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Abstract

Elementary arithmetic (e.g., addition, subtraction) in humans has been shown to exhibit spatial properties. Its exact nature
has remained elusive, however. To address this issue, we combine two earlier models for parietal cortex: A model we
recently proposed on number-space interactions and a modeling framework of parietal cortex that implements radial basis
functions for performing spatial transformations. Together, they provide us with a framework in which elementary
arithmetic is based on evolutionarily more basic spatial transformations, thus providing the first implemented instance of
Dehaene and Cohen’s recycling hypothesis.
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Introduction

Both professional mathematicians and the broader population

think about numbers in spatial terms (e.g., [1]). Accordingly, many

studies have suggested that there is a link between number and

space [2]. This link is conveniently summarized by saying that

numbers are internally represented on a spatially oriented ‘‘mental

number line’’. A recent finding suggested that this is more than a

metaphor [3]. McCrink and colleagues asked participants to

perform nonverbal elementary arithmetic operations (addition and

subtraction). The participants were able to do this [4]. Impor-

tantly, their responses also showed an operational momentum (OM)

effect, meaning that answers to addition problems were system-

atically overestimated and answers to subtraction problems were

systematically underestimated. The interpretation favored by most

authors [3,5] is that numbers are shifted too far to the right on the

mental number line with addition, and shifted too far to the left

with subtraction. Because the OM effect seems to reinforce the

idea of a spatial mental number line, it is currently attracting a lot

of attention (e.g., [6,7,8]). However, it is important to distinguish

this explanation from the effect itself. For this reason, we will refer

to the OM effect when we talk about the empirical data (without

interpretation); when we write operational momentum, this will

refer to this interpretation. One problem with the operational

momentum account is that it predicts no difference between

symbolic and nonsymbolic numbers. However, Knops et al. [5]

observed that the OM effect is larger for nonsymbolic numbers

than for symbolic numbers. Further, it remains unclear how the

shifting operation on the mental number line is performed.

McCrink et al. [3] also shortly noted an alternative explanation

for the OM effect. In particular, operations could be ‘‘acciden-

tally’’ performed on a compressed logarithmic scale, and are

therefore over- and underestimated for addition and subtraction,

respectively. For example, if instead of adding numbers n1 and

n2, subjects add log(n1) and log(n2), the result will be

log(n1)+log(n2) = log(n1*n2) and so after the logarithm is undone,

the result will be n1*n2 (which is usually an overestimation of

n1+n2). This account suffers from the technical problem that, for

addition, it predicts underestimation when n1 or n2 equals 1.

This can be remedied, however, by assuming a less strongly

compressed scale (e.g., power compression). Another problem

with this account is that it does not specify how the brain

implements addition and subtraction operations. Despite these

issues, we believe that the core of this explanation, namely, a

‘‘noncompressed’’ operation (e.g., addition) in conjunction with a

compressed representation, provides a fruitful way of thinking

about the OM effect, and this idea will be one important part in

the model to be developed.

Related to the OM effect is the space-operation association of

responses (SOAR) effect, a term we use to encompass a behavioral

and a neural observation [5,6]. The behavioral effect is obtained in

a paradigm where subjects see two successive numbers (presented

as sets of dots (nonsymbolic number) or Arabic numerals (symbolic

number)), mentally calculate their approximate sum or difference,

and afterwards choose the closest number from a number of

options. It is found that subjects prefer selecting options at a right

location for addition tasks and at a left location in subtraction. At

the neural level, Knops et al. [6] observed in a functional magnetic

resonance imaging (fMRI) study that the activation pattern in

parietal cortex during addition resembles the activation pattern

produced by rightward eye movement, whereas the activation

pattern during subtraction resembles the activation pattern

corresponding to leftward eye movement. Together, the OM

effect and the behavioral and neural aspects of the SOAR effect

suggest an interaction between arithmetic and space. Unfortu-

nately, a theoretical integration of these data, or of these data with
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related number-space interactions, is lacking. Providing one is the

purpose of the current paper.

We combine two earlier modeling frameworks for parietal cortex.

The first is a model we recently proposed on number-space

interactions [9]. Here, number representations (in humans, residing

in the horizontal part of the intraparietal sulcus (hIPS); [10]) become

connected to spatial representations. The latter are proposed to reside

in (the human homologue of) areas ventral intraparietal area (VIP) or

lateral intraparietal area (LIP), areas coding for multimodal spatial

representations [11]. A second model proposes that parietal cortex

(e.g., LIP, VIP) implements radial basis functions for performing

spatial transformations (e.g., vector addition; [12]). Different spatial

representations are mapped onto radial basis function neurons, and

transformation on the original spatial representations is implemented

by projections from the radial basis function neurons to different

spatial representations. This theory is supported by much neuro-

physiological evidence [13]. An example is the transformation from

visual information in eye-centered coordinates to head-centered

coordinates, which is useful for correctly turning the head toward a

seen object. Another example, involving three collinear objects A, B,

and C, is the estimation of the distance between objects A and C as

the added distances between A and B and between B and C.

Here, we merge these two modeling frameworks to provide a

neurocomputational account of elementary arithmetic. The

resulting Spatial Arithmetic Model (SAM) deals with the OM

and SOAR effects. We first set up a radial basis function network

to implement spatial transformations [12]. Importantly, spatial

transformations can often be performed by vector addition or

vector subtraction: Calculation of the target destination after

movement (cf. the previous paragraph) is an example. We argue

that such spatial transformation networks are recycled for

elementary arithmetic [14]. For this purpose, number represen-

tations are mapped onto the spatial representations that serve as

input to the radial basis function network. In our earlier paper, we

motivated such a mapping, and demonstrated that it allows

accounting for many data on number-space interactions [9]. We

use the same assumption here.

At this point, it is important to distinguish two different and

independent types of compression. The first is the (possibly

logarithmic) compression in number representation itself (e.g.,

[15]); this is not the focus of the current paper. The second, and

relevant for the current paper, is the mapping between number

representations and space. The mapping between nonsymbolic

numbers and space is thought to be compressed [16,17], so we

implemented compression for the mapping between nonsymbolic

numbers and space also. A power compression is easier to

parametrize than log compression [18], so we opted for power

compression for the mapping from nonsymbolic number to space.

Interestingly, a recent report suggests that the mapping between

number and space is well characterized by a power function [19].

However, it is important to note that the basic OM effect follows

from the model implemented with either type of mapping

(logarithmic or power). The mapping between symbolic numbers

and space has been argued to be much less compressed than the

mapping between nonsymbolic numbers and space (or even linearly

spaced; [16,17]), so we drastically reduced the power compression

factor for the mapping between symbolic numbers and space.

Methods

Network architecture
The SAM model architecture is shown in Figure 1a. Its core is a

three-layer feedforward structure, consisting of 600 input, 90000

hidden, and 300 output neurons.

There are two groups of 300 input neurons. Presentation of an

object to such an input layer results in a Gaussian activation curve.

In particular, each input neuron is maximally activated by a

preferred spatial location, p, and the activation value of each input

neuron is based on the distance between this preferred spatial

location and the actual object location, s, according to a Gaussian

function (localist but smoothed representation; see Figure 1a):

Rp(s)~ exp {
(s{p)2

2s2

 !
, ð1Þ

where Rp(s) is the activation of the spatial input neuron with

preferred position p when a target appears at position s.

Each neuron in the hidden layer receives input from a unique

combination of one neuron from each of the two layers of input

neurons, so the hidden layer comprises 90000 basis function

neurons. The activation value of a hidden layer neuron equals the

product of its input neurons’ activation values:

Hj~Rx(s)Ry(s), ð2Þ

where Hj is the activation of the hidden unit receiving input from

two input neurons from the two groups, with preferred location x

and y, respectively.

The output layer of 300 neurons produces another spatial

representation. Every output neuron receives inputs from all

hidden neurons as follows:

Oi~
X

j

wijHj , ð3Þ

where wij represents the synaptic connection weight from hidden

neuron j to output neuron i.

Finally, we added a movement detection layer containing two

neurons (left and right) to simulate movement detection. For

performing spatial arithmetic, number input and output repre-

sentations were attached to this core spatial model (dotted arrows

in Figure 1a).

Simulation
For simplicity, we implemented addition and subtraction with

the same network architecture (Figure 1a), but with a different

output layer (and connection weights) for the two operations.

However, it is possible to integrate them with a single output layer

either by using recurrent connections [12] or by gain modulation

provided by task demand units [20].

The weights between the hidden layer and the output layer are

chosen such that they minimize the average squared error between

intended and actual spatial responses. We obtained these weights

by solving the matrix weight equations for the original spatial

transformations. This entails the assumption that the mapping

from retina to space is noncompressed, or at least less compressed

than the mapping from number to space. The model’s

performance is perfect using these optimal weights, so there is

no momentum effect for spatial transformations.

The weights from the spatial layers to the movement detection

neurons (dashed arrows in Figure 1a) were set accordingly.

Specifically, linearly monotonically increasing weights were chosen

from each spatial input layer (the original spatial position of a

moving target) to the ‘‘left movement’’ neuron. In this way, a more

leftward object at input induces a weaker response in the ‘‘left

movement’’ motor neuron. In contrast, linearly monotonically
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decreasing weights were chosen from the spatial output layer to

the ‘‘left movement’’ neuron; hence, a more leftward positioned

object at output induced a stronger ‘‘left movement’’ response.

The reverse pattern of weights was chosen for connections to the

‘‘right movement’’ neuron. As a result, if an object at input is more

leftward than the same object at output, a ‘‘right movement’’

response is elicited. The activation of the movement detection

neurons can then be used for making appropriate eye movements.

Other (than linear) monotonic weight patterns lead to similar

results as those reported here. On each trial, the output layer and

one randomly chosen input layer passed activation to the

movement detection layer.

For the mapping between nonsymbolic numbers and space, the

(power) compression had an exponent of 0.8. For the mapping

between symbolic numbers and space (which should be less

compressed, as argued above), the exponent was 0.95. The

qualitative pattern of results does not depend on these exact

values. After numbers were transformed from number input to the

spatial input layers, the information passed through the radial basis

function network, and the activation pattern from the spatial

output layer was read out. Then, the spatial output information

was transferred to the corresponding number representation. In a

sense, then, the linear transformation network ‘‘ignores’’ the

number-to-space compression, which generates the OM effect.

For the behavioral effects, we focus on Experiment 2 of Knops

et al. [5]. This study provides the most direct evidence for the OM

effect because the results of the operations were constant for

addition and subtraction. As in that study, we chose a set of

numbers (19, 21, 25, 35, 41, and 49) as results for both addition

and subtraction. The corresponding operands are the same as in

the original data (Table 2 of Knops et al., [5]). Similar results are

obtained if the operands rather than the results remain constant

(Knops et al., Experiment 1).

Results

The OM effect
For nonsymbolic number, representative simulation results are

shown in Figure 2b (empirical data in Figure 2a). These curves

represent the model’s choice frequencies in response to different

nonsymbolic addition and subtraction problems. The model tends

to select larger numbers for addition than for subtraction, even

when the results of addition and subtraction problems are the

same (i.e., the OM effect). Bias sizes for all simulated numbers are

shown in Figure 3b (empirical data in Figure 3a). There is a bias

toward smaller numbers for subtraction and a bias toward larger

numbers for addition. Importantly, when training the radial basis

networks, there was no compression. The OM effect emerges from

the combination of a compressed number-to-space mapping with

an unbiased transformation in the radial basis network (Figure 1b).

Simulated data for symbolic subtraction and addition is shown

in Figure 3b. The model tends to show an OM effect, but, in line

with empirical data ([5]; Figure 3a) the bias is significantly reduced

relative to nonsymbolic numbers. One difference with the

empirical data is that we obtained no bias toward small numbers

(Figure 3a). However, as noted by Knops et al., there can simply

be an overall bias toward responding with smaller numbers which

was not modeled here.

The SOAR effect
The spatial preference for nonsymbolic addition and subtrac-

tion is shown in Figure 4. The model tends to activate the right

movement neuron for addition (Figure 4a) and the left movement

neuron for subtraction (Figure 4b). To model the behavioral and

neural aspect of the SOAR effect explicitly, an appropriate

decision and response mechanism should be introduced, linking

the movement neurons to spatial attention and eye movement

representations further downstream. In this way, the movement

neuron activation can explain the behavioral aspect of the SOAR

effect in the sense that a shift of attention to the left side of space

would favor the left side in the competition for a decision [21],

thus leading to more leftward choices. It can also explain the

neural aspect of the SOAR effect [6] in that a pattern recognition

device that would be trained to distinguish left from right eye

movements would instantaneously (i.e., without extra training)

generalize to arithmetic operations as subtraction versus addition,

respectively. This is exactly what Knops et al. obtained.

Furthermore, Knops et al. observed that classification perfor-

mance is better for addition than for subtraction. This asymmetry

can also be explained by our model as left and right are much

more differentiated in addition than in subtraction (absolute

difference in activation is 0.36 for addition but only 0.12 for

subtraction; see Figure 4). The reason for this is that movement is

consistently to the right for addition (e.g., 4+3 = 7); in contrast,

movement is not consistently leftward, but can be to the right also

for subtraction, depending on which operands are chosen (e.g., in

723 = 4, movement from 3 to 4 is ‘‘to the right’’).

Discussion

We proposed a model to account for the striking similarities

between arithmetic and space. Building on our earlier number-

space model [9], we implemented the hypothesis that the OM and

SOAR effects emerge from a mapping between number and

space. Furthermore, basis function networks for spatial transfor-

mations are recruited for elementary arithmetic by mapping

numbers onto the input layers of the basis functions. The basis

function layer, corresponding to multimodal parietal areas such as

LIP or VIP, plays a key role for numerical arithmetic also. Because

these areas are used for saccadic and attentional control, the

networks involved in shifting attention are recycled for elementary

arithmetic. This constitutes an instance of Dehaene and Cohen’s

[14] recycling hypothesis and, more broadly, of the embodied

cognition hypothesis [22].

Our model is not neurobiologically plausible in the sense that an

explicit error signal is injected to learn the mapping task. However,

the pattern of optimal weights for generating the correct spatial

responses can emerge spontaneously through random spatial

movements and correlation-based synaptic modification [23]. In

this sense, the injection of error should not be problematic.

Another possible departure from neurobiology is the fact that the

hidden layer was much bigger than the input layers. However, this

simplification is also well-motivated. First, the input layer only

Figure 1. Schematic diagram and operation of the Spatial Arithmetic Model (SAM). (a). The two operands of an arithmetic problem are
mapped onto two spatial input layers (dotted arrows) by a power compression function. The basis function layer combines these two inputs and
sends activation to the spatial output layer. Then the activation from the spatial output layer is transformed to the corresponding arithmetic result
(dotted arrow). In addition, spatial representations are sent to a movement detection layer (dashed arrows). (b). Addition is implemented by spatial
vector addition on a compressed mapping between number and space, leading to overestimation; subtraction is implemented by spatial vector
subtraction on a compressed mapping between number and space, leading to underestimation.
doi:10.1371/journal.pone.0031180.g001
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Figure 2. The OM effect. Observed data (2a, from [5]) and simulated data (2b). Observed data represents the distribution of the responses
to two nonsymbolic addition and subtraction problems (with arithmetic results of 21 or 41). For the simulated data, choice frequency of a number is
proportional to the activation of that number. In each case, the OM effect is reflected by a leftward bias in subtraction, compared with addition
problems.
doi:10.1371/journal.pone.0031180.g002
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Figure 3. The mean response bias for nonsymbolic and symbolic arithmetic problems. Observed data (3a, from [5]) and simulated data
(3b). This bias reflects the average difference between the chosen result and the correct value, both represented on a log scale (following [5]). A
negative bias indicates underestimation, and a positive bias indicates overestimation.
doi:10.1371/journal.pone.0031180.g003
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represents an approximation to the actual input system. Second,

the hidden layer would probably also approximate the required

input-output function with a less extensive set of basis functions.

However, because this issue is beyond the scope of the current

paper, we simply implemented the complete set of basis functions.

On a more conceptual level, it is important to explain why

learning during the task does not abolish the bias and hence the

OM effect. One of advantages of the basis function network is that

it learns the correct transformation efficiently and correctly [20].

Hence, it is easy to learn the correct transformation for the

compressed representation without any bias (OM effect). Howev-

er, under the recycling hypothesis [14], basic cognitive processes

are recruited for high-level cognition. When applied to the current

context, this implies that a network used for space processing is

recruited for number processing, a much less frequent task.

Accordingly, we first set up a radial basis function network to

implement spatial transformation, not because a separate

numerical transformation network would be hard to learn for

the organism, but simply because nonsymbolic number addition or

subtraction is so infrequent. In other words, it seems unlikely that

subjects would set up a new network just for the current task.

However, the model does predict that, with frequent practice in

the nonsymbolic number task, and when subjects improve due to

feedback, effects on spatial processing should be discernible. This

remains a prediction for future experimental investigation.

We propose that radial basis function networks trained for one

purpose (spatial transformations) are recycled for other tasks

(elementary arithmetic) when these other tasks are less frequent.

Such basis function networks are found throughout parietal cortex

for performing tasks such as reaching and grasping [24]. This may

be why numbers ‘‘reside’’ in these same parietal circuits. However,

when a task is extensively trained, it probably receives its own

dedicated structures (radial basis function networks). One example

is symbolic multiplication (see [25], for a basis function network of

mental multiplication). Accordingly, the model may not only

provide an explanation of the OM and SOAR effects, but more

generally a perspective on the interaction between cognitive and

more basic operations in parietal cortex.
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