are CAP3 [32], MIRA [34],

Newbler [36], and Oases [43]. These assemblers had been chosen

as they are frequently used in non-model organism transcriptome

studies and are freely distributed stand-alone applications (see

Table 1). Although Oases is primarily designed for shorter

Illumina reads, it was included in this study because it is

specifically designed for transcriptome data.

Results

The simulated and real data set
The simulation produced 393409245 cDNA fragments (for

details see Material and Methods). We randomly discarded all but

800’000 fragments to match the amount of a ‘‘typical’’ single 454

sequencing run. Gene expression, reverse transcription, fragmen-

tation, and 454 sequencing was simulated based on a human

transcriptome annotation [44] in the following manner: the cell

profiles are randomly assigned according to a modified Zipf’s law

as observed universally in RNA expression interrogations [45].

Subsequently, in silico expressed transcript molecules have been

subjected to reverse transcription to recast 59 to 39-representation

biases in libraries that are reversely transcribed before fragmen-

Table 1. Assembler software recently used for de novo assembly of 454 transcriptome data.1

Assembler Organism

CAP3 [31] Amaranthus tuberculatus [2]; Conyza canadensis [3]; Momordica charantia [4]; Oncopeltus fasciatus [5]; Oryza longistaminata
[6]; Papaver somniferum* [7]; Pisum sativum* [8]; Pteridium aquilinum [9]; Trichostrongylus colubriformis [10];

MIRA [33] Anguilla anguilla [11]; Bathymodiolus azoricus [12]; Cochliomyia hominivorax [13]; Cucurbita pepo [14]; Fagopyrum esculentum
and F. tataricum [15]; Pisum sativum [8]; Pteridium aquilinum [9]; Schmidtea mediterranea [16]; Thamnophis elegans [17];
Trialeurodes vaporariorum* [18];

Newbler [35] Agrilus planipennis [19]; Cajanus cajan [20]; Cimex lectularius [21]; Euphausia superba [22]; Oncopeltus fasciatus [5]; Paulinella
chromatophora [23]; Phytoseiulus persimilis [24]; Teladorsagia circumcincta [25]; Thamnophis elegans [17]; Vigna radiata [26];

Seqman NGen � Crotalus adamanteus [27]; Littorina saxatilis [28]; Oncorhynchus mykiss [29];

CLC bio � Coregonus clupeaformis [30]; Tigriopus californicus [31];

EGassembler [36] Amaranthus tuberculatus [2]; Conyza canadensis [3];

*Utilising a wrapper TGICL [33] or est2assmbly [35].
1For more studies refer to Table 1 in [1].
doi:10.1371/journal.pone.0031410.t001
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tation [46]. Then simulated fragmentation was carried out

employing a mechanical model of molecule breakage [47].

Fragments obtained were sub-sampled in the sequencing process,

additionally mimicking errors typical for the sequencing chemistry

[36,47]. The resulting simulated reads (800’000 reads of a mean

read length ,220 bp) were assembled using four different de novo

transcriptome assembly programs, namely CAP3, MIRA, New-

bler, and Oases. For comparison a ‘‘real’’ 454 data set (NCBI

Short Read Archive Accession: SRX002932) containing 823’575

sequences (454 FLX reads with an average length of 250 bp) was

obtained and assembled using the same assembly programs. For

the simulation approach we generated a Model Assembly (MA)

based on the origin of each read. In the MA, reads were merged

into contigs using position information if they overlapped by at

least a single base pair. Figure 1 illustrates the workflow (light grey)

with details on the data sets and comparisons (black) made to

evaluate the assemblers. We utilised the MA ultimately as a

reference point for the evaluation of transcriptome assemblers

(Comparison 1 in Figure 1). The simulated reads were created

from the transcriptome annotation, and after assembly, compared

back to it (Comparison 2 in Figure 1). Finally, real reads from an

independent experiment were also assembled and compared to the

transcriptome annotation (Comparison 3 in Figure 1).

Basic assembly metrics
To allow comparisons between the assemblies of different

assembly programs (run under default parameters for transcrip-

tome assembly; details are given in Material and Methods),

singletons and contigs shorter than 100 bp were discarded before

subsequent analysis. Standard metrics describing the assembly,

such as number of contigs, total bases used in the assembly,

number of large contigs (.1 kbp), number of base pairs used in

large contigs, maximal, average, and median contig length, and

N50 value, were used to compare the assembly programs. The

N50 value is defined as the contig length where half the assembly is

represented by contigs of this size or longer. We included N50

values for comparison with other studies even if it is not strictly

applicable for transcriptome assemblies [1].

The number of contigs produced by the algorithmically similar

programs MIRA and CAP3 is about 4 times higher than the

amount of contigs produced by Newbler and the algorithmically

very different Oases. This was observed in the assemblies of the

simulated data (Table 2) as well as of the real reads (Table 3).

Newbler and Oases produced less contigs than were present in the

MA, while MIRA and CAP3 produced more. Accordingly,

comparing the amount of bases output into contigs by the

assembly programs, MIRA and CAP3 assemblies added up about

twice the number of base pairs compared to Newbler and Oases.

This held for both simulated and real data sets. The number of

contig bases output by CAP3 and MIRA was above but close to

the amount of bases in the MA. Oases put out less than half the

bases of the MA. Newbler produced on average longer contigs

than other assemblers tested in this study (highest mean and

median contig length), even though this did not amount to overall

more base pairs. The mean and median contig length retrieved

with MIRA, CAP3, and Oases were quite similar to the values of

the MA. Figure 2 shows the distribution of contig lengths. CAP3

produced many short contigs and few long contigs. MIRA and

both versions of Newbler produced more long contigs than CAP3,

but MIRA also output a high amount of short contigs. CAP3 and

Oases produced fewer long contigs, while MIRA and Newbler

constructed almost as many long contigs as present in the MA.

Newbler and Oases assemblies held fewer short contigs compared

to the MA. Overall, the contig length comparison showed similar

results for simulated and real read assemblies. Besides the current

version of Newbler (2.3) we also tested a prerelease version (2.5p1

beta version as far as applicable, for details see Material and

Methods), which performed very similar in all the analysis (results

not shown). Wall-clock run times for each program varied between

minutes to around a day on a 2.6 GHz AMD Opteron 2435 server

with 16 GB RAM. At this magnitude the runtime is of less

importance than the quality of an assembly, but might become

relevant if one wants to explore the parameter space or analyse

larger or multiple data sets [1].

Assembly evaluation
Assemblers could also be evaluated on how well the respective

assembly recaptures already known sequences. We compared the

assemblies to the human transcriptome annotation from Ensembl.

We aligned the assembled contigs to the transcriptome and vice

versa, evaluating specificity and sensitivity of the comparison.

Specificity was defined as the relative amount of contigs covering

at least 80% of a respective transcript in the Ensembl annotation

(BLAST e-value,1029 for details see Material and Methods).

Specificity was high for all assemblies of the simulated reads, which

were directly created out of the Ensembl transcriptome (91 to

95%; Table 4). Assuming that the Ensembl annotations were

comprehensive, contigs not matching the transcriptome were

either too short to cover at least 80% of a respective transcript or

were potential misassembled contigs. The assemblies of real reads,

which stem from RNA of different human cell lines, showed a

lower and broader range of specificity (49 to 79%; Table 5).

Amongst the real read assemblies Newbler and Oases scored

highest, while MIRA produced the lowest amount of contigs that

were contained in the transcriptome. Sensitivity was defined as the

relative amount of Ensembl transcripts contained in the assemblies

(for details see Material and Methods). For the assemblies of the

simulated reads the sensitivity showed a broader range (2 to 13%;

Table 4). This indicated performance differences between the

assemblers. Newbler and MIRA were most sensitive, while CAP3

was least sensitive. The real read assemblies all showed a low

sensitivity (6 to 8%; Table 5).

Ultimately we aimed to evaluate assembler performance based

on how well their assembly of the simulated reads approximates

the MA (Table 6). All assemblers achieved a rather high specificity:

91 to 95% of the contigs generated by the assemblers were present

in the MA. The CAP3 and MIRA assemblies had the highest

specificity, while Newbler showed the lowest specificity. Sensitivity

was lower than specificity: 15 to 41% of the MA contigs were

found in the simulated read assemblies. The MA had the highest

contig overlap with the MIRA assembly (41%) followed by

Newbler (34%), CAP3 (17%), and Oases (15%). Specificity and

sensitivity indicated that MIRA produced the assembly that was

most similar to the MA (Table 6).

Ambiguity within the assemblies was evaluated by aligning

simulated reads back to assembled contigs (Table 7). The greatest

majority of reads could be mapped back to MA contigs. For the

MA, we knew that only reads of a common transcript had been

assembled. Nevertheless, while mapping the reads to the contigs,

some reads aligned to multiple contigs due to sequence similarity

between transcripts. This is showing the intrinsic redundancy

within the data set. A similar high proportion of aligned reads as

for the MA could only be found in the MIRA contigs. For the

other assemblies some reads did not find a good match in the

assembled contigs. Redundancy in the assembly was revealed by

reads mapping back to multiple contigs. CAP3 and MIRA had by

far the most reads with multiple hits, whereas Newbler and Oases

had fewer reads mapped to multiple contigs than the MA. Another

Evaluation of Assembly Software for Transcriptomes
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form of ambiguity, chimeric contigs arose when reads, which

originated from different transcripts, were assembled into the same

contig. These chimeras might cause major artefacts in analysis

following a transcriptome assembly, like detection of sequence or

expression variation. Our simulation approach kept track of the

origin of every read and allowed us to find and quantify the

amount of misplaced reads forming chimeric contigs in the

assemblies. Table 8 shows that MIRA and CAP3 have a high

proportion of non-chimeric contigs (86% and 85%, respectively),

whereas Newbler produced only 62% of non-chimeric contigs. As

the Oases software did not allow tracing reads during the assembly

process we could not determine with certainty which reads

contributed to the contigs and therefore could not evaluate the

extend of non-chimeric contigs directly. Transcriptome assemblies

are especially challenging since genes with multiple transcripts are

difficult to distinguish using sequence information only. Therefore,

Figure 1. Workflow and comparison scheme for assembler evaluation. Workflows are shown in grey, comparisons between data sets in
black. To evaluate the performance of different assemblers three comparisons were performed: 1) Different assemblies of simulated reads were
compared to a Model Assembly (MA), which was based on positional information. 2) Different assemblies of simulated reads were compared to a
transcriptome annotation. The MA was compared in the same way to provide reference values for the evaluated measurements. 3) Different
assemblies of real reads were compared to the transcriptome annotation to compare the simulation approach to values from a real data set.
doi:10.1371/journal.pone.0031410.g001
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we expected these genes to be particularly prone to misalignments. Out

of the 800’000 reads simulated 64’630 originate from non-alternative

spliced genes. The average proportions of misplaced reads for contigs

representing genes with and without alternative splicing are presented

in Table 8. As expected, genes with a single transcript isoform showed a

lower average proportion of misplaced reads per contig in all

assemblies. This indicates, that no assembler performed particularly

well in assembling genes with multiple splicing variants, reflecting the

specific challenges of assembling transcriptome data. But again MIRA

and CAP3 outperformed Newbler in this aspect.

Discussion

The Model Assembly as a reference for comparing
assembler performance

Previous studies that evaluated assemblers for de novo tran-

scriptome data, compared the assembly of different programs

against previously determined EST sequences for the target species

and transcriptome data of related organisms [1]. In this study we

adopted a simulation approach to evaluate a given assembly and

compare different assemblies. Thus, we benefited from knowing

the optimal solution for the assembly problem given the data. We

created a Model Assembly (MA) with a minimal overlap of one bp

ensuring that no assembler outperforms the MA, therefore the MA

could be used as the gold standard. First, the MA provided

reference values for the diverse metrics, on which the assembler

were assessed and compared to each other. Second, we evaluated

how close the different assemblies match the MA. And finally, this

approach allowed us to evaluate chimeric contigs in the assembly

directly. As the simulation may not have captured all confounding

processes involved in real experiments, e.g. PCR read chimeras,

we also evaluated a comparable real data set. In assemblies of real

experimental data the optimal solution was not known. Never-

theless, in the case presented in this study, the human

transcriptome annotation was most likely a very good proxy.

Altogether, the combination of simulated and real experimental

data provided further insights on general advantages and

shortcomings of different software solutions for 454 de novo

transcriptome assembly.

Comparing the assembly metrics
The interpretation of assembly quality based on metrics like

contig length was difficult without reference values. For example,

longer contigs are not always good indicators of assembly quality;

if an assembler simply concatenates all reads, the result would be

an assembly with a high median contig length although it is a large

chimeric sequence. The MA provided reference values for basic

assembly measures so these values could be assessed accordingly.

We exploited this feature to reveal Newbler produced contigs with

a higher median length, average length, and N50 length, than the

MA. This suggested that Newbler was merging reads into contigs

that originate from different transcripts. This assumption was

further strengthened by the lower number of base pairs output in

the Newbler assembly compared to the MA. The higher amount

of chimeric contigs and the higher average amount of misplaced

reads per contig in the Newbler assembly relative to the other

assemblies (Table 8), which was only possible to evaluate directly

due to our simulation approach, further confirmed these

conclusions. MIRA and CAP3 seemed to be more conservative

in merging reads, resulting in lower median contig length but

higher numbers of base pairs used in the assemblies. A large total

number of bases used in the assembly pointed towards some

degree of redundancy in the MIRA and CAP3 assemblies. Again

our simulation approach allows us to directly show the higher

redundancy in these assemblies (Table 7). Oases produced contigs

of a similar length as CAP3, MIRA, and MA, but output a low

number of bases in the assembly suggesting that the software

Table 2. Basic assembly metrics (simulated 454 reads).

CAP3 MIRA Newbler Oases MA

Number of contigs* 45’422 40’129 9’774 11’355 24’993

Total bases* 19’147’862 22’855’498 12’764’265 7’937’884 18’152’459

Number of contigs (. = 1 kbp) 606 3’683 3’938 2’138 4’337

Total bases (in contigs . = 1 kbp) 779’806 6’626’729 9’614’255 4’686’216 9’935’980

Max contig length 13’981 17’958 17’915 17’906 17’958

Mean contig length 421 569 1’305 699 726

Median contig length 376 427 797 331 330

N50 425 602 2’128 1’351 1’214

Time taken 341 min 859 min 34 min 10 min** N/A

*Only contigs .100 bp.
**Summed time for velveth, velvetg, and Oases.
doi:10.1371/journal.pone.0031410.t002

Table 3. Basic assembly metrics (real 454 reads).

CAP3 MIRA Newbler Oases

Number of contigs* 50’381 76’126 14’633 16’862

Total bases 22’062’745 31’495’153 11’728’579 9’020’336

Number of contigs
(. = 1 kbp)

2’106 2’964 3’365 2’261

Total bases (in contigs
. = 1 kbp)

2’963’339 4’188’919 6’007’896 3’890’312

Max contig length 4’859 3’958 8’611 8’461

Mean contig length 437 413 801 534

Median contig length 364 337 565 300

N50 458 456 1’025 837

Time taken 1731 min 816 min 790 min 8 min**

*Only contigs .100 bp.
**Summed time for velveth, velvetg, and Oases.
doi:10.1371/journal.pone.0031410.t003
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discarded some read information. Comparing assembly metrics for

the simulated and real data set (see Table 2 and 3), led to similar

conclusions, revealing major differences between Newbler on the

one side and MIRA plus CAP3 on the other side.

Specificity and sensitivity of the transcriptome
assemblies

As expected, the MA had the highest specificity and sensitivity

(Table 3). In the simulation, 800’000 reads were produced

representing the amount of sequences generated by one 454

sequencing run. Due to the amount of data used for the assembly,

sensitivity was rather low (16%) and a specificity of 95% indicated

that not all contigs in the MA represent complete transcripts, i.e.

some transcripts were not completely covered by reads. These

results confirmed that a single 454 sequencing run did not allow

for a complete restoration of a whole (human) transcriptome,

resulting in low sensitivity scores and incomplete specificity.

However we could compare specificity and sensitivity across

Figure 2. Cumulative contig lengths for different assemblies. Counts of contigs longer than 200, 400, 800, and 1000 base pairs for the
different assemblies. Assemblies of simulated (top) and real 454 reads (bottom) are shown in separate diagrams.
doi:10.1371/journal.pone.0031410.g002
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different software solutions to determine performance differences.

We evaluated a prerelease (2.5p1) version of Newbler along with

the current 2.3 version, as Kumar and Blaxter [1] showed major

performance differences between versions. We only found minor

differences in the performance between the two Newbler versions

in any of the metrics or comparisons we evaluated (results not

shown). These findings were in the line with results by Ewen-

Campen et al. [5].

The specificity scores of the different assemblies for simulated

reads were all very high. This might be expected as the reads have

been directly generated from the transcriptome, resulting in almost

every contig mapping back to the reference. For the real data set,

specificity differed more between the assemblies (Table 5), and

indicated that Newbler was most successful in restoring complete

length transcripts. MIRA showed a low specificity, which might be

caused by the conservative merging of reads. Essentially, MIRA

escaped producing chimeric contigs but as a consequence failed to

produce long contigs and generates redundancy in the assembly.

The sensitivity scores showed slight variations due to the low

amount of initial reads. For both simulated and real read sets,

Newbler and MIRA were the most sensitive assemblers. The

relatively low specificity, together with the low number of contigs

and amount of bases used in the Oases assembly indicated that

Oases might not be the right choice for transcriptome assembly of

454 reads. This might not be surprising as this software was

designed for shorter reads and not for ,200 bp reads as used in

this study. The Oases assembly might be improved by using a

multiple k-mer strategy, but for the scope of this study we decided

to evaluate software with their default settings.

Conclusions
As we used a simulation approach we were able to identify

general features of different software for de novo 454 transcriptome

assembly. In summary, our analysis indicated that Newbler

performed best in restoring full-length transcripts at the cost of a

higher proportion of chimeric contigs. In contrast, MIRA was

particularly conservative in combining reads. This resulted in

more fragmented transcripts and a certain degree of redundancy

in the assembly. Depending on the analysis following the assembly,

researchers might favour different features of assemblers. Down-

stream variation detection might suffer substantially from chimeric

reads, which produce false positive variation calls. Therefore one

might prefer a conservative approach as performed by MIRA.

Other studies interested in the expressed sequences might prefer

an optimal restoration of full-length transcripts with minimal

redundancy. Here, Newbler might be the better choice for

assembly, despite some degree of chimeric contigs. All assessed

approaches can be assumed to benefit from experimental

improvement, like e.g. normalization of expression levels, or

tuning parameter settings specific for the data analysed, but the

overall tendencies of characteristic differences between approaches

we describe here are less expected to change. Furthermore we

focus here on the de novo assembly of a specific human

transcriptome. The assembly problem might vary depending on

tissue type, expression profile, and species under consideration.

Nevertheless we outline in our study how a simulation approach

can guide decision on assembly strategy and support the choice of

parameters. Simulations on reads obtained under similar exper-

imental conditions in related species can also provide valuable

information for the design and the analysis of RNA-Seq

experiments in species with an a priori unknown transcriptome

composition.

Materials and Methods

Data sets
For the qualitative evaluation of sequence assemblers, we

simulated 454 ESTs in silico. On the basis of the human genome

and transcriptome annotation (Ensembl [44] GRCh37.58) the

FluxSimulator [48] (v20090831) simulated gene expression (20000

Cells, 200 Million Molecules), reverse transcription (transcription

start site variation: 25, poly-A shape and scale: 0, random primers)

and fragmentation (physical, lambda 900, cDNA cut-off 500–

Table 4. Comparison between simulated 454 read assemblies and transcriptome.

CAP3 MIRA Newbler Oases MA

Specificity absolute 42’697/45’422 37’587/40’129 8’932/9’774 10’398/11’355 23’737/24’993

Specificity relative 94.00% 93.67% 91.39% 91.57% 94.97%

Sensitivity absolute 3’140/146’962 14’920/146’962 18’723/146’962 9’379/146’962 23’985/146’962

Sensitivity relative 2.14% 10.15% 12.74% 6.38% 16.32%

doi:10.1371/journal.pone.0031410.t004

Table 5. Comparison between real 454 read assemblies and
transcriptome.

CAP3 MIRA Newbler Oases

Specificity absolute 30’256/
50’381

37’376/76’126 11’505/14’633 12’065/16’862

Specificity relative 60.05% 49.10% 78.62% 71.55%

Sensitivity absolute 10’487/
146’962

11’209/146’962 11’857/
146’962

9’543/146’962

Sensitivity relative 7.14% 7.63% 8.07% 6.49%

doi:10.1371/journal.pone.0031410.t005

Table 6. Comparison between simulated 454 read assemblies
and model assembly.

CAP3 MIRA Newbler Oases

Specificity
absolute

43’312/45’422 37’930/40’129 8’856/9’774 10’582/11’355

Specificity
relative

95.35% 94.52% 90.61% 93.19%

Sensitivity
absolute

4’202/24’993 10’329/24’993 8’530/24’993 3’671/24’993

Sensitivity
relative

16.81% 41.33% 34.13% 14.69%

doi:10.1371/journal.pone.0031410.t006
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800 bp; parameters not mentioned were left at default values). The

human transcriptome was chosen as a start point for the

simulation due to its quality especially with respect to the

knowledge about different isoforms of genes. A custom python

script (available on request from the authors) resembling the

approach of MetaSim [49] simulated the 454 sequencing process

with 100 flow cycles. Throughout all these processes the

information about which transcript a fragment/read originated

from was maintained. This allowed creation of a Model Assembly

(MA). The MA was not based on overlapping sequence

information between reads but instead was based on the

knowledge of the origin of each read. Reads were merged into

contigs when they shared a common origin and overlapped by at

least one base pair. Any assembler operating on sequence

information could not produce a better assembly than the MA.

For comparison we repeated the analysis with a real 454-FLX

sequenced human transcripts [50]. The sequenced transcripts

originated from the microarray quality control A sample (NCBI

Short Read Archive Accession: SRX002932). It consisted of

pooled RNA from different cell lines and therefore should give a

good representation of the human transcriptome.

Assemblers
We compared the performance of following assemblers: CAP3

(version for Linux with an Intel processor) [32], MIRA (3.2.0rc3)

[34], Newbler (2.3 and 2.5p1) [36], and Oases (0.1.18) [43]. Based

on the algorithms the assembly software uses, the assemblers can

be grouped into two different classes. Overlap-Layout-Consensus

based assemblers (MIRA, CAP3, Newbler) are usually employed

in the assembly of longer reads such as those produced by 454

sequencing. De Bruijn graph assemblers (Oases) are primarily

designed for short read data, e.g. from Illumina sequencing [51].

Although we only studied long-read data sets we nevertheless

evaluated the performance of Oases. We did so as Oases is

explicitly designed for the assembly of transcripts. All assemblers

were run under default parameters with the following required

adjustments for 454 transcriptome data: MIRA: denovo,est,accu-

rate,454 -GE:not = 4; Newbler2.3,Newbler2.5: cDNAMode =

True, numCPU = 4; Oases: k = 31. The prerelease version of

Newbler 2.5 (2.5p1) used in this study contained a bug (known to

the developers) that causes the software to fail on reading in certain

cDNA reads in fasta format. In order to assess the software, we

had to eliminate reads crashing the program manually. For the

simulated reads, Newbler 2.5 was run with only 793’430 reads

instead of 800’000 reads. On the real read data set, we were not

able to run the software at all. After assembly, contigs less than

100 bp in length and singletons (singletons could not be

determined in the Oases assembly) were discarded for subsequent

analysis (this was done to ensure comparability between the output

of the different assemblers as some keep while other discard

singletons and/or contigs shorter 100 bp).

Comparative evaluation of assemblers
We compared the total number of bases in an assembled

contigs, the amount of contigs longer 200 bp, 400 bp, 800 bp, and

1 kbp, mean, median, maximum, N50 contig length (the smallest

contig size in which half the assembly is represented), and run

times of all evaluated assemblers for both the simulated and the

real data set. As Oases uses a preliminary assembly produced by

velvet (specifically, the applications, velveth and velvetg) we

summed run times over all steps. These statistics were collected

to determine which assembler approximates the MA best.

In addition to the simulation approach, we compared the

assemblies of real and simulated data to the transcriptome. We

expected that the assemblers would perform comparably on the

simulated and real data. We calculated the following optimality

criteria to validate our simulation approach and evaluate the

performance of the different assemblers: (1) Specificity: This

measure described the relative amount of contigs in the

assembler’s output which were also contained in the transcriptome

or MA. We considered a contig to be present in the transcriptome

or MA if it had a BLAST [52] hit with an e-value,1029 and the

hit covered at least 80% of the length of the transcriptome or MA

sequence. (2) Sensitivity: The relative amount of transcriptome

sequences or MA contigs, which were contained in the output of

one assembler (BLAST) and covering at least 80% of the length of

the output contig. Figure 1 illustrates performed comparisons

between the different data sets. (3) Ambiguity: Aligning simulated

reads back to assembled contigs, we evaluated how many reads

map to multiple contigs (multiple BLAST hits above the e-value

Table 7. Alignment ambiguity between simulated reads and assembled contigs.

CAP3 MIRA Newbler Oases MA

Contigs hit 45’410/45’422 40’108/40’129 9’771/9’774 11’342/11’355 24’983/24’993

Reads mapped (out of 800’000) 708’344 786’490 709’680 689’079 798’768

Reads mapped to multiple contigs 609’429 611’832 202’681 223’616 294’738

doi:10.1371/journal.pone.0031410.t007

Table 8. Evaluation of chimera formation.

CAP3 MIRA Newbler

Non chimeric contigs absolute 38’429/45’422 34’558/40’129 6’138/9’957

Non chimeric contigs relative 85% 86% 62%

Average proportion of misplaced reads AS 5.27% 4.61% 11.70%

Average proportion of misplaced reads non-AS 0.88% 0.91% 2.82%

AS: Genes with alternative splicing.
Non-AS: Genes without alternative splicing.
doi:10.1371/journal.pone.0031410.t008
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threshold of 1029) to assess redundancy in the assembled contigs.

Besides, we evaluated the origin of reads joined into the same

contig. Non-chimeric contigs aligned only reads of the same

transcript origin. For each contig, we determined the proportion of

misplaced reads (reads mapped to contigs originating from

different transcripts - chimeras). We calculated the average

proportion of misplaced reads over all contigs for alternatively

spliced and non-alternatively spliced genes, separately.
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