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Abstract

Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and
Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing
number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative
diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans
strains that express full-length, untagged human TDP-43 and FUS in the worm’s GABAergic motor neurons. Transgenic worms
expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal
degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild
type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and
FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the
paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron
toxicity that may be used for rapid genetic and pharmacological suppressor screening.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a late-onset progressive

disease affecting motor neurons ultimately causing fatal paralysis

[1,2]. Most cases are sporadic, but ,10% of patients have an

inherited familial form of the disease. Dominant mutations in

SOD1 (copper/zinc superoxide dismutase 1) account for ,20% of

familial ALS cases and ,1% of sporadic cases [1]. The recent

discovery of mutations in TAR DNA-binding protein-43 (TDP-43)

and Fused in sarcoma (FUS, also named TLS) in both familial

ALS and frontotemporal dementia (FTD) has shifted research into

disease mechanisms and potential therapeutics [3–9].

TDP-43 and FUS are evolutionarily conserved DNA/RNA

binding proteins that shuttle between the nucleus and cytoplasm

having multiple roles including DNA transcription and RNA

processing [3,9–12]. Mutant TDP-43 and FUS (mTDP-43 and

mFUS) are found in cytoplasmic inclusions in the disease state

while the accumulation of wild type TDP-43 and FUS (wtTDP-43

and wtFUS) are observed in an increasing number of disorders

including Alzheimer’s Disease, Parkinson’s Disease and the

polyglutamine diseases (reviewed in [10]). The pathogenic

mechanisms for mutant TDP-43 and FUS age-dependent

neuronal toxicity remain unclear. As of now there is no consensus

whether mutant TDP-43 and FUS employ a loss-of-function, a

gain-of-function, or both in motor neuron cell death.

Since TDP-43 and FUS are evolutionarily conserved we used

the nematode Caenorhabditis elegans to investigate mutant TDP-43

and FUS age-dependent neurodegeneration. We created trans-

genic nematodes that express full-length wild type or mutant TDP-

43 and FUS in the worm’s GABAergic motor neurons. Transgenic

TDP-43 and FUS worms recapitulate a salient feature of ALS;

they display adult-onset, age-dependent, progressive paralysis and

degeneration of motor neurons. Importantly, mTDP-43 and

mFUS, but not wtTDP-43 and wtFUS, strains show the presence

of insoluble proteins in extracts from whole animals suggesting that

protein misfolding may be a primary cause of toxicity. We

introduce a genetically tractable platform to investigate motor

neuron toxicity caused by mutant TDP-43 and FUS that can be

used for suppressor screening.

Results

Transgenic worms expressing full-length human TDP-43
or FUS in motor neurons display age-dependent paralysis

Since ALS is a motor neuron disease we expressed wild type and

mutant human TDP-43 and FUS proteins in the worm’s 26

GABAergic motor neurons with the vesicular GABA transporter

(unc-47) promoter (Figures 1A, B) [13]. Multiple transgenic strains

carrying extrachromosomal arrays were obtained by microinjec-

tion and stable lines with chromosomally-integrated transgenes
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were isolated after UV-irradiation [14]. Both wild type TDP-43

and the ALS-associated A315T mutant proteins were expressed in

transgenic worms as detected by immunoblotting of worm protein

extracts with a human specific TDP-43 antibody (Figure 2A) [4].

Similarly, using a FUS antibody we confirmed the expression of

wild type and the ALS-linked S57D mutant proteins by western

blotting (Figure 2B) [15].

All strains were morphologically normal and showed no adverse

phenotypes during development. However, during adulthood the

transgenic strains begin to display uncoordinated motility

phenotypes that progressed to paralysation. Paralysis was age-

dependent and occurred at higher rate for mTDP-43 and mFUS

worms compared to wtTDP-43 and wtFUS transgenics (Figures 3

A, B). Typically, after 12–13 days on plates 100% of the mTDP-43

and mFUS worms were paralysed while only 20% of the wtTDP-

43 and wtFUS worms were affected. The low rate of paralysis for

wtTDP-43 and wtFUS strains is comparable to what is observed in

transgenics expressing GFP from the same unc-47 promoter

(Figure 3C). Additionally, the paralysis assay is widely used to

study age-dependent degenerative phenotypes and is not observed

in wild type non-transgenic worms until they reach advanced age

(approximately 20 days) [16–18]. Finally, motility defects and

adult onset paralysis have been previously observed in worms with

degenerating GABAergic motor neurons suggesting that mTDP-

43 and mFUS may negatively affect GABAergic neuronal function

and survival [19].

TDP-43 and FUS transgenics have normal lifespans
One of the signs of aging in worms is decreased motility

[18,20]. Thus the progressive paralysis phenotypes observed in

the TDP-43 and FUS transgenics may be due to overall

decreased health from the expression of toxic non-native proteins

leading to accelerated mortality, a part of which is a decline in

motility. We conducted lifespan analyses and observed that all of

the transgenics had lifespans indistinguishable from non-trans-

genic wild type N2 worms (Figures 4A, B and Table S1). These

observations suggest that the paralysis observed in our models is

specific to the expression of TDP-43 and FUS in motor neurons

and not due to secondary effects from general sickness and

reduced lifespan.

TDP-43 and FUS cause neuronal dysfunction
The progressive paralysis phenotypes caused by mTDP-43 and

mFUS suggest there may be motor neuron dysfunction and/or

Figure 1. TDP-43 and FUS transgene constructs. (A) Full-length wild type human TDP-43 and the clinical mutation A315T were cloned into a
vector for expression in motor neurons by the unc-47 promoter and injected into C. elegans. (B) Full-length wild type human FUS and the clinical
mutation S57D were cloned into the unc-47 expression vector and injected into C. elegans. RRM (RNA Recognition Motif), Q/G/S/Y (Glutamine-Glycine-
Serine-Tyrosine-rich region), R/G (Arginine-Glycine-rich region), NLS (Nuclear localization signal).
doi:10.1371/journal.pone.0031321.g001

Figure 2. Expression of human TDP-43 and FUS proteins in C. elegans transgenics. (A) Total protein levels from non-transgenic worms,
human lymphoblast cells and transgenic worms expressing wtTDP-43 or mTDP-43. Staining with a human TDP-43 antibody showed no signal for
non-transgenic worms but a signal corresponding to full-length human TDP-43 at ,45 kDa in size was observed in extracts from human cells and the
two transgenic TDP-43 worm strains. wtTDP-43 and mTDP-43 strains showed comparable protein expression levels. (B) Total protein levels from non-
transgenic worms, human lymphoblast cells and transgenic worms expressing wtFUS or mFUS. Using a human FUS antibody, no signal was detected
in non-transgenic worms, but a signal corresponding to full-length human FUS at ,75 kDa in size was observed in extracts from lymphoblast cells
and the transgenic FUS worm strains. wtFUS and mFUS worms showed identical levels of protein expression. For all experiments actin staining was
used as a loading control and expression ratios 6 SEM of TDP-43 or FUS to actin was determined from 3 independent experiments. Representative
western blots are shown.
doi:10.1371/journal.pone.0031321.g002

C. elegans TDP-43 and FUS Models
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degeneration in these animals. C. elegans body wall muscle cells

receive excitatory (acetylcholine) and inhibitory (GABA) inputs to

coordinate muscle contraction/relaxation and facilitate movement

[21,22]. Body wall muscle activity can be measured indirectly with

the acetylcholinesterase inhibitor aldicarb [23]. Exposure to

aldicarb causes accumulation of acetylcholine at neuromuscular

junctions resulting in hyperactive cholinergic synapses, muscle

hypercontraction, and acute paralysis [23]. Hypersensitivity to

Figure 3. Mutant TDP-43 and FUS cause adult-onset, age-dependent paralysis in C. elegans. Transgenics were monitored from the adult
stage and scored daily for paralysis. (A) mTDP-43 worms show a rate of progressive paralysis that is greater than transgenics expressing wtTDP-43
(P,0.001). (B) Transgenics expressing mFUS become paralysed significantly sooner than wtFUS control transgenics (P,0.001). (C) Transgenic worms
expressing GFP in motor neurons show low levels of paralysis.
doi:10.1371/journal.pone.0031321.g003

Figure 4. TDP-43 and FUS transgenes do not affect lifespan. Beginning at Day 1 of adulthood we tested the lifespans of wild type non-
transgenic N2 worms and transgenics expressing (A) wtTDP-43 and mTDP-43 as well as (B) animals expressing wtFUS and mFUS. Animals expressing
TDP-43 or FUS transgenes had lifespans indistinguishable from N2 worms.
doi:10.1371/journal.pone.0031321.g004
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aldicarb-induced paralysis has been used to identify genes that

increase acetylcholine secretion or decrease inhibitory GABA

signalling [24]. For example mutants lacking genes required for

GABA transmission like the vesicular GABA transporter unc-47

are hypersensitive to aldicarb-induced paralysis [25]. To investi-

gate if our TDP-43 and FUS transgenics had abnormal activity at

the neuromuscular junction we exposed the animals to aldicarb.

We observed that, like unc-47 mutants, mTDP-43 and mFUS

animals were hypersensitive to aldicarb-induced paralysis, while

wtTDP-43 and wtFUS transgenics showed a rate paralysis

identical to non-transgenic N2 worms (Figures 5A, B). These data

suggest that the inhibitory GABA signalling is impaired in mTDP-

43 and mFUS transgenics. unc-47 mutants are classically described

as having a ‘‘shrinker’’ phenotype, where in response to touch the

worm does not move away but instead the whole body undergoes

longitudinal shortening [21], and we observed that the shrinker

phenotype was weakly penetrant in adult mTDP-43 and mFUS

worms. To determine if impaired GABAergic neurotransmission

contributed to the paralysis phenotype we examined two unc-47

loss-of-function mutants and they both showed age-dependent

paralysis, a phenotype not previously reported for unc-47

(Figure 5C) [21]. Thus, mTDP-43 and mFUS cause neuronal

dysfunction in GABA neurons leading to progressive motility

defects culminating in paralysis, a phenotype similar to animals

deficient in GABAergic signalling.

TDP-43 and FUS cause progressive degeneration of
motor neurons

Many neurodegenerative diseases are characterized by neuronal

dysfunction prior to degeneration [26]. To investigate if the

progressive paralysis phenotypes in our TDP-43 and FUS

transgenics were accompanied by neurodegeneration we crossed

all of the transgenics with an integrated reporter (unc-47p::GFP)

that expresses GFP in the same GABAergic motor neurons [13]

(Figures 6A, B). Similar to reports from another C. elegans TDP-43

toxicity model [27], we observed gaps/breaks in motor neuron

processes in TDP-43 and FUS animals compared to animals

expressing unc-47p::GFP alone (Figures 6 C–F). We extended our

analysis by scoring degeneration in living GFP, wtTDP-43,

mTDP-43, wtFUS and mFUS transgenics at days 1, 5 and 9 of

adulthood. We observed that degeneration was age-dependent

and occurred at higher rate for the mTDP-43 and mFUS animals

compared to the wtTDP-43 and wtFUS transgenics (Figure 6G).

Thus our TDP-43 and FUS transgenics mimic the adult-onset,

gradual decline of neuronal function ultimately resulting in age-

dependent motor neuron degeneration seen in diseases like ALS.

Figure 5. Mutant TDP-43 and FUS impair synaptic transmission. (A) Cholinergic neuronal transmission was measured by determining the
onset of paralysis induced by the cholinesterase inhibitor aldicarb. unc-47(e307) mutants and mTDP-43 transgenics were hypersensitive to aldicarb-
induced paralysis compared to either wtTDP-43 transgenics or N2 worms (P,0.001 for unc-47 or mTDP-43 compared to N2 or wtTDP-43 worms). (B)
mFUS transgenics and unc-47(e307) mutants were more sensitive to aldicarb induced paralysis compared to either wtFUS transgenics or N2 controls
(P,0.001). (C) unc-47 mutants grown on regular worm plates showed age-dependent progressive paralysis.
doi:10.1371/journal.pone.0031321.g005
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Mutant TDP-43 and FUS are highly insoluble
Since TDP-43 and FUS are prone to aggregation in several

model systems including C. elegans, we tested if the same was true

for our transgenics [27–33]. To examine if protein misfolding is

more pronounced for strains expressing mTDP-43 and mFUS,

we used a biochemical assay to detect protein aggregation.

Homogenized protein extracts from transgenic worms were

separated into supernatant (detergent-soluble) and pellet (deter-

gent-insoluble) fractions [30]. Immunoblotting the TDP-43

transgenics with a human TDP-43 antibody revealed the

accumulation of mTDP-43 in the pelleted, insoluble fraction,

while wtTDP-43 proteins were predominantly detected in the

supernatant, or soluble fractions (Figure 7A). Similar results were

obtained for the FUS transgenics where immunoblotting with a

human FUS antibody showed that mFUS accumulated in the

insoluble pellet fraction while wtFUS proteins remained soluble

(Figure 7B). These data suggest that mTDP-43 and mFUS

proteins are susceptible to misfolding leading to insolubility and

aggregation that may contribute to motor neuron dysfunction

and degeneration.

Next focusing on the mTDP-43 and mFUS transgenics we fixed

whole unc-47p::GFP;mTDP-43 and unc-47p::GFP;mFUS worms and

respectively stained them with human TDP-43 and human FUS

antibodies. We detected mTDP-43 and mFUS in both the nuclei

and cytoplasm of motor neurons (Figure 8). The cytoplasmic

accumulation of mTDP-43 and mFUS in our transgenics is

consistent with findings in patients suggesting that these proteins

misfold leading to intracellular build-up and aggregation [10].

Finally, we noticed that the fixed mTDP-43 and mFUS showed

gaps or breaks along the GFP labelled neuronal processes similar

to what was observed in living animals (Figures 6D, F). To confirm

that neurodegeneration was not simply due to loss of GFP signals,

we stained whole unc-47p::GFP;mTDP-43 and unc-47p::GFP;mFUS

worms for GABA [22]. We observed that the gaps along the

processes as visualized by a loss of GFP signal likewise

corresponded to a loss of GABA staining (Figure 9). Altogether

these data suggest that the expression of TDP-43 and FUS lead to

degeneration of motor neurons as has been observed for TDP-43

in other worm models [27].

Paralysis phenotypes are enhanced in liquid culture
One goal in developing these transgenics is for use in genetic

and pharmacological suppressor screens. TDP-43 and FUS

transgenics may have decreased inhibitory GABA signalling

ultimately causing muscle hypercontraction leading to paralysis.

When grown on solid media the mTDP-43 and mFUS paralysis

phenotypes manifest over a period of 5 to 13 days (Figure 3).

Worms grown in liquid culture exhibit a stereotypical swimming

motion that is considerably more vigorous than worms crawling on

solid media [34]. We hypothesized that placing worms in liquid

culture would increase activity at the neuromuscular junction and

precipitate paralysis phenotypes much earlier than worms grown

on solid media.

Using age-synchronized worms we transferred young adult

TDP-43 and FUS transgenics to 96-well plates with liquid media

and scored their motility every 2 hours. We observed a rapid

Figure 6. Mutant TDP-43 causes motor neuron degeneration.
Shown are representative photos of living, adult unc-47p::GFP, unc-
47p::GFP;TDP-43, and unc-47p::GFP;FUS transgenics. (A) Image of an entire
unc-47p::GFP worm showing the GABAergic motor neurons. Scale bar
represents 50 mm. (B) High-magnification of the framed area from (A)
showing wild type morphology of motor neurons. Scale bar represents
20 mm. High magnification of motor neurons labelled with unc-47p::GFP
in (C) wtTDP-43, (D) mTDP-43, (E) wtFUS and (F) mFUS transgenics
showing gaps along neuronal processes (arrows). Scale bar represents
10 mm for photos (C) to (F). (G) Quantification of neurodegeneration in
transgenic worms at days 1, 5 and 9 of adulthood. * wtTDP-43 and wtFUS

have a higher rate of neurodegeneration compared to unc-47p::GFP
controls at days 1 and 5 of adulthood (P,0.05). {mTDP-43 transgenics
have a higher rate of neurodegeneration at days 5 and 9 compared to
wtTDP-43 transgenics (P,0.001). {mFUS transgenics show an enhanced
rate of neurodegeneration at days 5 and 9 of adulthood in compared to
wtFUS transgenics (P,0.001).
doi:10.1371/journal.pone.0031321.g006
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onset of paralysis for the mTDP-43 and mFUS lines with

approximately 80% of the population becoming immobile after

6 hours progressing to 100% paralysis after 12 hours (Figure 10A,

B Videos S1, S2, S3, S4). wtTDP-43 and wtFUS animals also

showed increased paralysis but at a much lower rate, with

approximately 20% of the animals immobile after 6 hours

moving to 80% paralysis after 12 hours (Figure 10, Videos S5,

S6, S7, S8). Non-transgenic N2 animals showed a very low rate of

paralysis of approximately 15% after 12 hours (Figure 10C,

Videos S9, S10). In comparison, approximately 50% of

transgenic unc-47p::GFP control animals were paralysed after

12 hours, a rate intermediate between non-transgenic N2 worms

and transgenic wtTDP-43 and wtFUS animals (Figure 10C,

Videos S11, S12). The difference between wild type and mutant

transgenic lines is easy to distinguish, particularly at 6 hours, and

suggests that this phenotype may be used for rapid genetic and

chemical screening.

Discussion

Here we introduce a novel C. elegans platform for investigating

mechanisms of motor neuron toxicity caused by mTDP-43 and

mFUS. To more closely model human disease we chose to express

full-length human TDP-43 and FUS without additional tags since

the inclusion of tags like GFP can mask or enhance the phenotypes

of wild type and mutant proteins [35,36]. Additionally, we

reasoned that restricting expression to a smaller set of neurons

might produce phenotypes less severe, or later, than observed in

other C. elegans models [27,29,30,33]. Since ALS is characterized

by degeneration of the motor neurons we engineered strains

expressing human TDP-43 and FUS in the animal’s 26

GABAergic neurons [13,22]. Additionally, ALS patients show

cortical hyperexcitability that may be due to reduced inhibitory

signalling from the GABAergic system [37,38]. We believe our

transgenic mTDP-43 and mFUS worms recapitulate this patho-

Figure 7. Mutant TDP-43 and FUS are highly insoluble. Shown are representative images from western blotting of the soluble supernatant
and insoluble pellet fractions of protein extracts from transgenic TDP-43 and FUS strains. (A) Blotting against TDP-43 shows that a large proportion of
the TDP-43 signal resides in the insoluble fraction for mTDP-43 worms, while the signal is largely soluble for the wtTDP-43 samples. (B)
Immunoblotting with a human FUS antibody revealed that mFUS proteins primarily resided in the insoluble fractions while wtFUS proteins were
exclusively soluble. Immunoblotting for actin was used as the loading control.
doi:10.1371/journal.pone.0031321.g007

Figure 8. Mutant TDP-43 and FUS aggregate in vivo. (A) Representative image of a fixed unc-47p::GFP;mTDP-43 worm stained with a human
TDP-43 antibody. The green channel shows GFP labelled motor neurons. Antibody staining (red signal) revealed aggregation of TDP-43 signals in
motor neurons. Staining of motor neuron nuclei with DAPI (blue signal) revealed that TDP-43 is both cytoplasmic (single arrowhead) and nuclear
(double arrowhead). Scale bar represents 10 mm for all photos. (B) Staining of unc-47p::GFP;mFUS worms with a human FUS antibody (red signal) and
DAPI (blue signal) revealed cytoplasmic (single arrowhead) and nuclear (double arrowhead) accumulations in motor neurons.
doi:10.1371/journal.pone.0031321.g008

C. elegans TDP-43 and FUS Models
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physiological mechanism; they show decreased GABA staining

and are hypersensitive to the acetylcholinesterase inhibitor

aldicarb, suggesting a reduction of inhibitory GABA input at

neuromuscular junctions [24,25]. In our models sensitivity to

aldicarb can be detected in day 1 adult worms, while paralysis and

motor neuron degeneration can first be detected starting at day 5

of adulthood demonstrating that similar to ALS, neuronal

dysfunction occurs prior to neurodegeneration [39].

Importantly, our transgenic TDP-43 and FUS animals only

begin to show motility defects once they have reached adulthood a

feature absent from other models [27,29,30,33]. Thus our models

mirror a prominent clinical feature of ALS, they display adult-

Figure 9. Decreased GABA staining in mutant TDP-43 and FUS worms. (A) Fluorescent micrograph of a fixed unc-47p::GFP;mTDP-43 worm
stained with a GABA antibody revealed neurodegeneration in motor neurons that mirrors the loss of GFP signals. Scale bar represents 10 mm for all
photos. (B) Staining of unc-47p::GFP;mFUS worms also showed loss of GABA signals similar to the loss of GFP in the motor neurons.
doi:10.1371/journal.pone.0031321.g009

Figure 10. Accelerated paralysis phenotypes for TDP-43 and FUS transgenics in liquid culture. (A) Paralysis phenotypes resolve over a
number of hours for wtTDP-43 and mTDP-43 worms grown in liquid culture. mTDP-43 worms have a faster rate of paralysis compared to wtTDP-43
transgenics (P,0.001). (B) Transgenic mFUS worms show motility defects and become paralysed at a rate faster than wtFUS controls (P,0.001). (C)
unc-47p::GFP transgenics have an increased rate of paralysis compared to non-transgenic N2 worms (P,0.001).
doi:10.1371/journal.pone.0031321.g010
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onset, age-dependent, progressive paralysis [40,41]. Additionally,

unlike previously described TDP-43 and FUS models based on

pan-neuronal expression [27,30,33] our transgenics do not show

reduced lifespan suggesting the behavioural phenotypes observed

in our transgenics are not influenced by general sickness. Our

transgenics do share many features with other neuronal-based

models, notably the aggregation and insolubility of mutant TDP-

43 and FUS as well as degeneration of motor neurons suggesting

there may be common mechanisms of toxicity amongst the models

[27,29,30,32,33,42–45]. However, cytoplasmic aggregation of

TDP-43 and FUS is a prominent feature of the human pathologies

and this is seen in a recently described worm FUS model [33], but

is absent from previously reported TDP-43 models [27,29,30]. We

detect TDP-43 and FUS in both the nucleus and the cytoplasm of

motor neurons from young adult (Day 1) transgenics. The

preferential toxicity of mutant TDP-43 and FUS alleles along

with their cytoplasmic accumulation suggests our models may

recapitulate aspects of neurotoxicity relevant to the disease state.

With no clear mechanism for TDP-43 and FUS neuronal

toxicity it is currently not possible to design in vitro assays for high-

throughput drug screening. Thus the further development and

characterization of in vivo models for neurodegeneration will guide

studies in mammalian systems. We believe our models strike an

optimal balance between strong, age-dependent phenotypes and

the expression of mutant proteins in relatively few neurons and

may be useful for modifier screening. In terms of sensitivity,

genetic mechanisms and/or small molecules need only to work on

26 neurons to achieve suppression. In terms of speed, our

transgenics offer the possibility of medium-throughput suppressor

screening based on the accelerated paralysis phenotype of mTDP-

43 and mFUS worms grown in liquid culture. mTDP-43 and

mFUS cause neuronal dysfunction in advance of motor neuron

degeneration. The path from protein misfolding to neuronal

dysfunction and cell death takes many decades in humans and it

may be more efficient to target therapies to early pathogenic

stages. Thus using simple systems to screen for suppression of

neuronal dysfunction may be useful to prevent subsequent

neurodegeneration.

A number of models for TDP-43 and FUS toxicity in various

systems have been described, but there is still no clear answer

whether TDP-43 and FUS neuronal toxicity are due to a loss/gain

of function of these proteins individually or together in some

common genetic pathway [44–46]. Furthermore it is still unclear if

all TDP-43 and FUS mutations share similar pathogenic

mechanisms but having similarly constructed models for each

may address this question. Now that we have validated the unc-47

motor neuron approach for modelling toxicity, future work will

focus on the development of new transgenics with additional TDP-

43 and FUS mutations.

We present here novel transgenics for investigating age-

dependent motor neuron toxicity caused by mutant TDP-43 and

FUS. We expect these strains will be useful for identifying genetic

and chemical suppressors to give insights into disease mechanisms

and support the development of new therapies for age-dependent

neurodegeneration.

Materials and Methods

Nematode strains
Standard methods of culturing and handling worms were used

[47]. Worms were maintained on standard NGM plates streaked

with OP50 E. coli. Strains used in this study were obtained from

the C. elegans Genetics Center (University of Minnesota, Minne-

apolis) and include: N2, oxIs12[unc-47p::GFP+lin-15], unc-47(e307),

unc-47(gk192) and unc-119(ed3).

Transgenic TDP-43 and FUS worms
Human cDNAs for wild type and mutant TDP-43[A315T], and

wild type and mutant FUS-TLS[S57D] were obtained from Dr.

Guy Rouleau (CRCHUM, Université de Montréal). The cDNAs

were amplified by PCR and cloned into the Gateway vector

pDONR221 following the manufacturer’s protocol (Invitrogen).

Multisite Gateway recombination was performed with the

pDONR TDP-43 and FUS clones along with clones containing

the unc-47 promoter (kind gift from Dr. Erik Jorgensen, University

of Utah), the unc-54 39UTR plasmid pCM5.37 (Dr. Geraldine

Seydoux, Johns Hopkins, Addgene plasmid 17253) and the

destination vector pCFJ150 to create unc-47::TDP-43 and unc-

47::FUS expression vectors. Transgenic lines were created by

microinjection of unc-119(ed3) worms, multiple lines were

generated and strains behaving similarly were kept for further

analysis. Transgenes were integrated by UV irradiation and lines

were outcrossed to wild type N2 worms 5 times before use. The

main strains used in this study include: xqIs132[unc-47::TDP-43-

WT;unc-119(+)], xqIs133[unc-47::TDP-43[A315T];unc-119(+)], xqI-

s173[unc-47::FUS-WT;unc-119(+)], and xqIs98[unc-47::FUS[S57-

D];unc-119(+)].

Paralysis assays on plates
For worms expressing TDP-43 or FUS, 20–30 adult day 1

animals were picked to NGM plates and scored daily for

movement. Animals were counted as paralyzed if they failed to

move upon prodding with a worm pick. Worms were scored as

dead if they failed to move their head after being prodded in the

nose and showed no pharyngeal pumping. All experiments were

conducted at 20uC.

Lifespan assays
Worms were grown on NGM-FUDR plates to prevent progeny

from hatching. 20 animals/plate by triplicates were tested at 20uC
from adult day 1 until death. Worms were declared dead if they

did not respond to tactile or heat stimulus. Survival curves were

produced and compared using the Log-rank (Mantel-Cox) test.

Aldicarb test
To evaluate synaptic transmission, worms were grown on NGM

and transferred to NGM plates +1 mM aldicarb at adult day 1.

Paralysis was scored after 1 and 2 hours on aldicarb plates.

Animals were counted as paralyzed if they failed to move upon

prodding with a worm pick. All tests were performed at 20uC.

Liquid culture protocol
Synchronized populations of worms were obtained by hypo-

chlorite extraction. Young adult worms were distributed in 96-

wells plate (20 ml per well; 20–30 worms per well), containing

DMSO or test compounds and incubated for up to 6 h at 20uC on

a shaker. The motility test was assessed by stereomicroscopy.

Videos of worms were taken with on an Olympus S7x7

stereomicroscope equipped with a Grasshopper GRAS-03K2M

camera using Flycap software (Point Grey Research) at a rate of

300 frames per second.

Immunostaining of whole worms
Age synchronized, adult day 1, whole worms were fixed and

stained as described in WormBook [48]. Antibodies used include:
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rabbit anti-TDP-43 (1:50, Proteintech), rabbit anti-FUS/TLS

(1:50, AbCam), and rabbit anti-GABA (1:50, Proteintech).

Fluorescence microscopy
For scoring gaps/breaks from TDP-43 and FUS transgenics,

synchronized animals were selected at days 1, 5 and 9 of

adulthood for visualization of motor neurons in vivo. Animals were

immobilized in M9 with 5 mM levamisole and mounted on slides

with 2% agarose pads. Motor neurons were visualized with a Leica

6000 microscope and a Leica DFC 480 camera. A minimum of

100 animals was scored per treatment over 4–6 trials. The mean

and SEM were calculated for each trial and two-tailed t-tests were

used for statistical analysis.

Worm lysates
Worms were collected in M9 buffer, washed 3 times with M9

and pellets were placed at 280uC overnight. Pellets were lysed in

RIPA buffer (150 mM NaCl, 50 mM Tris pH 7.4, 1% Triton X-

100, 0.1% SDS, 1% sodium deoxycholate)+0.1% protease

inhibitors (10 mg/ml leupeptin, 10 mg/ml pepstatin A, 10 mg/

ml chymostatin LPC; 1/1000). Pellets were passed through a 271/2

G syringe 10 times, sonicated and centrifuged at 16000g.

Supernatants were collected.

Protein quantification
All supernatants were quantified with the BCA Protein Assay

Kit (Thermo Scientific) following the manufacturer instructions.

Protein solubility
For TDP-43 and FUS transgenics soluble/insoluble fractions,

worms were lysed in Extraction Buffer (1 M Tris-HCl pH 8,

0.5 M EDTA, 1 M NaCl, 10% NP40+protease inhibitors (LPC;

1/1000)). Pellets were passed through a 271/2 G syringe 10 times,

sonicated and centrifuged at 100000g for 5 min. The soluble

supernatant was saved and the remaining pellet was resuspended

in extraction buffer, sonicated and centrifuged at 100000g for

5 min. The remaining pellet was resuspended into 100 ml of RIPA

buffer, sonicated until the pellet was resuspended in solution and

saved.

Immunoblots
Worm RIPA samples (175 mg/well) were resuspended directly in

16Laemmli sample buffer, migrated in 12.5% or 10% polyacryl-

amide gels, transferred to nitrocellulose membranes (BioRad) and

immunoblotted. Antibodies used: rabbit anti-human-TDP-43

(1:200, Proteintech), rabbit anti-human-FUS/TLS (1:200, AbCam),

and mouse anti-actin (1:10000, MP Biomedical). Blots were

visualized with peroxidase-conjugated secondary antibodies and

ECL Western Blotting Substrate (Thermo Scientific). Densitometry

was performed with Photoshop (Adobe).

Statistics
For paralysis and stress-resistance tests, survival curves were

generated and compared using the Log-rank (Mantel-Cox) test,

and 60–100 animals were tested per genotype and repeated at

least three times. For image analysis statistical significance was

determined by Student’s t-test and the results shown as mean 6

standard error. Prism 5 (GraphPad Software) was used for all

statistical analyses.

Supporting Information

Table S1 Lifespan analysis for all experiments.

(PDF)

Video S1 mTDP-43 worms in liquid culture at time 0.

(MOV)

Video S2 mTDP-43 worms after 6 hours in liquid
culture.

(MOV)

Video S3 mFUS worms in liquid culture at time 0.

(MOV)

Video S4 mFUS worms after 6 hours in liquid culture.

(MOV)

Video S5 wtTDP-43 worms in liquid culture at time 0.

(MOV)

Video S6 wtTDP-43 worms after 6 hours in liquid
culture.

(MOV)

Video S7 wtFUS worms in liquid culture at time 0.

(MOV)

Video S8 wtFUS worms after 6 hours in liquid culture.

(MOV)

Video S9 N2 worms in liquid culture at time 0.

(MOV)

Video S10 N2 worms after 6 hours in liquid culture.

(MOV)

Video S11 unc-47p::GFP worms in liquid culture at time
0.

(MOV)

Video S12 unc-47p::GFP worms after 6 hours in liquid
culture.

(MOV)
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