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Abstract

Rationale and Objectives: There is evidence that drug addiction is associated with increased physiological and
psychological responses to stress. In this pilot functional magnetic resonance imaging (fMRI) study we assessed whether a
prototype behavioral addiction, pathological gambling (PG), is likewise associated with an enhanced response to stress.

Methods: We induced stress by injecting yohimbine (0.2–0.3 mg/kg, IV), an alpha-2 adrenoceptor antagonist that elicits
stress-like physiological and psychological effects in humans and in laboratory animals, to four subjects with PG and to five
non-gamblers mentally healthy control subjects. Their fMRI brain responses were assessed along with subjective stress and
gambling urges ratings.

Results: Voxelwise analyses of data sets from individual subjects, utilizing generalized linear model approach, revealed
significant left amygdala activation in response to yohimbine across all PG subjects. This amygdala effect was not observed
in the five control individuals. Yohimbine elicited subjective stress ratings in both groups with greater (albeit not statically
significantly) average response in the PG subjects. On the other hand, yohimbine did not induce urges to gamble.

Conclusions: The present data support the hypothesis of brain sensitization to pharmacologically-induced stress in PG.
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Introduction

As legalized gambling activities are rapidly expanding in our

society so do gambling-related public health problems [1]. The

overall lifetime prevalence of problem and/or pathological

gambling (PG) in the general adult population is about 5% [2,3]

and its annual cost to the American society as a result of crime,

decreased productivity and bankruptcies approximates $54 billion

[4]. These figures likely underestimate the problems associated

with PG because this is a more ‘silent’ addiction without

characteristic symptoms of intoxication, needles’ marks, or

overdose, and therefore may only become apparent relatively late

in the addiction process with the emergence of devastating and

irreversible consequences, including attempted suicide in up to

24% of untreated individuals [4–6]. Hence, to improve diagnosis

and treatment of PG it is important to identify its objective

markers and their underlying neurobiology.

There is evidence that PG is associated with heightened stress

responses. For example, gambling-related activities or exposure to

gambling-related cues increases physiological stress responses like

heart rate, skin conductance and norepinephrine concentrations in

plasma and in cerebrospinal fluid [7–16]. There is also evidence

that stress exposure causes gambling urges that may precipitate

‘‘relapse’’ to gambling [17–20]. Thus, like in drug addiction

[21–23], stress can precipitate and exacerbate the maladaptive

addictive behavior (gambling) and engagement in the addictive

behavior or exposure to cues associated with maladaptive behavior

(e.g., a slot machine) can lead to exaggerated or sensitized

activation of the brain stress systems [20].

We have previously evaluated psychosocial stress levels in

individuals with PG and found heightened scores across all

measures; additionally, greater perceived severity and amount of

daily stressors was associated with more urges to gamble [20].

Here, we further evaluated whether PG is associated with

enhanced stress response by using yohimbine in conjunction with

blood-oxygen-level dependent (BOLD) pharmacological magnetic

resonance imaging (phMRI).

Yohimbine is an FDA-approved medication (oral formulation) for

the treatment of male erectile dysfunction. It is a prototypical alpha-2

adrenoceptor antagonist that has been used in numerous studies to

induce stress- and anxiety-like states in both humans and laboratory

animals [24,25]. In addition to its actions on the alpha-2 adrenergic

systems, yohimbine also affects D2, alpha-1, 5HT1a, and benzodi-

azepine receptors [26–28]. However, termination of yohimbine’s

effects by alpha-2 agonists, clonidine and lofexidine, and replication

of these effects by the selective alpha-2 adrenoceptor antagonist, RS-

79948-197, renders non alpha-2 receptors’-related effects an unlikely

mechanisms of yohimbine’s stressogenic action [27,28].
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Due to the complexity of the brain and of the interactions

among its various structures, it is possible on a theoretical basis to

construct a lengthy list of brain regions, engaged by yohimbine-

induced stress, activity in which could be altered in PG. In this

study the amygdala was given a priori emphasis because blockade of

presynaptic alpha-2 adrenoceptor leads to subjective stress

responses [29] resulting from norepinephrine releases within the

amygdala [30–32], which is also engaged by gambling cues

reactivity [33] and by drug craving [34] in respective subjects with

PG and with drug dependence. With these considerations in mind,

it was hypothesized that, in comparison in healthy subjects, PG

individuals would display amygdala hyperresponsivity to yohim-

bine.

Methods

Subjects
Participants of this pilot proof of concept/feasibility study

comprised of four subjects [mean age (standard deviation, SD):

40.6 (13.0) years; 2 males and 2 females; 3 Caucasian and 1

African-American; weight: 80.4 (9.8) kg] meeting the Diagnostic

and Statistical Manual of Mental Disorders, Fourth Edition, Text

Revision (DSM-IV-TR [35]) criteria for PG and for no other Axis

I DSM-IV-TR diagnosis. The control subjects were five mentally

healthy individuals [age: 31.0 (9.3) years; 4 males and 1 female, 3

Caucasian and 2 African-American; weight: 74.5 (9.3) kg] who

were free from any type of gambling problems. There were no

significant group differences in age (t = 1.06; df = 7; p = 0.32), in

weight (t = 0.93; df = 7; p = 0.32) and in gender distribution

(p = 0.52; two-tailed Fisher’s exact test).

The subjects were diagnosed using a best estimate format,

involving all available sources of information, including clinical

history, interview and the Structured Clinical Interview for DSM-

IV [36], and the South Oaks Gambling Screen (SOGS [37]). This

research was approved for safety and ethics by the Institutional

Review Board of McLean Hospital. The participants were

recruited by newspaper advertisement and underwent clinical

assessments in return for a participation fee after providing a

written informed consent to the McLean Hospital Institutional

Review Board-approved protocol.

All subjects were in good physical health, without any history of

head injury, loss of consciousness, brain tumor, seizures or

cerebrovascular accident, as determined by neurological screening

and by the Cornell Medical Index Health Questionnaire [38].

Recent drug and alcohol consumption was ruled out by negative

results on urine toxicology screen and breathalyzer.

Procedure
After completion of the clinical assessments and medical work

up, the subjects reported for the procedure at the McLean Brain

Imaging Center after having fasted and refrained from alcohol,

tobacco, caffeine and physical activity for at least 10 h. One h

before the imaging session, an intravenous catheter was placed

into an antecubital vein for yohimbine infusion and was kept

patent with a slow isotonic saline drip.

To date, numerous clinical studies employed intravenous

yohimbine as a pharmacological stressor in neuroimaging and in

clinical studies involving healthy subjects and psychiatric patients.

The dose of yohimbine in these studies ranged between 0.125 mg/

kg [39] to 0.4 mg/kg [40–43]. To explore potential dose-response

relations, on the present study, two healthy controls were

administered yohimbine at 0.3 mg/kg while the remainder of

healthy controls and all PG subjects received yohimbine at

0.2 mg/kg.

Yohimbine was injected 5 min into a 30-min long scan in a

single-blinded fashion. Four 2 ml yohimbine infusions were given

over ten min (one control subject received the yohimbine infusion

over 6 min), with each infusion lasting 20 sec. The onset of each

infusion was separated by a 2-min interval. Continuous hemody-

namic monitoring was performed and an advanced cardiac life

support certified physician was present throughout the course of

the study.

Analog scales for subjective ratings were projected via a

LabView program and a back projection television system outside

the Faraday shield of the scanner. The subjects rated their

subjective measures of stress and gambling urges on a continuous

Likert-type scale of 0 (none) to 12 (extreme). Ratings were initiated

one min pre-infusion and collected once per min until 20 minutes

post-infusion.

Image acquisition
Scans were performed on a 3-Tesla Siemens Trio MR Imaging

System (Siemens AG, Erlangen, Germany). A 3-plane scout scan

(conventional FLASH sequence with isotropic voxels of 2.8 mm)

was acquired. This was used for prescription of the fMRI image

stack (gradient echo planar imaging [EPI], repetition time/echo

time = 2000/30 msec, 220 mm6220 mm field of view [FOV], 30

3-mm coronal slices starting from the anterior pole, no gap, right-

left readout, 64664 pixel, full k-space acquisition, no sensitivity

encoding [SENSE] acceleration; pulse sequence-enhanced version

of the Siemens epibold; total acquisition time 964: 04 min).

Automatic second-order shimming was performed over the fMRI

imaging volume before acquisition. After the functional scans,

subjects had a conventional T1 scan performed on the same

functional prescription and therefore with identical susceptibility

distortion (68 T1 weighted coronal slices, FOV = 220 mm

6220 mm, 2566256 pixel, 3-mm thick were acquired covering

the whole brain, ‘‘matched warped’’) [44] and a standard T1

weighted magnetization prepared rapid gradient echo (MPRAGE)

three-dimensional (FOV = 256 mm6256 mm6170 mm, 2566256

6128) for anatomic segmentation and parcellation.

Image analysis
The image analyses were conducted after the completion of

data collection from all participants. Functional MRI images

were aligned to the high-resolution T1 weighted MPRAGE

images in two steps with FMRIB’s Linear Image Registration

Tool (FLIRT). Instead of using a conventional high-signal-to-

noise-ratio EPI image for the intermediate, we employ a high-

resolution, T1-weighted ‘‘match-warped’’ EPI image that in-

creases the precision of the alignment between the functional

dataset and the high-resolution MPRAGE [44]. The MPRAGE

was then aligned to Montreal Neurological Institute (MNI) space

with FLIRT.

Data processing was performed with FSL release 4.0 (FMRIB

Analysis Group, Oxford University, United Kingdom; http://

www.fmrib.ox.ac.uk.ezp-prod1.hul.harvard.edu/fsl/), specifically

FEAT version number 5.92. Preprocessing procedures included

the following steps. First, image spikes were detected by FSL’s

outlier detection program (fsl_motion_outliers) and used as

covariates of no interest in the statistical analysis. Second, all

images within a scan were aligned to image #230 (in the middle),

with mcflirt [45], with 6 degrees of freedom. If the maximum

Euclidean deviation from this reference exceeded 3.0 mm (the

smaller voxel dimension), the scan was discarded. Third, non-

brain tissue was removed. Fourth, spatial filtering was performed,

with a Gaussian kernel with 5-mm full width half maximum.

Yohimbine in Pathological Gamblers
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Finally, global normalization was performed, such that the average

over all voxels and images was fixed at 10000.

phMRI infusion model (Figure 1)
Based on a prior report in the literature, following intravenous

infusion of yohimbine (0.25–0.5 mg/kg) in healthy subjects, the

distribution is rapid, the elimination half-life is 0.25–2.5 h and

norepinephrine increases 3-fold within 15 minutes [46].

Voxelwise data analyses were carried out in the similar fashion

to the previously reported by our group on an phMRI study [47].

Statistical maps were generated using a generalized linear model

approach with two possible responses of interest: a gradual

increase in activation (Ramp) and a rapid onset of activation

followed by a gradual decay (Decay). An additional response of

interest was generated through appropriate contrasts to obtain a

step-wise response once the injection of yohimbine begins. The full

model also included motion parameters estimates and spikes’

temporal appearance as covariates of no interest.

We used a mixture of Gaussian distributions, the number and

parameters of each were optimally determined. Statistical

thresholds were determined utilizing a mixture model approach

[48,49]. Each voxel had 3 probabilities assigned to belong to one

of these classes: deactivation, null hypothesis, and activation class.

Each voxel had its p-value corrected, that is to say, thresholded so

that the posterior probability associated with the activation class

was 0.5 or larger. For standard presentation, statistical maps were

transformed into the MNI-standard brain space. The amygdala

was identified from the Oxford-Harvard probabilistic atlas issued

with FSL’s software package.

Results

Subjective ratings
Mean baseline subjective stress (i.e., distress) rating was 0 for

pathological gamblers and 0.2 (1.1) for healthy controls,

respectively. Throughout the 20 min following yohimbine admin-

istration, PG and healthy subjects demonstrated respective

increases in subjective stress ratings to 4.0 (5.4) and 2.4 (2.1) thus

yielding mean change from the baseline (peak value minus

baseline value) of 4.0 (5.4) and 2 (2.2). The mean group difference

in the stress ratings’ changes was 1.8 with pooled SD of 3.4,

corresponding to a medium effect size of d = 0.53 SD. To achieve

80% power to detect stress ratings differences of this magnitude at

p,0.05 would require n = 45 subjects per cell.

To determine effects of yohimbine on stress self-ratings, a one-

way analysis of variance (ANOVA) with a repeated-measures

design was conducted. Diagnosis (PG and healthy subjects) was the

grouping factor and Drug (pre- and post yohimbine) was the

within-subjects factor. This ANOVA resulted in a significant drug

effect (F = 5.83; df = 1; p,0.05) but no significant group effect

(F = 0.25; df = 1; p = 0.63) or drug by group interaction (F = 0.53;

df = 1,7; p = 0.49). Repeating the latter analysis after excluding the

two subjects who received 0.3 mg/kg of yohimbine (both in the

control group) revealed a trend for significant drug effect (F = 4.30;

df = 1, 7; p,0.09), which would have been statistically significant

had this result been predicted a priori.

Yohimbine produced no meaningful effect on subjective self-

reports of gambling urges in PG subjects [pre- and post-yohimbine

values: 1.3 (1.0) and 1.0 (0.8)].

Figure 1. phMRI of Yohimbine. Top: Yohimbine Infusion Procedure. Following a 5 min baseline, yohimbine was infused in four separate
infusions, each infusion lasting 20 sec, and with an interinfusion interval of 2 min, as shown in the box (see Text). Middle: Plasma levels of
Yohimbine. Based on prior reports [77] doses of yohimbine reach maximal levels immediately after intravenous infusion and remain high for at least
20 min. Bottom: Plasma levels of norepinephrine rapidly follow yohimbine infusions [78]. These levels also remain high for the duration of the phMRI
data acquisition.
doi:10.1371/journal.pone.0031118.g001
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Voxelwise analyses of data sets from individual subjects
The MNI x, y, and z coordinates of the peak voxel in the left

amygdala cluster of activation (corrected p,0.001) along with the

cluster volume for each PG subject are presented in Table 1.

After an infusion of yohimbine (0.2 mg/kg), left amygdala

activation was observed for each subject diagnosed with PG

(Figure 2). This is indicated by significant BOLD responses that

correspond to a gradual increase in activation. The other models

of a rapid onset and decay or a step-wise response were not

apparent. Healthy controls did not display significant amygdala

activation at the same dose and even at the 0.3 mg/kg dose (n = 2).

No significant deactivation was observed at the individual level for

the two groups. The two-tailed Fisher’s exact test, performed to

compare the proportion of subjects with yohimbine-induced

amygdala activation (4/4 vs. 0/5), revealed a significant group

difference (p = 0.008).

Other brain regions that were significantly activated in

individual PG subjects included right frontal pole and left

hippocampus. The following areas were significantly activated in

single healthy control subjects: left putamen, left caudate, right

pallidum, left anterior cingulate cortex and left frontal pole. None

of these areas of activations overlapped across the subjects.

Discussion

The major finding of this study was that pathological gamblers

had significantly greater yohimbine-induced activations in the left

amygdala region. A similar approach in substance use disorders

indicate that drug- and alcohol dependent patients are hypersen-

sitive to yohibine-induced stress as evidenced by their startle

hyperreflexia [40,50], their elevated stress hormones [40,51] and

the emergence of withdrawal-like symptomatology [41].

The present results extend our early work with psychometric

assessments in which we found increases in stress and negative

mood states in PG subjects [20]. Our data with yohimbine, an

alpha-2 adrenoceptor antagonist that activates both peripheral

and central noradrenergic systems [25], are also consistent with

prior reports of sympathetic hyperresponsivity in PG [11,12].

Together, our current and previous results suggest that PG is

associated with heightened reactivity to various types of stress and

that the left amygdala is involved in this association.

Another main finding in our study is that the enhanced fMRI

response to yohimbine in PG subjects was only observed in the left

amygdala. This laterality in response to stress may be consistent

Figure 2. Individual data set. Clusters of activation (colored; corrected p,0.001) from voxelwise analyses of the effects of yohimbine infusion
obtained from individual subjects projected onto a background (grayscale) representing subjects’ mean high-resolution anatomic image. Coordinates
of coronal slices are in accordance with the Montreal Neurological Institute (MNI) space. Please note: two healthy controls received yohimbine at
0.3 mg/kg; the rest of the subjects were administered 0.2 mg/kg. PG-pathological gamblers; HC-healthy controls.
doi:10.1371/journal.pone.0031118.g002

Table 1. Individual clusters of amygdala activation in
pathological gamblers (corrected p,0.001).

Coordinates (mm) Z value Volume (mm3)

X Y Z

PG_01 218 26 220 1.23 304

PG_02 222 0 218 1.13 112

PG_03 222 28 214 1.32 376

PG_04 222 2 218 1.22 496

The coordinates are taken from the MNI Brain Atlas. The origin of the
coordinates refers to the anterior commissure.
doi:10.1371/journal.pone.0031118.t001
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with previous findings. For example, a systematic review of 54

fMRI and positron emission tomography studies suggests that the

left amygdala is more likely to be activated than the right

amygdala during emotional tasks [52]. The procedure employed

here, however, does not allow firm separation of physiological and

emotional stress components involved in pathological gamblers’

amygdala activations. Answering this question would require an

exclusively emotional task that does not employ pharmacological

agents.

Methodological considerations
Under the current experimental conditions, yohimbine was an

effective stressor eliciting stress responses in both groups. The

failure to detect significant group differences in the subjective stress

reports may be secondary to the small sample size, that is to say,

the Type II error. Also, given the greater variability in stress

ratings in the PG group, in a larger sample the stress response

could be correlated with the change in BOLD signal in the

amygdala. On the other hand, some of the stress’ aspects may be

subliminal and not readily amenable for self-reports. For instance,

on a recent study, alcohol dependent patients showed heightened

hypothalamic-pituitary-adrenal axis’ responses to alcohol cues and

to a generic stressor, but only the former and not to the latter type

of the stimulus elevated subjective stress ratings [53].

Another caveat that should be considered in interpreting these

data pertains to the age confound as PG patients averaged 10

years older than healthy subjects. This is an unlikely confound as

there is a considerable amount of clinical data suggesting opposite

to our finding age-related declines in the amygdala function [54–

56]. Nonetheless, a study of an age-matched control group may be

warranted. Similar caveat is pertinent to the dose yohimbine as

two controls received a higher dose of 0.3 mg/kg even though

given the lack of amygdala activations in healthy people exposed

to 0.3 mg/kg of yohimbine, a compelling a fortiori argument could

be that such a response will be also absent with 0.2 mg/kg. These

and other important factors that were not a part of the present

study design (e.g., plasma yohimbine concentration) may need to

be assessed in future studies.

Contrary to the prior reports on yohimbine-induced craving in

opioid- [41] and alcohol- [57] dependent subjects, participants in

the current experiment reported no meaningful change in the level

of their gambling urges. It has been previously proposed that

gambling urges and drug craving are analogous phenomena [58–

60], but our findings perhaps suggest otherwise. More yohimbine

studies, matching drug dependent patients and pathological

gamblers by the severity of their addiction, may be needed to

ascertain potential gambling urges insensitivity to noradrenergic

stimulation. On the other hand, an important factor, not

addressed by the present design, which could yield information

bearing upon elucidation of gambling urges’ triggers, is the

expectancy context. Thus, the fMRI scanner or the laboratory

context may mask stress-related gambling urges while gambling

cues or knowledge that gambling opportunities are available

during or after the infusion could produce the opposite effect [61].

A limitation with this study’s design is its inability to resolve the

risk factor versus acquired origin of the hyperresponsive circuitry

in PG. While it is tempting to speculate that similarly to drugs of

abuse [21,62–64] gambling activities contribute to the brain stress

sensitization, an alternative interpretation is also plausible. Thus,

persons with high stress sensitivity (potentially due to prior stressful

experiences) may have greater propensity for development of

gambling addiction owing to stress-related neuroadaptations in the

dopaminergic circuits [65]. Regardless of the origin, a feedforward

interaction could be a possible outcome wherein gambling and

gambling-related cues trigger stress responses while stress pro-

motes gambling.

Concluding remarks
The present findings together with sensitized brain metabolic

reactions to gambling-related stimuli [66,67] are reminiscent of a

cross-sensitization phenomenon observed in substance use disor-

ders. The latter term typically refers to a situation where prior

exposure to one stimulus (e.g., drug) increases subsequent response

to itself [68–71] and to a different stimulus (e.g., stress) [62–64]

and in the reversed order, enhancement of drug motivational

states e.g., craving [72,73] following prior stress exposure [65].

Indeed, the sensitized stress responses in PG are mostly

conspicuous in the context of gambling and gambling-related

cues [7–12], whereas stress is a key factor responsible for gambling

urges [20] inherent in the chronically relapsing nature of PG [17–

19]. This raises the possibility of overlapping and sensitized

neuropsychobiological systems engaged by stress- and gambling-

related stimuli in patients with PG. Such a testable hypothesis

could be evaluated in PG subjects by juxtaposing responses to

functional neuroimaging probes that reliably activate both brain

stress and motivational circuits.

Finally, it is noteworthy that stress-related noradrenergic system

has been implicated in the pathophysiology of impulsivity at large

[74] not just in PG, which is while considered by some to be a

prototype non pharmacological addiction [75,76] is actually

classified as an impulse control disorder [29]. Therefore it would

also be of interest to test whether the observed stress alterations are

generalizable to impulse control disorders as a class.
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