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Abstract

In this article, we tackle a challenging problem in quantitative graph theory. We establish relations between graph entropy
measures representing the structural information content of networks. In particular, we prove formal relations between
quantitative network measures based on Shannon’s entropy to study the relatedness of those measures. In order to
establish such information inequalities for graphs, we focus on graph entropy measures based on information functionals.
To prove such relations, we use known graph classes whose instances have been proven useful in various scientific areas.
Our results extend the foregoing work on information inequalities for graphs.
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Introduction

Complexity is an intricate and versatile concept that is

associated with the design and configuration of any system [1,2].

For example, complexity can be measured and characterized by

quantitative measures often called indices [3–5]. When studying

the concept of complexity, information theory has been playing a

pioneering and leading role. Prominent examples are the theory of

communication and applied physics where the famous Shannon

entropy [6] has extensively been used. To study issues of

complexity in natural sciences and, in particular, the influence

and use of information theory, see [7].

In this paper, we deal with an important aspect when studying

the complexity of network-based systems. In particular, we

establish relations between information-theoretic complexity

measures [3,8–11]. Recall that such entropic measures have been

used to quantify the information content of the underlying

networks [8,12]. Generally, this relates to exploring the complexity

of a graph by taking its structural features into account. Note that

numerous measures have been developed to study the structural

complexity of graphs [5,8,13–22]. Further, the use and ability of

the measures has been demonstrated by solving interdisciplinary

problems. As a result, such studies have led to a vast number of

contributions dealing with the analysis of complex systems by

means of information-theoretic measures, see, e.g., [8,13–22].

Figure 1 shows a classification scheme of quantitative network

measures exemplarily.

The main contribution of this paper is to study relations

between entropy measures. We will tackle this problem by means

of inequalities involving network information measures. In

particular, we study so-called implicit information inequalities which

have been introduced by Dehmer et al. [23,24] for studying graph

entropies using information functionals. Generally, an implicit

information inequality involves information measures which are

present on either side of the inequality. It is important to

emphasize that relatively little work has been done to investigate

relations between network measures. A classical contribution in

this area is due to Bonchev et al. [25]. Here, the relatedness

between information-theoretic network measures has been inves-

tigated to detect branching in chemical networks. Further, implicit

information inequalities have been studied for hierarchical graphs

which turned out to be useful in network biology [26].

We first present closed form expressions of graph entropies

using the graph classes, stars and path graphs. Further, we infer

novel information inequalities for the measures based on the j-
sphere functional. The section ‘‘Implicit Information Inequalities’’

presents our main results on novel implicit inequalities for

networks. We conclude the paper with a summary and some

open problems. Before discussing our results, we will first present

the information-theoretic measures that we want to investigate in

this paper.

Methods

In this section, we briefly state the concrete definitions of the

information-theoretic complexity measures that are used for

characterizing complex network structures [3,6,9,27]. Here we

state measures based on two major classifications namely partition-

based and partition-independent measures and deal mainly with

the latter.

Given a simple, undirected graph G~(V ,E), let d(u,v) denote

the distance between two vertices u and v, and let

r(G)~maxfd(u,v) : u,v [Vg. Let Sj(u; G) denote the j-sphere

of a vertex u defined as Sj(u; G)~fx [V : d(u,x)~jg. Through-

out this article, a graph G represents a simple undirected graph.

Definition 1 Let G~(V ,E) be a graph on n vertices and let X be a

graph invariant of G. Let a be an equivalence relation that partitions X into k
subsets X1,X2, . . . Xk, with cardinality jXij for 1ƒiƒk. The total
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structural information content of G is given by

It(G)~jX j log2 jX j{
Xk

i~1

jXij log2 jXij: ð1Þ

Definition 2 Let G~(V ,E) be a graph on n vertices and let

pi~jXij=jX j, for 1ƒiƒk be the probability value for each partition. The

mean information content of G is

Im(G)~{
Xk

i~1

pi log2 pi~{
Xk

i~1

jXij
jX j log2

jXij
jX j : ð2Þ

In the context of theory of communication, the above equation

is called as Shannon equation of information [28].

Definition 3 Let G~(V ,E) be a graph on n vertices. The quantity

p(vi)~
f (vi)Pn

j~1 f (vj)
, ð3Þ

is a probability value of vi [V . f : V?Rz is an arbitrary information

functional that maps a set of vertices to the non-negative real numbers.

Remark 1 Observe that, p(:) defines a probability distribution over the

set of vertices as it satisfies 0ƒp(vi)v1, for every vertex vi, 1ƒiƒn andPn
i~1

p(vi)~1.

Using the resulting probability distribution associated with G
leads to families of network information measures [3,9].

Definition 4 The graph entropy of G given representing its structural

information content:

If (G)~{
Xn

i~1

p(vi) log2 p(vi)~{
Xn

i~1

f (vi)Pn
j~1 f (vj)

log2

f (vi)Pn
j~1 f (vj)

 !
:

ð4Þ

In order to define concrete graph entropies, we reproduce the

definitions of some information functionals based on metrical

properties of graphs [3,9,27].

Definition 5 Parameterized exponential information functional using j-
spheres:

fP(vi)~a

Pr(G)
j~1

cj jSj (vi ;G)j
, ð5Þ

where aw0 and ckw0 for 1ƒkƒr(G).
Definition 6 Parameterized linear information functional using j-

spheres:

f ’P(vi)~
Xn

j~1

cj jSj(vi; G)j, ð6Þ

where ckw0 for 1ƒkƒr(G).
Remark 2 Observe that, when either a~1 or the ck are all equal, the

functional fP and fP’ becomes a constant function and, hence, the probability

on all the vertices are equal. That is pf (v)~
1

n
, for v [V . Thus, the value of

the entropy attains its maximum value, If (G)~ log2 (n). Thus, in all our

proofs, we only consider the non-trivial case, namely a=1 and/or at least for

two coefficients holds cj=ck.

Next, we will define the local information graph to use local

centrality measures from [9]. Let LG(v,j) be the subgraph induced

by the shortest path starting from the vertex v to all the vertices at

distance j in G. Then, LG(v; j) is called the local information graph

regarding v with respect to j, see [9]. A local centrality measure that

can be applied to determine the structural information content of a

network [9] is then defined as follows.

Definition 7 The closeness centrality of the local information graph is

defined by

b(v; LG(v,j))~
1P

x [LG (v,j)

d(v,x)
: ð7Þ

Remark 3 Note that centrality is an important concept that has been

introduced for analyzing social networks [29,30]. Many centrality measures

Figure 1. A classification of quantitative network measures.
doi:10.1371/journal.pone.0031395.g001
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have been contributed [30], and in particular, various definitions for closeness

centrality [30–32]. We remark that the above definition has been firstly

defined by Sabidussi [31] for arbitrary graphs. However, we use the measure

as a local invariant defined on the subgraphs induced by the local information

graph [9].

Similar to the j-sphere functionals, we define further functionals

based on the local centrality measure as follows.

Definition 8 Parameterized exponential information functional using

local centrality measure:

fC(vi)~a

Pn
j~1

cjb(vi ;LG (vi ,j)), ð8Þ

where aw0, ckw0 for 1ƒkƒr(G).

Definition 9 Parameterized linear information functional using local

centrality measure:

f ’C(vi)~
Xn

j~1

cjb(vi; LG(vi,j)), ð9Þ

where ckw0, for 1ƒkƒr(G).

Note that the coefficients ck can be chosen arbitrarily. However,

the functionals become more meaningful when we choose the

coefficients to emphasize certain structural characteristics of the

underlying graphs. Also, this remark implies that the notion of

graph entropy is not unique because each measure takes different

structural features into account. Further, this can be understood by

the fact that a vast number of entropy measures have been

developed so far. Importantly, we point out that the measures we

explore in this paper are notably different to the notion of graph

entropy introduced by Körner [21]. The graph entropy due to

Körner [21] is rooted in information theory and based on the

known stable set problem. To study more related work, survey

papers on graph entropy measures have been authored by

Dehmer et al. [3] and Simonyi [33].

Results and Discussion

Closed Form Expressions and Explicit Information
Inequalities

When calculating the structural information content of graphs,

it is evident that the determination of closed form expressions

using arbitrary networks is critical. In this section, we consider

simple graphs namely trees with smallest and largest diameter and

compute the measures defined in the previous section. By using

arbitrary connected graphs, we also derive explicit information

inequalities using the measures based on information functionals

(stated in the previous section).

Stars. Star graphs, S(n), have been of considerable interest

because they represent trees with smallest possible diameter

(r(S(n))~2) among all trees on n vertices.

Now, we present closed form expressions for the graph entropy

by using star graphs. For this, we apply the information-theoretic

measures based on information functionals defined in the

preliminaries section.

Theorem 4 Let S(n) be a star on n vertices. Let f [ ffP,f ’P,fC ,f ’Cg
be the information functionals as defined before. The information measure is

given by

If (S(n))~{x log2 x{(1{x) log2

1{x

n{1

� �
, ð10Þ

where x is the probability of the central vertex of S(n):

x~
1

1z(n{1)a(c2{c1)(n{2)
, ð11Þ

if f ~fP.

x~
c1

2c1zc2(n{2)
, ð12Þ

if f ~f ’P.

x~
1

1z(n{1)ac1
n{2
n{1

� �
zc2

1
2n{3

� � , ð13Þ

if f ~fC .

x~
c1

c1(1z(n{1)2)zc2
(n{1)2

2n{3

 ! , ð14Þ

if f ~f ’C .

Proof:

N Consider f (v)~fP(v)~a

Pr(S(n))

j~1
cj jSj (v;S(n))j

, where aw0 and

ckw0 for 1ƒkƒr(S(n)).

We get,

f (v)~
ac1(n{1), if v is the central vertex,

ac1zc2(n{2), otherwise:

(
ð15Þ

Therefore,

X
v [V (S(n))

f (v)~ac1(n{1) 1z(n{1)a(c2{c1)(n{2)
� �

: ð16Þ

Hence,

pf (v)~

1

1z(n{1)a(c2{c1)(n{2)
, if v is the central vertex,

a(c2{c1)(n{2)

1z(n{1)a(c2{c1)(n{2)
, otherwise:

8>>><
>>>:

ð17Þ

By substituting the value of pf (v) in If (S(n)) and simplifying, we

get

If (S(n))~{x log2 x{(1{x) log2

1{x

n{1

� �
,

x~
1

1z(n{1)a(c2{c1)(n{2)
:

N Consider f (v)~f ’P(v)~
Pr(S(n))

j~1

cj jSj(v; S(n))j, where ckw0 for

1ƒkƒr(S(n)).

We get,

f (v)~
c1(n{1), if v is the central vertex,

c1zc2(n{2), otherwise:

�
ð18Þ

Information Inequalities for Networks

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31395



Therefore,

X
v [V (S(n))

f (v)~(n{1)½2c1zc2(n{2)�: ð19Þ

Hence,

pf (v)~

c1

2c1zc2(n{2)
, if v is the central vertex,

c1zc2(n{2)

(n{1)½2c1zc2(n{2)� , otherwise:

8>><
>>: ð20Þ

By substituting the value of pf (v) in If (S(n)) and simplifying, we get

If (S(n))~{x log2 x{(1{x) log2

1{x

n{1

� �
, x~

c1

2c1zc2(n{2)
:

N Consider the case f (v)~fC(v)~a

Pn

j~1
cj b(v;LS(n)(v,j))

, where

aw0, ckw0 for 1ƒkƒr(S(n)).

b(v; LS(n)(v,j))~
1P

x [LS(n)(v,j)

d(v,x)
, ð21Þ

denotes the closeness centrality measure.

Then, we yield

f (v)~
ac1( 1

n{1
)
, if v is the central vertex,

ac1zc2( 1
2n{3

)
, otherwise:

8<
: ð22Þ

Therefore,

X
v [V(S(n))

f (v)~ac1( 1
n{1

)
z(n{1)ac1zc2( 1

2n{3
): ð23Þ

Hence,

pf (v)~

1

1z(n{1)ac1(n{2
n{1

)zc2( 1
2n{3

)
, if v is the central vertex,

ac1(n{2
n{1

)zc2( 1
2n{3

)

1z(n{1)ac1(n{2
n{1

)zc2( 1
2n{3

)
, otherwise:

8>>><
>>>:

ð24Þ

By substituting the value of pf (v) in If (S(n)) and simplifying, we

obtain

If (S(n))~{x log2 x{(1{x) log2

1{x

n{1

� �
:

where x~ 1

1z(n{1)ac1(n{2
n{1

)zc2( 1
2n{3

)
.

N Consider f (v)~f ’C(v)~
Pn
j~1

cjb(v; LS(n)(v,j)), where ckw0 for

1ƒkƒr(S(n)). b is defined via Equation (18). We get,

f (v)~
c1(

1

n{1
), if v is the central vertex,

c1zc2(
1

2n{3
), otherwise:

8><
>: ð25Þ

Therefore,

X
v [V (S(n))

f (v)~c1
1z(n{1)2

n{1

 !
zc2

n{1

2n{3

� �
: ð26Þ

Thus,

pf (v)~

c1

c1(1z(n{1)2)zc2( (n{1)2

2n{3
)
,

if v is the central

vertex,

c1zc2( 1
2n{3

)

c1( 1z(n{1)2

n{1
)zc2( n{1

2n{3
)
, otherwise:

8>>>><
>>>>:

ð27Þ

By substituting the value of pf (v) in If (S(n)) and simplifying,

we get

If (S(n))~{x log2 x{(1{x) log2

1{x

n{1

� �
, ð28Þ

where x~
c1

c1(1z(n{1)2)zc2(
(n{1)2

2n{3
)

.

By choosing particular values for the parameters involved, we

get concrete measures using the above stated functionals. For

example, consider the functional f ~fP’ and set

c1 : ~r(S(n))~2 and c2 : ~r(S(n)){1~1: ð29Þ

If we plug in those values in Equations (10) and (11), we easily

derive

IfP’ (S(n))~
2

nz2
log2

nz2

2

� �
z

n

nz2
log2

(nz2)(n{1)

n

� �
: ð30Þ

Paths. Let Pn be the path graph on n vertices. Path graphs

are the only trees with maximum diameter among all the trees on

n vertices, i.e., r(Pn)~n{1. We remark that to compute a closed

form expression even for path graphs, is not always simple. To

illustrate this, we present the concrete information measure

IfP’ (Pn) by choosing particular values for its coefficients.

Lemma 5 Let Pn be a path graph and consider the functional f ~fP’

defined by Equation (6). We set c1 : ~r(Pn)~n{1, c2 : ~

r(Pn){1, . . . ,cr : ~1. We yield

IfP’ Pnð Þ~3
Xqn=2r

r~1

n2zn 2r{3ð Þ{2r r{1ð Þ
n n{1ð Þ 2n{1ð Þ

� �

log2

2n n{1ð Þ 2n{1ð Þ
3n2z3n 2r{3ð Þ{6r r{1ð Þ

� �
:

ð31Þ

Proof: Let Pn be a path graph trivially labeled by v1, v2, . . . ,vn

(from left to right).

Given f (v)~fP’(v)~
Pn{1

j~1 cj jSj(v; Pn)j with cj~n{j for

1ƒjƒn{1.

By computing f , when v [ fvr,vnz1{rg, for 1ƒrƒq
n

2
r, we infer

f (v)~
Xr{1

j~1

2cjz
Xn{r

j~r

cj , ð32Þ
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~2
Xr{1

j~1

(n{j)z
Xn{r

j~r

(n{j), ð33Þ

~
1

2
½n2zn(2r{3){2r(r{1)�: ð34Þ

Therefore,

Xn

i~1

f (vi)~2
Xn{1

j~1

(n{j)cj~
1

3
n(n{1)(2n{1), ð35Þ

and, hence,

pf (v)~
3

2

n2zn(2r{3){2r(r{1)

n(n{1)(2n{1)
, ð36Þ

where v [ fvr,vnz1{rg, for 1ƒrƒq
n

2
r. By substituting these

quantities into If (Pn) yields the desired result.

Note that when using the same measure with arbitrary

coefficients, its computation is intricate. In this regard, we present

explicit bounds or information inequalities for any connected

graph if the measure is based on the information functional using

j-spheres. That is, either f ~fP or f ~fP’.

General connected graphs. Theorem 6 Given any connected

graph G~(V ,E) on n vertices and let f ~fP given by Equation (5). Then,

we infer the following bounds:

If (G)ƒ
aX log2 (n:aX ), if aw1,

a{X log2 (n:a{X ), if av1:

�
: ð37Þ

If (G)§

aX log2 n:aXð Þ, if
1

n

� � 1
X
ƒaƒ1,

a{X log2 n:a{Xð Þ, if 1ƒaƒn
1
X ,

0, if 0vaƒ

1

n

� � 1
X

or a§n
1
X :

8>>>>>>>><
>>>>>>>>:

ð38Þ

where X~ cmax{cminð Þ n{1ð Þ, ð38Þ

with cmax~maxfcj : 1ƒjƒr(G)g, ð40Þ

and cmin~minfcj : 1ƒjƒr(G)g: ð41Þ

Proof: Consider f (v)~fP(v)~a

Pr(G)

j~1
cj jSj (v;G)j

, where aw0 and

ckw0 for 1ƒkƒr(G). Let cmax~maxfcj : 1ƒjƒr(G)g and

cmin~minfcj : 1ƒjƒr(G)g. Recall (see Remark (2)) that, when

either a~1 or when all the coefficients (ck) are equal, the

information functional becomes constant and, hence, the value of

If (G) equals log2 n. In the following, we will discuss the cases aw1
and av1, and we also assume that not all ck are equal.

Case 1: aw1: We first construct the bounds for pf (v) as shown

below:

f (v)~a

Pr(G)

j~1

cj jSj (v;G)j
ð42Þ

ƒa(n{1)cmax : ð43Þ

Similarly,

f (v)§a(n{1)cmin : ð44Þ

Therefore, from the Equations (43) and (44), we get

na(n{1)cminƒ

X
v [V

f (v)ƒna(n{1)cmax : ð45Þ

Hence,

a(n{1)cmin

n:a(n{1)cmax
ƒpf (v)ƒ

a(n{1)cmax

n:a(n{1)cmin
: ð46Þ

Let X~(n{1)½cmax{cmin�. Then, the last inequality can be

rewritten as,

1

n:aX
ƒpf (v)ƒ

aX

n
: ð47Þ

Upper bound for If (G):

Since Xw0 and aw1, we have
1

n:aX
v1. Hence, we have

{ log2

1

n:aX
§0 and 0v{ log2 pf (v)ƒ{ log2

1

n:aX
. Thus we

get,

{pf (v) log2 pf (v)ƒ{
aX

n
log2

1

n:aX
: ð48Þ

By adding over all the vertices of V , we obtain

If (G)ƒ{aX log2

1

n:aX
~aX log2 (n:aX ): ð49Þ

Lower bound for If (G):

We have to distinguish two cases, either aX
vn or aX

§n.

Case 1.1: 1vavn1=X . We yield { log2 pf (v)§{ log2

aX

n
w0.

Therefore,

{pf (v) log2 pf (v)§{
1

n:aX
log2

aX

n
: ð50Þ

By adding over all the vertices of V , we get

If (G)§{
1

aX
log2

aX

n
~a{X log2 (n:a{X ): ð51Þ

Case 1.2: a§n1=X .

In this case, we obtain log2

aX

n
§0 and log2 pf (v)v0ƒ log2

aX

n
.

Therefore, by using these bounds in Equation (4), we infer

If (G)w0.

Case 2: av1:

Consider Equation (42). We get the following bounds for f (v):

a(n{1)cmax
ƒf (v)ƒa(n{1)cmin : ð52Þ

Therefore,

Information Inequalities for Networks
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na(n{1)cmax
ƒ

X
v [V

f (v)ƒna(n{1)cmin : ð53Þ

Hence,

a(n{1)cmax

n:a(n{1)cmin
ƒpf (v)ƒ

a(n{1)cmin

n:a(n{1)cmax
: ð54Þ

Set X~(n{1)½cmax{cmin�. Then, the last inequality can be

rewritten as,

aX

n
ƒpf (v)ƒ

1

n:aX
: ð55Þ

Upper bound for If (G):

Since Xw0 and av1, we have
aX

n
ƒ1. Hence, we have

{ log2

aX

n
§0 and 0v{ log2 pf (v)ƒ{ log2

aX

n
. Thus, we obtain,

{pf (v) log2 pf (v)ƒ{
1

n:aX
log2

aX

n
: ð56Þ

By adding over all the vertices of V , we get

If (G)ƒ{
1

aX
log2

aX

n
~a{X log2 (n:a{X ): ð57Þ

Lower bound for If (G):

Again, we consider two cases, either aX
ƒ

1

n
or aX

w

1

n
.

Case 2.1: 0vaƒ(
1

n
)1=X .

In this case, we have log2

1

n:aX
§0 and log2 pf (v)v0ƒ

log2

1

n:aX
. Therefore, by substituting these bounds in the Equation

(4), we obtain If (G)w0.

Case 2.2: (
1

n
)1=X

vav1.

We have { log2 pf (v)§{ log2

1

naX
w0. Therefore,

{pf (v) log2 pf (v)§{
aX

n
log2

1

n:aX
: ð58Þ

By adding over all the vertices of V , we get

If (G)§{aX log2

1

n:aX
~aX log2 (n:aX ): ð59Þ

Hence, the theorem follows.

In the next theorem, we obtain explicit bounds when using the

information functional given by Equation (6).

Theorem 7 Given any connected graph G~(V ,E) on n vertices and let

f ~f ’P be given as in Equation (6). We yield

If (G)ƒ
cmax

cmin

log2

n:cmax

cmin

� �
, ð60Þ

If (G)§

0, if nƒ

cmax

cmin

,

cmin

cmax
log2

n:cmin

cmax

� �
, if nw

cmax

cmin

,

8>><
>>: ð61Þ

with cmax~maxfcj : 1ƒjƒr(G)g, ð62Þ

and cmin~minfcj : 1ƒjƒr(G)g: ð63Þ

Proof: Consider f (v)~f ’P(v)~
Pr(G)

j~1

cj jSj(v; G)j, where ckw0

for 1ƒkƒr(G). Let cmax~maxfcj : 1ƒjƒr(G)g and cmin~

minfcj : 1ƒjƒr(G)g. We have,

f (v)~
Xr(G)

j~1

cj jSj(v; G)jƒ(n{1)cmax: ð64Þ

Similarly,

f (v)§(n{1)cmin: ð65Þ

Therefore, from the Equations (64) and (65), we get

n(n{1)cminƒ

X
v [V

f (v)ƒn(n{1)cmax: ð66Þ

Hence,

cmin

n:cmax
ƒpf (v)ƒ

cmax

n:cmin

: ð67Þ

Upper bound for If (G):

Since
cmin

n:cmax
ƒ1, we have { log2

cmin

n:cmax
§0 and 0v

{ log2 pf (v)ƒ{ log2

cmin

n:cmax
. Hence,

{pf (v) log2 pf (v)ƒ{
cmax

n:cmin

log2

cmin

n:cmax

: ð68Þ

By adding over all the vertices of V , we obtain

If (G)ƒ{
cmax

cmin

log2

cmin

n:cmax
~

cmax

cmin

log2

n:cmax

cmin

: ð69Þ

Lower bound for If (G):

Let us distinguish two cases:

Case 1: cmax§n:cmin.

We have log2

cmax

n:cmin

§0 and log2 pf (v)v0ƒ log2

cmax

n:cmin

.

Therefore, by applying these bounds to Equation (4), we obtain

If (G)w0.

Case 2: cmaxvn:cmin.

In this case, we have { log2 pf (v)§{ log2

cmax

n:cmin

w0. There-

fore,

{pf (v) log2 pf (v)§{
cmin

n:cmax

log2

cmax

n:cmin

: ð70Þ

By adding over all the vertices of V , we obtain the lower bound for

If (G) given by
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If (G)§{
cmin

cmax

log2

cmax

n:cmin

~
cmin

cmax

log2

n:cmin

cmax

: ð71Þ

Hence, the theorem follows.

Implicit Information Inequalities
Information inequalities describe relations between information

measures for graphs. An implicit information inequality is a special

type of an information inequality where the entropy of the graph is

estimated by a quantity that contains another graph entropy

expression. In this section, we will present some implicit

information inequalities for entropy measures based on informa-

tion functionals. In this direction, a first attempt has been done by

Dehmer et al. [23,24,26]. Note that Dehmer et al. [23,26] started

from certain conditions on the probabilities when two different

information functionals f and f � are given. In contrast, we start

from certain assumptions which the functionals themselves should

satisfy and, finally, derive novel implicit inequalities. Now, given

any graph G~(V ,E),jV j~n. Let If1
(G) and If2

(G) be two mean

information measures of G defined using the information

functionals f1 and f2 respectively. Let us further define another

functional f (v)~c1f1(v)zc2f2(v), v [V . In the following, we will

study the relation between the information measure If (G) and the

measures If1
(G) and If2

(G).

Theorem 8 Suppose f1(v)ƒf2(v), for all v [V , then the information

measure If (G) can be bounded by If1
(G) and If2

(G) as follows:

If (G)§
(c1zc2)A1

A
(If1

(G){ log2

c1A1

A
){

c2(c1zc2)A2

c1Aln(2)
, ð72Þ

If (G)ƒ
(c1zc2)A2

A
(If2

(G){ log2

c2A2

A
), ð73Þ

where A~c1A1zc2A2, A1~
P

v [V

f1(v), and A2~
P

v [V

f2(v).

Proof: Given f (v)~c1f1(v)zc2f2(v). Let A1~
P

v [V f1(v) and

A2~
P

v [V f2(v). Therefore
P

v [V f (v)~c1A1zc2A2~ : A. The

information measures of G with respect to f1 and f2 are given by

If1
(G)~{

X
v [V

pf1
(v) log2 pf1

(v), ð74Þ

where pf1
(v)~

f1(v)P
v [V f1(v)

~
f1(v)

A1
,

If2
(G)~{

X
v [V

pf2
(v) log2 pf2

(v), ð75Þ

where pf2
(v)~

f2(v)P
v [V f2(v)

~
f2(v)

A2
.

Now consider the probabilities,

pf (v)~
f (v)P

v [V f (v)
~

c1f1(v)zc2f2(v)

A
, ð76Þ

~
c1A1

:pf1
(v)zc2A2

:pf2
(v)

A
, ð77Þ

ƒ

(c1zc2)A2
:pf2

(v)

A
,since A1

:pf1
(v)ƒA2

:pf2
(v): ð78Þ

Using Equation (77) and based on the fact that pf (v)ƒ1, we get

{ log2 pf (v)~{ log2

c1A1
:pf1

(v)zc2A2
:pf2

(v)

A

� �
§0: ð79Þ

Thus,

{pf (v) log2 pf (v)ƒ{
(c1zc2)A2

:pf2
(v)

A

� �

log2

c1A1
:pf1

(v)zc2A2
:pf2

(v)

A

� �
,

ð80Þ

and

{pf (v) log2 pf (v)ƒ
(c1zc2)A2

A

	 


{pf2
(v) log2 pf2

(v){pf2
(v) log2

c2A2

A

	 


{
(c1zc2)A2pf2

(v)

A

� �
log2 1z

c1A1pf1
(v)

c2A2pf2
(v)

 !
:

ð81Þ

Since the last term in the above inequality is positive, we get

{pf (v) log2 pf (v)ƒ
(c1zc2)A2

A

	 


{pf2
(v) log2 pf2

(v){pf2
(v) log2

c2A2

A

	 

:

ð82Þ

By adding up the above inequalities over all the vertices of V , we

get the desired upper bound. From Equation (77), we also get a

lower bound for pf (v), given by

pf (v)§
(c1zc2)A1

:pf1
(v)

A
,since A1

:pf1
(v)ƒA2

:pf2
(v): ð83Þ

Now proceeding as before with the above inequality for pf (v), we

obtain

{pf (v) log2 pf (v)§{
(c1zc2)A1

:pf1
(v)

A

� �

log2

c1A1
:pf1

(v)zc2A2
:pf2

(v)

A

� �
:

ð84Þ

{pf (v) log2 pf (v)§
(c1zc2)A1

A

	 


{pf1
(v) log2 pf1

(v){pf1
(v) log2

c1A1

A

	 


{
(c1zc2)A1pf1

(v)

A

� �
log2 1z

c2A2pf2
(v)

c1A1pf1
(v)

 !
:

ð85Þ

By using the concavity property of the logarithm, that is,

log2 (1z
x

y
)ƒ

1

ln(2)
(
x

y
), we yield
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{pf (v) log2 pf (v)§
(c1zc2)A1

A

	 


{pf1
(v) log2 pf1

(v){pf1
(v) log2

c1A1

A

	 


{
(c1zc2)

A
:
c2A2pf2

(v)

c1 ln(2)
:

ð86Þ

By adding the above inequality over all the vertices of V , we get

the desired lower bound. This proves the theorem.

Corollary 9 The information measure If (G), for f ~f1zf2, is

bounded by If1
(G) and If2

(G) as follows:

If (G)§
2A1

A1zA2

If1
(G){ log2

A1

A1zA2

� �
{

2A2 log2 e

(A1zA2)
, ð87Þ

If (G)ƒ
2A2

A1zA2
If2

(G){ log2

A2

A1zA2

� �
: ð88Þ

Proof: Set c1~c2 in Theorem (8), then the corollary follows.

Corollary 10 Given two information functionals, f1, f2 such that

f1(v)ƒf2(v), Vv [V . Then

If1
(G)ƒ

A2

A1

If2
(G)z log2

A1

A1zA2

{
A2

A1

log2

A2

A1zA2

z
A2 log2 e

A1
:

ð89Þ

Proof: Follows from Corollary (9).

The next theorem gives another bound for If in terms of both

If1
and If2

by using the concavity property of the logarithmic

function.

Theorem 11 Let f1(v) and f2(v) be two arbitrary functionals defined

on a graph G. If f (v)~c1f1(v)zc2f2(v) for all v [V , we infer

If (G)§
c1A1

A
If1

(G){ log2

c1A1

A

	 

z

c2A2

A

If2
(G){ log2

c2A2

A

	 

{ log2 e:

ð90Þ

and

If (G)ƒ
c1A1

A
If1

(G){ log2

c1A1

A

	 

z

c2A2

A

If2
(G){ log2

c2A2

A

	 

,

ð91Þ

where A~c1A1zc2A2, A1~
P

v [V

f1(v) and A2~
P

v [V

f2(v).

Proof: Starting from the quantities for pf (v) based on Equation

(77), we obtain

pf (v) log2 pf (v)~
c1A1

:pf1
(v)zc2A2

:pf2
(v)

A

� �

log2

c1A1
:pf1

(v)zc2A2
:pf2

(v)

A

� �
,

ð92Þ

~
c1A1

:pf1
(v)

A
log2

c1A1
:pf1

(v)

A

� �
1z

c2A2
:pf2

(v)

c1A1
:pf1

(v)

 !" #

z
c2A2

:pf2
(v)

A
log2

c2A2
:pf2

(v)

A

� �
1z

c1A1
:pf1

(v)

c2A2
:pf2

(v)

 !" #
,

ð93Þ

~
c1A1

:pf1
(v)

A
log2

c1A1
:pf1

(v)

A

� �
z log2 1z

c2A2
:pf2

(v)

c1A1
:pf1

(v)

 !( )

z
c2A2

:pf2
(v)

A
log2

c2A2
:pf2

(v)

A

� �
z log2 1z

c1A1
:pf1

(v)

c2A2
:pf2

(v)

 !( )
,

ð94Þ

~
c1A1

A
pf1

(v) log2 pf1
(v)zpf1

(v) log2

c1A1

A

� �

z
c2A2

A
pf2

(v) log2 pf2
(v)zpf2

(v) log2

c2A2

A

� �

z
c1A1pf1

(v)

A
log2 1z

c2A2
:pf2

(v)

c1A1
:pf1

(v)

 !

z
c2A2pf2

(v)

A
log2 1z

c1A1
:pf1

(v)

c2A2
:pf2

(v)

 !
:

ð95Þ

Since each of the last two terms in Equation (95) is positive, we get

a lower bound for pf (v) log2 pf (v), given by

pf (v) log2 pf (v)§
c1A1

A
pf1

(v) log2 pf1
(v)zpf1

(v) log2

c1A1

A

� �

z
c2A2

A
pf2

(v) log2 pf2
(v)zpf2

(v) log2

c2A2

A

� �
:

ð96Þ

Applying the last inequality to Equation (4), we get the upper

bound as given in Equation (91). By further applying the inequality

log2 (1z
x

y
)ƒ

1

ln(2)
(
x

y
) to Equation (95), we get an upper bound

for pf (v) log2 pf (v), given by

pf (v) log2 pf (v)ƒ
c1A1

A
pf1

(v) log2 pf1
(v)zpf1

(v) log2

c1A1

A

� �

z
c2A2

A
pf2

(v) log2 pf2
(v)zpf2

(v) log2

c2A2

A

� �

z
c1A1pf1

(v)

A ln(2)

c2A2pf2
(v)

c1A1pf1
(v)

 !
z

c2A2pf2
(v)

A ln(2)

c1A1
:pf1

(v)

c2A2
:pf2

(v)

 !
:

ð97Þ

Therefore,

pf (v) log2 pf (v)ƒ
c1A1

A
pf1

(v) log2 pf1
(v)zpf1

(v) log2

c1A1

A

� �

z
c2A2

A
pf2

(v) log2 pf2
(v)zpf2

(v) log2

c2A2

A

� �

z
1

ln(2)
:
c1A1pf1

(v)zc2A2pf2
(v)

A
: ð98Þ
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Finally, we now apply this inequality to Equation (4) and get the

lower bound as given in Equation (90).

The next theorem is a straightforward extension of the previous

statement. Here, an information functional is expressed as a linear

combination of k arbitrary information functionals.

Theorem 12 Let k§2 and f1(v),f2(v), . . . ,fk(v) be arbitrary

functionals defined on a graph G. If1
(G),If2

(G), . . . ,Ifk
(G) are the

corresponding information contents. If f (v)~c1f1(v)zc2f2(v)z � � �z
ckfk(v) for all v [V , we infer

If (G)§
Xk

i~1

ciAi

A
Ifi

(G){ log2

ciAi

A

	 
� �
{(k{1) log2 e, ð99Þ

and

If (G)ƒ
Xk

i~1

ciAi

A
Ifi

(G){ log2

ciAi

A

	 
� �
, ð100Þ

where A~
Pk

i~1 ciAi, Aj~
P

v [V

fj(v) for 1ƒjƒk.

Union of Graphs. In this section, we determine the entropy

of the union of two graphs. Let G1~(V1,E1) and G2~(V2,E2) be

two arbitrary connected graphs on n1 and n2 vertices, respectively.

Let f be an information functional defined on these graphs

denoted by fG1
, fG2

and let If (G1) and If (G2) be the information

measures on G1 and G2 respectively.

Theorem 13 Let G~(V ,E)~G1|G2 be the disjoint union of the

graphs G1 and G2. Let f be an arbitrary information functional. The

information measure If (G) can be expressed in terms of If (G1) and If (G2)
as follows:

If (G)~
A1

A
If (G1){ log2

A1

A

� �
z

A2

A
If (G2){ log2

A2

A

� �
, ð101Þ

where A~A1zA2 with A1~
P

v [V1

fG1
(v) and A2~

P
v [V2

fG2
(v).

Proof: Let f be the given information functional. Let

A1~
P

v [V1

fG1
(v) and A2~

P
v [V2

fG2
(v). The information measures

of G1 and G2 are given as follows:

If (G1)~{
X

v [V1

pG1
(v) log2 pG1

(v), ð102Þ

where pG1
(v)~

fG1
(v)

A1
, and

If (G2)~{
X

v [V2

pG2
(v) log2 pG2

(v), ð103Þ

where pG2
(v)~

fG2
(v)

A2
: For v [V ,

f (v)~
fG1

(v), if v [V1,

fG2
(v), if v [V2:

(
ð104Þ

Hence,

X
v [V

f vð Þ~
X

v [V1

f vð Þz
X

v [V2

f vð Þ~A1zA2~ : A: ð105Þ

pG(v)~
f vð ÞP

v [V f vð Þ~

fG1
vð Þ

A
, if v [V1,

fG2
vð Þ

A
, if v [V2:

8>><
>>: ð106Þ

~

A1

A
:pG1

vð Þ, if v [V1,

A2

A
:pG2

vð Þ, if v [V2:

8><
>: ð107Þ

Using these quantities to determine If Gð Þ, we obtain

If (G) ~{
P

v [V1

A1
:pG1

vð Þ
A

log2 (
A1
:pG1

vð Þ
A

)

{
P

v [V2

A2
:pG2

vð Þ
A

log2 (
A2
:pG2

vð Þ
A

),

ð108Þ

and

If (G)~{
A1

A

X
v [V1

pG1
vð Þ log2 pG1

vð ÞzpG1
vð Þ log2 (

A1

A
Þ

� �

{
A2

A

X
v [V2

pG2
vð Þ log2 pG2

(v)zpG2
vð Þ log2 (

A2

A
Þ

� �
:

ð109Þ

Upon simplification, we get the desired result.

Also, we immediately obtain a generalization of the previous

theorem by taking k-disjoint graphs into account.

Theorem 14 Let G1~(V1,E1), G2~(V2,E2), . . . ,Gk~(Vk,Ek)
be k arbitrary connected graphs on n1,n2, . . . ,nk vertices, respectively. Let f

be an information functional defined on these graphs denoted by

fG1
,fG2

, . . . ,fGk
. Let G~(V ,E)~G1|G2| � � �|Gk be the disjoint

union of the graphs G1,G2, . . . ,Gk for k§2. The information measure

If (G) can be expressed in terms of If (G1),If (G2), . . ., If (Gk) as follows:

If (G)~
Xk

i~1

Ai

A
If (Gi){ log2

Ai

A

� �� �
, ð110Þ

where A~A1zA2z � � �zAk with Ai~
P

v [V1

fGi
(v) for 1ƒiƒk.

Join of Graphs. Let G1~(V1,E1) and G2~(V2,E2) be two

arbitrary connected graphs on n1 and n2 vertices, respectively. The

join of the graphs G1zG2 is defined as the graph G~(V ,E) with

vertex set V~V1|V2 and the edge set E~E1|E2|
f(x,y) : x [V1,y [V2g. Let f ~fP be the information functional

(given by Equation (5)) based on the j-sphere functional

(exponential) defined on these graphs and denoted by fG1
, fG2

.

Let If (G1) and If (G2) be the information measures on G1 and G2

respectively.

Theorem 15 Let G~(V ,E)~G1zG2 be the join of the graphs

G1~(V1,E1) and G2~(V2,E2) with n1zn2 vertices. The information

measure If (G) can then be expressed in terms of If (G1) and If (G2) as follows:
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If (G)~
A1ac1n2

A
If (G1){ log2

A1ac1n2

A

� �

z
A2ac1n1

A
If (G2){ log2

A2ac1n2

A

� �
,

ð111Þ

where fH (v)~a

Pr(H)
j~1

cj Sj (v;H)
for H [ fG1,G2,Gg, cjw0 and A~

A1ac1n2zA2ac1n1 with A1~
P

v [V1
fG1

(v) and A2~
P

v [V2
fG2

(v).

Proof: Let G~G1zG2 be the join of two connected graphs

G1 and G2. Here, r(G)~maxfr(G1),r(G2)g. Let fH (v)~

a

P
j~1

r(H)cj Sj (v;H)
be the information functional defined by using

the j-sphere functional on H [ fG,G1,G2g. Let A1~
P

v [V1

fG1
(v)

and A2~
P

v [V2

fG2
(v). The information measures of G1 and G2 are

given as follows:

If (G1)~{
X

v [V1

pG1
(v) log2 pG1

(v), ð112Þ

where pG1
(v)~

fG1
(v)

A1
, and

If (G2)~{
X

v [V2

pG2
(v) log2 pG2

(v), ð113Þ

where pG2
(v)~

fG2
(v)

A2

: For v [V ,

f (v)~
a

c1n2z
Pr(G1)

j~1
cj Sj (v;G1)

, if v [V1,

a
c1n1z

Pr(G2)

j~1
cj Sj (v;G2)

, if v [V2:

8><
>: ð114Þ

~
ac1n2 fG1

(v), if v [V1,

ac1n1 fG2
(v), if v [V2:

(
ð115Þ

Hence,

X
v [V

f (v)~
X

v [V1

f (v)z
X

v [V2

f (v)~A1ac1n2zA2ac1n1~ : A, ð116Þ

pG(v)~
fG(v)P
v [V f (v)

~

ac1n2 fG1
(v)

A
, if v [V1,

ac1n1 fG2
(v)

A
, if v [V2:

8>><
>>: ð117Þ

~

ac1n2 A1

A
:pG1

(v), if v [V1,

ac1n1 A2

A
:pG2

(v), if v [V2:

8><
>: ð118Þ

Using those entities to determine If (G), we infer

If (G) ~{
P

v [V1

ac1n2 A1
:pG1

(v)

A
log2 (

ac1n2 A1
:pG1

(v)

A
)

{
P

v [V2

ac1n1 A2
:pG2

(v)

A
log2 (

ac1n1 A2
:pG2

(v)

A
),

ð119Þ

and

If (G) ~{
ac1n2 A1

A

X
v [V1

pG1
(v) log2 pG1

(v)zpG1
(v) log2

ac1n2 A1

A

� �� �

{
ac1n1 A2

A

X
v [V2

pG2
(v) log2 pG2

(v)zpG2
(v) log2

ac1n1 A2

A

� �
:

ð120Þ

Upon simplification, we get the desired result.

If we consider the linear j-sphere functional f ’P (see Equation

(6)), to infer an exact expression for the join of two graphs as in

Theorem (15) is an intricate problem. By Theorem (16) and

Theorem (17), we will now present different bounds in terms of

If ’P (G1) and If ’P (G2).

Theorem 16 Let G~(V ,E)~G1zG2 be the join of the graphs

G1~(V1,E1) and G2~(V2,E2) on n1zn2 vertices. Then, we yield

If Gð Þ§ A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
2c1n1n2

A ln 2ð Þ ,

ð121Þ

where fH (v)~
Pr(H)

j~1 cjSj(v; H) for H [ fG1,G2,Gg, cjw0 and A~

2c1n1n2zA1zA2 with A1~
P

v [V1
fG1

(v) and A2~
P

v [V2
fG2

(v).

Proof: Let A1~
P

v [V1

fG1
(v) and A2~

P
v [V2

fG2
(v). The informa-

tion measures of G1 and G2 are given as follows:

If (G1)~{
X

v [V1

pG1
(v) log2 pG1

(v), ð122Þ

where pG1
(v)~

fG1
(v)

A1
, and

If (G2)~{
X

v [V2

pG2
(v) log2 pG2

(v), ð123Þ

where pG2
(v)~

fG2
(v)

A2
: For v [V ,

f (v)~

c1n2z
Pr(G1)

j~1

cjSj(v; G1), if v [V1,

c1n1z
Pr(G2)

j~1

cjSj(v; G2), if v [V2:

8>>>><
>>>>:

ð124Þ

~
c1n2zfG1

vð Þ, if v [V1,

c1n1zfG2
vð Þ, if v [V2:

(
ð125Þ
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Hence,

X
v [V

fG vð Þ~
X

v [V1

fG vð Þz
X

v [V2

fG vð Þ~2c1n1n2zA1zA2~ : A:

ð126Þ

pG vð Þ~ fG vð ÞP
v [V fG vð Þ~

c1n2zfG1
vð Þ

A
, if v [V1,

c1n1zfG2
vð Þ

A
, if v [V2:

8>><
>>: ð127Þ

~

A1
:pG1

vð Þ
A

z
c1n2

A
, if v [V1,

A2
:pG2

vð Þ
A

z
c1n1

A
, if v [V2:

8>><
>>: ð128Þ

Since
c1n2

A
and

c1n1

A
are positive, we get a lower bound for pG vð Þ

given as

pG vð Þ§

pG1
vð Þ:A1

A
, if v [V1,

pG2
vð Þ:A2

A
, if v [V2:

8>><
>>: ð129Þ

To infer a lower bound for the information measure If Gð Þ, we

start from the Equations (128), (129) and obtain

{pG vð Þ log2 pG vð Þ

§

{
pG1

vð Þ:A1

A

� �
log2

pG1
vð ÞA1zc1n2

A

� �
, if v [V1,

{
pG2

vð Þ:A2

A

� �
log2

pG2
vð ÞA2zc1n1

A

� �
, if v [V2:

8>>><
>>>:

ð130Þ

~

{
A1pG1

vð Þ
A

log2

A1pG1
vð Þ

A
1z

c1n2

A1pG1
vð Þ

 !" #
, if v [V1,

{
A2pG2

vð Þ
A

log2

A2pG2
vð Þ

A
1z

c1n1

A2pG2
vð Þ

 !" #
, if v [V2:

8>>>>><
>>>>>:

ð131Þ

~

{
A1

A
pG1

vð Þ log2 pG1
vð ÞzpG1

vð Þ log2

A1

A

� �

{
A1pG1

vð Þ
A

log2 1z
c1n2

A1pG1
vð Þ

 !
, if v [V1,

{
A2

A
pG2

vð Þ log2 pG2
vð ÞzpG2

vð Þ log2

A2

A

� �

{
A2pG2

vð Þ
A

log2 1z
c1n1

A2pG2
vð Þ

 !
, if v [V2:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð132Þ

By using the inequality log2 1z
x

y

� �
ƒ

1

ln 2ð Þ
x

y

� �
and perform-

ing simplification steps, we get,

{pG vð Þ log2 pG vð Þ§

{
A1

A
pG1

vð Þ log2 pG1
vð ÞzpG1

vð Þ log2

A1

A

� �
{

c1n2

A ln 2ð Þ ,

if v [V1,

{
A2

A
pG2

vð Þ log2 pG2
vð ÞzpG2

vð Þ log2

A2

A

� �
{

c1n1

A ln 2ð Þ ,

if v [V2:

8>>>>>>>>><
>>>>>>>>>:

ð133Þ

By adding up the above inequality system (across all the vertices of

V ) and by simplifying, we get the desired lower bound.

Further, an alternate set of bounds can be achieved as follows.

Theorem 17 Let G~ V ,Eð Þ~G1zG2 be the join of the graphs

G1~ V1,E1ð Þ and G2~ V2,E2ð Þ on n1zn2 vertices. Then, we infer

If Gð Þ ƒ

A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2
,

ð134Þ

and

If Gð Þ §

A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2
{ log2 eð Þ,

ð135Þ

where f (v)~
Pr(H)

j~1 cjSj v; Hð Þ for H [ fG1,G2,Gg, cjw0 and A~

2c1n1n2zA1zA2 with A1~
P

v [V1
fG1

(v) and A2~
P

v [V2
fG2

(v).

Proof: Starting from Theorem (16), consider the value of pG(v)
given by Equation (128). By using the quantities for pG(v) to

calculate If (G), we get

If (G) ~{
P

v [V1

A1
:pG1

(v)zc1n2

A

� �
log2

A1
:pG1

(v)zc1n2

A

� �

{
P

v [V2

A2
:pG2

(v)zc1n1

A

� �
log2

A2
:pG2

(v)zc1n1

A

� �
,

ð136Þ

and

If Gð Þ~{
A1

A

X
v [V1

pG1
vð Þ log2 pG1

vð ÞzpG1
vð Þ log2

A1

A

� �

{
A1

A

X
v [V1

pG1
vð Þ log2 1z

c1n2

A1
:pG1

vð Þ

 !

{
c1n2

A

X
v [V1

log2

c1n2

A
z log2 1z

pG1
vð ÞA1

c1n2

� �� �

{
A2

A

X
v [V2

pG2
vð Þ log2 pG2

vð Þz log2

A2

A

� �

{
A2

A

X
v [V2

pG2
vð Þ log2 1z

c1n1

A2
:pG2

vð Þ

 !

{
c1n1

A

X
v [V2

log2

c1n1

A
z log2 1z

pG2
vð ÞA2

c1n1

� �� �
:

ð137Þ
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By simplifying and performing summation, we get

If (G)~
A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2

{
A1

A

X
v [V1

pG1
vð Þ log2 1z

c1n2

A1
:pG1

vð Þ

 !

{
c1n2

A

X
v [V1

log2 1z
pG1

vð ÞA1

c1n2

� �

{
A2

A

X
v [V2

pG2
vð Þ log2 1z

c1n1

A2
:pG2

vð Þ

 !

{
c1n1

A

X
v [V2

log2 1z
pG2

vð ÞA2

c1n1

� �
:

ð138Þ

An upper bound for the measure If (G) can be derived as follows:

If Gð Þƒ A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2
,

ð139Þ

since each of the remaining terms in Equation (138) is positive.

Finally, we infer the lower bound for If (G) as follows. By applying

inequality log2 1z
x

y

� �
ƒ

1

ln 2ð Þ
x

y

� �
to Equation (138), we get

If Gð Þ§ A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2
{

A1

A

X
v [V1

pG1
vð Þ c1n2

ln 2ð Þ:A1
:pG1

vð Þ

 !

{
c1n2

A

X
v [V1

pG1
vð ÞA1

ln 2ð Þ:c1n2
{

A2

A

X
v [V2

pG2
vð Þ c1n1

ln 2ð Þ:A2
:pG2

vð Þ

 !

{
c1n1

A

X
v [V2

pG2
vð ÞA2

ln 2ð Þ:c1n1
:

ð140Þ

Upon simplification, we get

If Gð Þ§ A1

A
If G1ð Þ{ log2

A1

A

� �
z

A2

A
If G2ð Þ{ log2

A2

A

� �

{
c1n1n2

A
log2

c2
1n1n2

A2
{

1

ln 2ð Þ :
ð141Þ

Putting Inequality (139) and Inequality (141) together finishes the

proof of the theorem.

Summary and Conclusion
In this article, we have investigated a challenging problem in

quantitative graph theory namely to establish relations between

graph entropy measures. Among the existing graph entropy

measures, we have considered those entropies which are based on

information functionals. It turned out that these measures have

widely been applicable and useful when measuring the complexity

of networks [3].

In general, to find relations between quantitative network measures

is a daunting problem. The results could be used in various branches

of science including mathematics, statistics, information theory,

biology, chemistry and social sciences. Further, the determination of

analytical relations between measures is of great practical importance

when dealing with large scale networks. Also, relations involving

quantitative network measures could be fruitful when determining

the information content of large complex networks.

Note that our proof technique follows the one proposed in [23]. It

is based on three main steps: Firstly, we compute the information

functionals and in turn, we calculate the probability values for every

vertex of the graph in question. Secondly, we start with certain

conditions for the computed functionals and arrive at a system of

inequalities. Thirdly, by adding up the corresponding inequality

system, we obtain the desired implicit information inequality. Using

this approach, we have inferred novel bounds by assuming certain

information functionals. It is evident that further bounds could be

inferred by taking novel information functionals into account.

Further, we explored relations between the involved information

measures for general connected graphs and for special classes of

graphs such as stars, path graphs, union and join of graphs.

At this juncture, it is also relevant to compare the results proved

in this paper with those proved in [23]. While we derived the

implicit information inequalities by assuming certain properties for

the functionals, the implicit information inequalities derived in

[23] are based on certain conditions for the calculated vertex

probabilities. Interestingly, note that by using Theorem (11) and

Theorem (17), the range of the corresponding bounds is very

small. We inferred that the difference between the upper and

lower bound equals log2 e&1:442695.

As noted earlier, relations between entropy-based measures for

graphs have not been extensively explored so far. Apart from the

results we have gained in this paper, we therefore state a few open

problems as future work:

N To find relations between If (G) and If (H), when H is an induced

subgraph of G and f is an arbitrary information functional.

N To find relations between If (G) and fIf (T1),If (T2), . . . ,
If (Tn)g, where Ti, 1ƒiƒn are so-called generalized trees,

see [34]. Note that it is always possible to decompose an

arbitrary, undirected graph into a set of generalized trees [34].

N To find relations between measures based on information

functionals and the other classical graph measures.

N To derive information inequalities for graph entropy measures

using random graphs.

N To derive statements to judge the quality of information

inequalities.
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