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Abstract

Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and
memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-
hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal
region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective
immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions,
hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded.
Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed
decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors.
Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the
hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent
model of selective MS cholinergic lesioning.
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Introduction

The hippocampus is one of the major brain regions implicated in

learning and memory. Excitatory neurotransmission in the hippo-

campus has been shown to be critical for synaptic plasticity including

long term potentiation (LTP), a physiological correlate of memory

[1,2,3]. The ionotropic glutamate receptor subtypes, alpha-amino-3-

hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-

aspartate (NMDA) receptors, are the major mediators of excitatory

neurotransmission and plasticity in the hippocampus [4,5,6].

Regulated enhancement of biophysical properties of these receptors

is implicated in LTP. [4,7,8]. Glutamate receptor function is

modulated by other neurotransmitters such as acetylcholine. The

hippocampus receives major cholinergic inputs from medial septum

(MS) and these cholinergic neurons regulate hippocampus-depen-

dent learning and memory tasks [9,10,11,12,13,14,15,16]. In

addition, cholinergic receptors in the MS and hippocampus have

been shown to modulate LTP [17,18,19,20,21,22]. Previous studies

demonstrated that memory deficits in neurodegenerative diseases are

often characterized by decreased cholinergic terminals in the

hippocampus [10,11,23,24,25], which further highlights the role of

cholinergic receptors in memory. Overall, these findings suggest that

cholinergic transmission plays an important role in hippocampal-

dependent synaptic plasticity and memory tasks.

Evidence indicates that non-selective lesioning of MS impairs

performance on a variety of hippocampal-dependent spatial tasks

[26,27,28,29,30,31]. On the contrary, selective cholinergic

lesioning of the MS following stereotaxic infusions of immunotoxin

192-saporin, which produces significant loss of cholinergic

function in the hippocampus, results in normal performance on

learning and memory tasks [6,32,33,34,35,36,37,38,39]. Other

studies report mild or transient impairment in memory [40], more

errors in certain memory tasks [41,42], impaired learning in T-

maze tasks [43,44], deficits in spatial strategies and navigation in

spatial memory tasks [45,46], dose-dependent deficits in working

memory [47], and increasing errors with task difficulty in radial

arm maze task [48], following selective lesions of cholinergic

neurons in the MS. Collectively, these reports suggest that selective

cholinergic lesions of the MS affect some aspects of hippocampal-

dependent learning and memory tasks. Functional analyses of the
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outcomes of MS cholinergic lesioning, particularly in the context

of synaptic plasticity in the hippocampus, are scant. Thus, in the

present study we evaluated whether selective cholinergic lesioning

of MS results in alterations in LTP in the CA3-CA1 synapses of

the hippocampus and affects synaptic AMPA and NMDA receptor

functions. Our results reveal reductions in both AMPA and

NMDA receptor currents, suggesting that selective cholinergic

lesions of the MS affect glutamatergic transmission in the

hippocampus leading to impaired learning and memory.

Results

Diminished LTP in CA3-CA1 synapses in the
hippocampus of rats with selective MS cholinergic
lesions

Prior to electrophysiological studies, in separate rats, we

performed immunohistochemical studies to confirm that the dose,

infusion site, and experimental time point resulted in a reliable and

efficient cholinergic lesioning in the MS. Four to six days following

infusions, we found reduced anti-choline acetyltransferase (ChAT)

immunoreactive neurons, indicative of profound loss of cholinergic

neurons in the 192-saporin infused rats compared to the saline

infused controls (Fig. 1). This finding suggests that the 192-saporin

infusion paradigm efficiently accomplished cholinergic lesioning of

the MS. Previous studies reported mild, transient, or some aspects

of memory deficits in rodents subjected to selective cholinergic

lesioning with 192-saporin. LTP is an accepted cellular model of

memory; however, it is not known whether targeted and selective

cholinergic lesioning of MS alters LTP. Therefore, we evaluated

LTP 4–6 days following MS lesioning. LTP was induced in CA3-

CA1 synapses by theta burst stimulation (TBS) in saline infused

control rats (Fig. 2; 140.7562.35%). LTP was considerably

reduced in lesioned rats (Fig. 2; 104.3761.18%; F = 18.28,

P,0.05, n = 6). There was no difference in LTP of saline infused

animals compared to rats that underwent surgery without any

infusion (data not shown). Collectively, with the accumulating

evidence that acetylcholine (ACh) receptors play a role in

regulating LTP in the hippocampus, our results indicate depletion

of cholinergic terminals in the MS impairs LTP in the

hippocampus.

Having identified LTP deficits in the hippocampus of lesioned

rats, we next resorted to determine which steps in LTP production

were negatively impacted. The form of LTP we studied is

mediated by the synaptic activation of NMDA receptors [25,49].

Pharmacological blockade of NMDA receptors reduces TBS

responses, indicating that activation of these receptors contribute

to the membrane potential during TBS [50]. Therefore, we

studied whether TBS responses are modified in lesioned rats. We

first analyzed the within TBS facilitation by normalizing the slopes

of field excitatory postsynaptic potentials (fEPSPs) with the slope of

the first fEPSP. When these two sets of data were compared slices

from lesioned rats showed reduced potentiation compared to the

controls (Fig. 3B; F = 3.24, P,0.05, n = 6). We then evaluated

whether subsequent TBS resulted in enhanced potentiation by

normalizing the first pulse fEPSPs from 2nd, 3rd and 4th TBS to

that of the 1st TBS. Our results showed facilitation with each

subsequent TBS in both control and lesioned rats. However, TBS

facilitation in lesioned rats was lower than that of controls (Fig. 3C;

F = 2.63, P,0.05, n = 6). These findings suggest that synaptic

potentiation of NMDA receptors during TBS may be diminished

in lesioned rats.

Selective cholinergic lesions reduce AMPA receptor
mediated whole cell currents in CA1 pyramidal neurons

ACh is reported to be an important presynaptic modulator of

synaptic transmission in glutamatergic synapses in the hippocam-

pus [51,52]. In CA3-CA1 synapses most of the fEPSP transmission

is mediated by AMPA receptors. During LTP synapses undergo

enhanced recruitment of additional AMPA receptors to the

postsynaptic sites [2,3,53]. Since LTP was impaired in lesioned

rats, we studied whether synaptic currents through AMPA

receptors in the CA1 pyramidal neurons were reduced following

cholinergic lesions. We recorded action potential independent

miniature excitatory postsynaptic currents (mEPSCs) as well as

spontaneous excitatory postsynaptic currents (sEPSCs), which

occur without the inhibition of Na2+ channels. AMPAR-sEPSCs

were recorded in the presence of 2-amino-5-phosphonovalerate

(APV) (40 mM) and in the absence of tetrodotoxin (TTX) to allow

action potential-driven presynaptic stimulation. Results showed

that the amplitudes and frequencies of the AMPAR-sEPSCs from

the saline infused and non-infused control rats were not different

(Fig. 4A; Table 1; F = 0.87, n = 6, P.0.05). The 192-saporin

infused rats showed reductions in both the amplitude and

frequency of AMPAR-sEPSCs (Fig. 4A; Table 1; F = 7.38, 9.04,

n = 6, P,0.01). Cumulative fraction histograms for amplitude

were constructed for the three data sets. For amplitude the curve

of 192-saporin lesioned animals was left of the two control groups

indicating a reduction in amplitude (Fig. 4B). A similar shift, but to

the right of control data, was observed for lesioned animals when

cumulative frequency curves were constructed for inter-event

Figure 1. Infusion of 192-saporin results in lesioning of cholinergic neurons. Photomicrographs (506 magnification) of MS region
immunostained with anti-ChAT antibody in (A) a saline infused rat and (B) in a rat infused with 192-saporin.
doi:10.1371/journal.pone.0031073.g001
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intervals (Fig. 4C). This indicates that an increase in inter-event

intervals (i.e. decrease in frequency) occurs in the lesioned rats.

Similar results were found when AMPAR-mEPSCs were

analyzed. Both the frequency and amplitude were reduced in

slices from rats subjected to MS cholinergic lesions (Fig. 4D;

Table 1; F = 4.57, 17.93, n = 6, P,0.05). The mean amplitudes

and frequencies of the AMPAR-mEPSC for saline infused and

non-infused control rats were not different. Complete inhibition of

mEPSCs by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX)

application (10 mM) indicated that recorded currents were

mediated by AMPA receptors (data not shown). These results

demonstrate a decline in AMPA receptor mediated synaptic

currents in primary neurons of the CA1 region of the

hippocampus in lesioned rats.

Cholinergic lesions are associated with reduced AMPA
receptor single channel properties

Channel properties of single synaptic AMPA and NMDA

receptors may determine the amplitude and time course of

glutamatergic synaptic transmission [54,55]. Furthermore, AMPA

Figure 2. Impairment of LTP in 192-saporin infused rats. (A) Summary data for experiments in which LTP was induced by TBS and measured at
55–60 min after TBS. LTP in 192-saporin infuced rats (gray circles) was reduced compared to the saline infused controls (black circles). (B) Sample
traces depicting LTP in saline infused control rats and lack of LTP in 192-saporin infused rats. Traces with gray lines represent those collected prior to
TBS, during baseline recording, and the traces with black lines represent those taken 55–60 min after TBS. Calibration: 1 mV, 20 ms. (c) Bar chart
showing drastic reduction of LTP in 192-saporin infused rats (gray) compared to the saline infused controls (black).
doi:10.1371/journal.pone.0031073.g002

Figure 3. Reduction in the TBS facilitation in 192-saporin infused rats. (A) TBS stimulation protocol and samples of TBS induced traces from
saline infused control and 192-saporin infused rats. (B) Bar chart exhibiting reduction of facilitation within the first TBS in 192-saporin infused rats
(gray) compared to the controls (black); Calibration: 4 mV, 200 ms. (C) Facilitation of between TBS potentiation was impaired in 192-saporin infused
rats (gray bars) compared to the saline infused controls (black bars) as shown by the sample traces and the bar chart. Sample traces are the fEPSPs in
response to the first pulse in the first TBS. Calibration: 2 mV, 20 ms.
doi:10.1371/journal.pone.0031073.g003
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receptor channel properties influence LTP. Therefore, we studied

the single channel properties of AMPA receptors in biochemically

isolated synaptosomes using tip-dip lipid bilayer reconstitution

technique [56]. These experiments were designed to determine

whether the single channel properties of synaptic receptors were

altered following MS cholinergic lesions. Single channel current

amplitude histograms were constructed for the two controls and

the lesioned groups (Fig. 5). The probability of channel opening

(Po) was not different between the two control groups (Fig. 5A and

B; Table 2; F = 1.05, P.0.05, n = 10). Data from 192-saporin

lesioned rats showed a reduction in Po that is markedly different

from the control groups (Fig. 5C; Table 2; F = 8.71, P,0.01,

n = 11). We also analyzed the dwell times of channel open and

closure states and fitted the frequency histograms with the

exponential decay method (Fig. 5D–F). The channel open times

(tO), which were best fitted with two terms, were not different

between the two controls (Table 2; F = 0.79, 2.77, P.0.05, n = 10).

The 192-saporin lesioned rats showed reductions in both of the

Figure 4. Inhibition of MS cholinergic pathway decreases the AMPA receptor activity in the CA1 pyramidal neurons of the
hippocampus. (A) Representatives of AMPA receptor mediated sEPSC traces in controls and 192-saporin infused rats recorded at 265 mV
membrane potential; Calibration: 40 pA, 1 s. The adjacent average traces depict the reduction in the amplitude in the MS cholinergic lesioned rats
compared to control rats, which show no difference in amplitude; Calibration: 15 pA, 30 ms. (B) Cumulative fraction plot of sEPSC amplitude from the
composite data shows the shift of 192-saporin curve to the left from the controls, indicating reductions in amplitude. (C) Cumulative fraction plots of
sEPSC interevent intervals exhibiting increased values for 192-saporin infused rats suggesting decreased frequency. (D) Representative traces of
AMPA receptor mediated mEPSCs for the three groups (Calibration: 10 pA, 1 s) and the mEPSCs (Calibration: 10 pA, 30 ms) to show reduced
amplitude in the 192-saporin infused rats. (E) Cumulative fraction plots for amplitude and (F) interevent interval exhibiting reduced amplitude and
frequency.
doi:10.1371/journal.pone.0031073.g004
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dwell open time values (Table 2; F = 6.07, 11.39, P,0.01, n = 11).

Another remarkable alteration in single channel property between

192-saporin infused and control rats was the run-down of single

channel burst activity in the lesioned rats. The number of bursts

were decreased and interburst duration was increased in 192-

saporin infused rats compared to the controls (Table 2; F = 17.49,

P,0.01, n = 10). Taken together, the data suggests that altered

AMPA-EPSCs in saporin infused slices are at least, in part, due to

the modified single channel properties of synaptic AMPA

receptors.

NMDA receptor mediated whole cell currents were
decreased following cholinergic lesions

The NMDA receptors, the major glutamate receptor subtype

with high Ca2+ permeability, play a vital role in the induction

phase of LTP in the CA1 region [1,57]. Our results suggest that

LTP induction is impaired in rats subjected to MS cholinergic

lesions. Therefore, we investigated the effect of 192-saporin

induced cholinergic lesioning on the functional properties of

NMDAR-sEPSCs and NMDAR-mEPSCs. The average ampli-

tudes of sEPSCs in the saline infused and non-infused controls

were not different; likewise, the frequencies between these two

groups were not different. Hence, there were no difference

between the controls (Fig. 6A; Table 1; F = 1.07, P.0.05, n = 9).

Analysis of hippocampal slices from 192-saporin infused rats

revealed decreases in both the frequency and the amplitude of

NMDAR-sEPSCs (Fig. 6A; Table 1; F = 8.35, 12.82, P,0.01,

n = 7). Cumulative fraction plots for amplitude (Fig. 6B) and inter-

event interval (Fig. 6c) from all experimental data indicate

reductions in both amplitude and frequency of NMDAR-sEPSCs

in the 192-saporin infused rats.

Analysis of the NMDAR-mEPSCs indicated a reduction in the

average amplitude and frequency in the 192-saporin infused rats

(Fig. 6D). There was no difference in the amplitude or frequency

of NMDAR-mEPSCs from the two control groups (Fig. 6; Table 1;

F = 1.21, 1.58, P.0.05, n = 9). The NMDAR-mEPSCs recorded

in hippocampal slices from 192-saporin infused rats showed

decreases in both amplitude and frequency (Fig. 6; Table 1;

F = 8.04, 10.96, P,0.01, n = 9). Cumulative fraction plots for

amplitude (Fig. 6E) and inter-event interval (Fig. 6f) depicts

reductions in both amplitude and frequency of NMDAR-mEPSCs

in the 192-saporin infused animals. In summary, these results

indicate reduction of NMDAR mediated synaptic currents

associated with cholinergic lesioning of the MS.

Cholinergic lesioning impairs single channel properties of
NMDA receptors in isolated synaptosomes

Single channel currents of synaptic NMDA receptors exhibited

no difference (Fig. 7; Table 2; F = 0.88, 1.29, P.0.05; n = 10) in

either the Po or the tO values between the non-infused and saline-

infused controls. The Po and the tO values of 192-saporin infused

animals were reduced compared to controls (Fig. 7; Table 2;

F = 7.98, 13.26, P,0.01, n = 11). The bursting activity of synaptic

single channel NMDA elicited currents was also reduced. The

number of bursts was drastically reduced in lesioned animals while

the inter-burst duration was prolonged in lesioned animals

(Table 2; F = 8.53, 11.07, P,0.01, n = 11). These results suggest

that the single channel properties of synaptic NMDA receptors are

decreased, which may contribute to the reduction in whole cell

currents.

Discussion

The current study investigated LTP and the functional

properties of synaptic AMPA and NMDA receptors in the

hippocampus following immune-lesioning of the MS cholinergic

neurons. Specifically, the intrinsic electrophysiological properties

of AMPA and NMDA receptors were studied in both whole cell

slice recordings and single channel recordings from isolated

synaptosomes. Recordings were performed in hippocampal CA1

region 4–6 days following medial septal lesioning with 192-

saporin. The coordinates and the dose of 192-saporin used in this

study are suitable for targeting the medial septum and vertical limb

of the diagonal band cholinergic terminals and low enough to

avoid non-specific damage [58]. As established in previous reports,

the 192-saporin administration resulted in selective cholinergic

lesioning in female rats [36,59,60]. The experimental time point

was selected because cholinergic neurons show significant

neurodegeneration and prior transient declines in learning and

memory occur in this animal model [43,44,45].

Several studies demonstrated that various forms of cognitive

tasks are controlled by the interaction of both glutamatergic and

cholinergic systems. Several studies have established through

pharmacological manipulations that interactive modulation be-

tween the cholinergic and glutamatergic neurotransmitters systems

represents a critical mechanism in different cognitive functions

[61,62,63,64,65,66,67]. Furthermore, interaction of these neuro-

transmitter systems in the hippocampus has also been reported to

regulate cognitive tasks [68,69,70,71]. Physiologically, interactions

between cholinergic and glutamatergic systems can control forms

of synaptic plasticity [72,73] that may regulate cognitive processes

[74,75,76]. More specifically septohippocampal afferents release

ACh and generate the theta rhythm that can influence memory.

Prolonged activation of muscarinic receptors may enhance

glutamatergic synaptic efficacy [17,77] implying that cholinergic

activation may play a vital role in memory encoding [75]. In

further support, a recent study demonstrated that activation of

muscarinic receptors contributed to a form of LTP in CA1

pyramidal neurons, through intracellular uncaging of Ca2+ ions

Table 1. Amplitude and frequency of whole cell currents
mediated by AMPA and NMDA receptors.

Amplitude (pA) Frequency (Hz)

AMPAR-sEPSC:

Control (saline infused) 45.664.2 8.262.5

Control (not infused) 44.165.7 7.862.9

192-saporin 24.663.7# 2.360.8#

AMPAR-mEPSC:

Control (saline infused) 18.763.2 3.661.2

Control (not infused) 18.463.6 3.261.4

192-saporin 8.562.6* 0.660.3*

NMDAR-sEPSC:

Control (saline infused) 22.362.6 7.362.7

Control (not infused) 21.561.9 7.162.4

192-saporin 11.362.6# 2.860.9#

NMDAR-mEPSC:

Control (saline infused) 11.861.3 2.161.3

Control (not infused) 12.461.7 2.361.1

192-saporin 5.861.6# 0.1960.2#

*P,0.05,
#P,0.01.
doi:10.1371/journal.pone.0031073.t001
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Figure 5. Ablation of MS cholinergic pathway alters the single channel properties of AMPA receptors. Sample traces of single channel
recordings and respective current amplitude histograms for (A) non-infused, (B) saline infused, and (C) 192-saporin infused rats (Calibration: each
3 pA, 200 ms). Dwell open time histograms of (D) non-infused, (E) saline infused, and (F) 192-saporin infused rats were fitted by two exponential
fittings. The AMPA elicited currents were completely blocked by the addition of CNQX (data not shown).
doi:10.1371/journal.pone.0031073.g005

Table 2. Burst analysis of AMPA and NMDA receptor single channel currents in synaptosomes.

Probability of opening Open time (tO1; ms) Open time (tO2; ms) Number of bursts
Interburst duration
(ms)

AMPA receptor currents:

Control (saline infused) 0.2060.03 1.6960.21 6.6960.68 8469 0.3760.23

Control (not infused) 0.2260.02 2.4360.21 6.5760.18 9165 0.4160.24

192-saporin 0.0660.03# 0.2660.41# 2.4360.87# 1663# 19.8063.54#

NMDA receptor currents:

Control (saline infused) 0.2260.05 2.5860.73 8.1662.46 123611 0.3060.25

Control (not infused) 0.2360.02 2.7560.31 8.7162.06 132615 0.2560.13

192-saporin 0.0960.02# 0.7260.18# 3.8261.09# 1266* 14.8763.28*

*P,0.05,
#P,0.01.
doi:10.1371/journal.pone.0031073.t002
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[78]. Other brain regions such as the visual cortex also undergo

changes in plasticity and switch from LTP to long term depression

(LTD) upon TBS induction, when cholinergic projections were

selectively lesioned by injecting 192-saporin into the lateral

ventricles of young rats [79]. Endogenously released ACh

facilitated LTP in the hippocampus. Lesioning of cholinergic

neurons in the MS reduces electrically evoked ACh [80], which

facilitates LTP in the hippocampus [73], and may be responsible

for the sharp decline in LTP. A previous report described impaired

LTP induction following intraventricular infusion of the immu-

notoxin saporin [81]. The intraventricular administration in this

study caused a more general decline in cholinergic terminal across

more brain regions compared to our study. Furthermore, only MS

cholinergic afferents were lesioned and only hippocampal afferents

were targeted in our study, demonstrating that this region is

critical for LTP in the hippocampus. Hence, these previous studies

support our results that LTP is severely diminished shortly after

the selective cholinergic lesioning of the MS. Since LTP is a widely

accepted cellular model for memory encoding, learning and

memory deficits are often reported along with diminished LTP in

the hippocampus. While some studies reported no change in

memory upon MS lesioning of cholinergic terminals, as empha-

sized in the introduction of this report, a detailed analysis of many

of the reports revealed mild and/or transient decreases in learning

Figure 6. Lesioning of MS cholinergic pathway decreases the NMDA receptor mediated currents in the CA1 pyramidal neurons. (A)
Representatives of NMDA receptor mediated sEPSC traces recorded at 240 mV membrane potential shows reduction of the frequency in the 192-
saporin infused rats compared to the controls (Calibration: 40 pA, 1 s). The adjoining average traces of sEPSCs exhibit the reduction in amplitude in
the 192-saporin infused rats (Calibration: 15 pA, 30 ms). Cumulative fraction curves of (B) amplitude and (C) interevent interval showing reduction in
amplitude and frequency in the 192-saporin infused rats. (D) Representative segments of NMDA mediated mEPSCs (Calibration: 10 pA, 1 s) and
average mEPSCs (Calibration: 10 pA, 30 ms) depicts reduced amplitude and frequency in the 192-saporin infused rats compared to the two controls.
Cumulative fraction curves for (E) amplitude and (F) interevent interval of mEPSCs.
doi:10.1371/journal.pone.0031073.g006
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and memory. This explains our results that LTP is decreased at an

early stage following lesioning and strengthen the notion that

selective cholinergic lesioning in the MS parallels a decline in

learning and memory as well as LTP in the hippocampus.

During LTP, quantal size increases and silent synapses that are

devoid of surface AMPA receptors may become active following

the postsynaptic recruitment of AMPA receptors [36]. Results

from our experiments indicate a decrease in both frequency and

amplitude of mEPSCs, suggesting a decreased probability of

release and quantal content. Cholinergic receptors are known for

their regulatory role on glutamate receptors in the hippocampus.

Developmental exposure to nicotine resulted in decreased AMPA

receptor currents in the CA1 pyramidal cells [82] and enhanced

NMDA currents in the developed hippocampus [83]. These

findings support a mechanism where modulation of ACh receptors

regulates both NMDA and AMPA receptor mediated synaptic

currents in the hippocampus. Impairments in the basal, true

synaptic currents mediated by AMPA and NMDA receptors may

also be responsible for the decline in LTP in 192-lesioned rats.

Therefore, our results along with previous reports suggest that

depletion of cholinergic neurons in the MS disrupts the ACh

receptor mediated regulation of AMPA and NMDA receptor

currents in the CA1 region of the hippocampus.

The septohippocampal cholinergic innervations are also known

to control gamma-amino butyric acid (GABA)-ergic interneurons

of the CA1 field [84]. Studies show that cholinergic control of the

GABAergic interneurons was abolished in 192-saporin infused rats

[85], yet the GABAergic inhibitory synaptic events were

unchanged in 192-saporin treated animals compared with controls

[86]. The GABAergic interneurons regulate the glutamate

currents in the primary pyramidal neurons in the CA1 region,

however, in our experimental conditions addition of GABAA

blockers to the extracellular solution in both control and treated

animals largely eliminated this possibility. A previous study

reported that cholinergic currents in the CA1 neurons were

insensitive to GABAB blockers [87]. Hence, alterations in the

Figure 7. Cholinergic depletion in the MS leads to alterations in NMDA elicited synaptic single channel currents. Sample traces and
respective current amplitude histograms of (A) non-infused control rats, (B) saline infused rats, and (C) 192-saporin infused rats show that channel
open peak (right peaks in each histogram) in the 192-saporin data is reduced demonstrating a decrease in open probability (Calibration: each 4 pA,
200 ms). Dwell open time histograms of NMDA currents were best fitted with two terms for (D) non-infused, (E) saline infused, and (F) 192 saporin
infused data. The NMDA elicited currents were confirmed by addition of APV to the extracellular solution to completely block these currents (Data
not shown).
doi:10.1371/journal.pone.0031073.g007
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inhibitory currents from GABAergic neurons are unlikely to be

responsible for changes in AMPA and NMDA receptor function.

A novel and interesting finding of this study is the altered single

channel properties of synaptic AMPA and NMDA receptors. This

adds support to the modified mEPSC properties as mEPSC

amplitude and single channel open probability are positively

correlated [88]. The amplitude of glutamate mediated mEPSCs in

the CA1 neurons are the product of the summation of single

channel currents from the respective receptors, which are

activated by the quantal release of glutamate from presynaptic

terminals. Therefore, alterations in amplitude of EPSCs observed

in lesioned hippocampi in this study are partly due to altered single

channel current. It is also known that modifications in single

channel properties of synaptic AMPA receptors can influence LTP

[4,7,8]. Consistently, analysis of single channel properties of

synaptic AMPA and NMDA receptors indicated significant

reductions in open probabilities and open times. Therefore, apart

from the strong possibility of altered quantal content, postsynaptic

modifications in single channel properties also play a role in

reducing the whole cell currents as well as reduction in LTP. The

single channel properties of glutamate receptors are regulated by

kinase mediated phosphorylation of intracellular domains

[89,90,91,92,93,94]. Interestingly, reduced cholinergic activity

may result in decreased kinase activities. A recent report showed

that lack of m1 muscarinic receptors resulted in reduced PKC

activity [95]. Lack of cholinergic input has also been shown to

decrease PKA activity [96], which is involved in the regulation of

single channel properties of AMPA receptors. Therefore, it is

reasonable to presume that reduced kinase activity associated with

selective cholinergic lesioning resulted in altered single channel

properties of glutamate receptors.

In summary, our findings provide physiological support to the

existing hypothesis that septohippocampal cholinergic projections

modulate learning and memory by regulating single channel

properties of synaptic glutamate receptors [97,98,99]. Specifically,

we demonstrate that septohippocampal cholinergic projections

modulate hippocampal glutamatergic synaptic transmission and

thereby, alter synaptic plasticity mechanisms required for learning

and memory.

Materials and Methods

Animals, surgical Procedure, and slice preparation
Female Sprague Dawley rats weighing 230–300 g were individ-

ually caged and kept in a 12-h light/dark cycle. Rats were

anesthetized (Ketamine:Xylazine, 87 mg/kg:13 mg/kg; i.p.),

placed on a stereotaxic frame, a dorsal midline skin incision was

made over the skull, and a small burr hole was drilled. The

immunotoxin 192-saproin (50 ng in 2 ml per rat) (192 IgG Saporin,

Advanced Targeting Systems, San Diego, CA) in sterile saline was

infused into the MS through a Hamilton syringe (0.4 ml/min for

5 min) using the following stereotaxic coordinates: from bregma, AP

+0.2 mm; DV 26.0 mm (from the skull); ML 0.0 mm [100].

Control rats received similar infusions of sterile saline. The needle

was left in place for an additional 5 min to prevent backflow of

solution along the needle track. A separate set of rats was subjected

to the above procedure except that no infusions were made. Four to

six days after surgery the rats were briefly anesthetized, decapitated,

and the brains were isolated in ice cold dissection buffer containing

(in mM): 85 NaCl, 2.5 KCl, 4 MgSO4, 0.5 CaCl2, 1.25 NaH2PO4,

25 NaHCO3, 25 glucose, 75 sucrose 0.5 ascorbate, and 2 kynurenic

acid bubbled with 95%CO2/5%O2 at pH 7.4. Coronal brain slices

(400 mm) with hippocampi were cut on a vibratome while immersed

in the oxygenated dissection buffer. Slices were immediately

transferred to an incubation chamber containing artificial cerebro-

spinal fluid (aCSF) consisted of (in mM): 119 NaCl, 2.5 KCl, 1.3

MgSO4, 2.5 CaCl2, 1 NaH2PO4, 26 NaHCO3, and 11 dextrose

bubbled with 95%CO2/5%O2 at pH 7.4. For slices that were

subjected to whole cell current recordings the aCSF was

supplemented with 2 mM kynurenic acid during the incubation.

Slices were incubated for at least 1 hour before the electrophysi-

ological recordings. All chemicals for preparation of solutions were

purchased from Sigma (St. Louis, MO). All the ion channel blockers

were from Tocris (Ellisville, MO). TTX was from Sigma. Animal

housing, handling, and experimentation were performed as per the

protocol approved by Auburn University Institutional Animal Care

and Use Committee (IACUC; PRN 2003-0454).

Immunohistochemistry
Randomly-selected groups of rats were anesthetized with sodium

pentobarbital (50 mg/kg; i.p.) and transcardially perfused with 4%

paraformaldehyde (PFA) in phosphate buffered saline at pH 7.2

(PBS). Brains were kept in the fixative overnight and then transferred

to 30% sucrose in PBS and stored at 4uC until use. Brain sections

(16 mm) consisting MS were cut on a cryostat and were processed for

immunohistochemistry. Sections were washed in cold PBS (pH 7.2)

several times and endogenous peroxidase activity was quenched by

incubating for 10 min at room temperature (RT) with 0.3% H2O2 in

0.01 M PBS. Non-specific labeling was blocked by incubating with

10% normal horse serum (ICN Biomedicals, Aurora, OH) in PBS

for 30 min at RT. Sections were then incubated in a solution

containing rabbit anti-choline acetyltransferase (ChAT) antibody

(Chemicon, Temecula, CA, USA) diluted 1:500 in 10% normal

horse serum in PBS for 12 hrs at 4uC. Sections were incubated with

goat anti-rabbit biotinylated secondary antibody (Vector, Burlin-

game, CA) diluted 1:1,000 in 10% normal horse serum in PBS.

Signal was amplified by incubation with avidin-biotin-peroxidase

complex (ABC kit, Biomeda, FosterCity, CA). Labeling was

visualized with 1% diaminobenzidine tetrahydrochloride (DAB)

and 0.03% H2O2 in PBS. Following several washes in PBS sections

were mounted onto slides for imaging.

Extracellular recordings in slices
Slices were transferred to a submerged type recording chamber

and continuously perfused with oxygenated aCSF. fEPSPs were

evoked by stimulating Shaffer collateral afferents in the stratum

radiatum with a bipolar electrode (MPI, Gaithersburg, MD) and

recordings were made in the CA1 axons with a glass pipette filled

with aCSF (1–4 MV). Signals were digitized, amplified and

acquired using LTP program [4]. Stimulation command was

provided through the LTP program and was regulated by a

stimulus isolator. After recording fEPSPs for 15 min, with an

amplitude that is 50% of the sub-threshold maximum, LTP was

induced by delivering 5 trains of TBS separated by 20 sec. Each

TBS consisted of 10 trains of bursts, each of which had 4 pulses at

100 Hz, with an inter burst interval of 200 ms. LTP was measured

at 55–60 min post TBS.

Whole cell recordings
Slices were placed in a submerged type recording chamber and

continuously perfused with oxygenated aCSF. Individual CA1

pyramidal neurons were visually identified and selected utilizing a

Nomarski differential interference contrast microscope with water

immersion optics (Olympus BX51W). Conventional intracellular

recordings from selected neurons were obtained using glass

micropipettes (5–10 MV) that were filled with a solution contain-

ing:100 mM K-gluconate, 0.6 mM EGTA, 5 mM MgCl2, 2 mM

ATP-Na, 0.3 mM GTP-Na and 40 mM HEPES. Intracellular
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recordings of mEPSCs and sEPSC were recorded with axopatch

200B amplifier (Molecular Devices, Sunnyvale, CA).

To isolate AMPA receptor mediated mEPSCs (AMPAR-

mEPSC), recordings were performed in the presence of the

GABA receptor antagonist picrotoxin (50 mM), Na+ channel

blocker TTX (1 mM), and NMDA receptor antagonist APV

(40 mM). The recordings of NMDA receptor mediated mEPSCs

(NMDAR-mEPSC) were similar to those of AMPA except that

APV was replaced with CNQX (4 mM) to block AMPA currents

and the aCSF was Mg2+ free. To record sEPSC of both the

NMDA and AMPA components the conditions mentioned above

were maintained. However, the extracellular calcium:magnesium

ratio was altered to 4:1 to exploit the release probability and to

rule out quantal variability of pre-synaptic glutamate.

Preparation of Synaptosomes
Hippocampi were rapidly dissected out from randomly selected

groups of anesthetized rats and synaptosomes were prepared as

previously described [101] with some modifications. Briefly, hippo-

campi were homogenized with modified Kreb-Henseleit (mKREBS)

buffer containing 118.5 mM NaCl, 4.7 mM KCl, 1.18 mM MgSO4,

2.5 mM CaCl2, 1.18 mM KH2PO4, 24.9 mM NaHCO3, 10 mM

dextrose, 10 mg/ml adenosine deaminase and pH was adjusted to 7.4

by bubbling with 95%/5%:O2/CO2. The mKREBS buffer was

supplemented with 0.01 mg/ml leupeptin, 0.005 mg/ml pepstatin A,

0.10 mg/ml aprotinin and 5 mM Benzamide. The homogenate was

diluted adequately with mKRBS buffer before being filtered through

a 13 mm diameter millipore syringe filter. The filtrate was forced

through a nylon filter (100 mm pore size). The pre-filtered mixture was

further filtered through a 5 mm Millipore syringe filter (Millex SV)

pre-wetted with mKRBS buffer. The filtrate was then spun at 10006
g for 15 min in a microfuge at 4uC. The supernatant was discarded

and pellets (synaptosomes) were re-suspended in mKREBS buffer and

stored at 280uC.

Single channel recordings in synaptosomes
Single channel recordings from synaptic AMPA receptors were

performed as described previously [56]. In brief, a phospholipid

bilayer [made of 1,2 diphytanoyl-sn-glycero-3-phosphocholine

(Avanti Polar-Lipids Inc., Alabaster, AL) in anhydrous hexane

(Aldrich Chemical Co., Milwaukee, WI); 1 mg/ml], was formed

by tip-dip method at the tip of a glass pipette (100 MV) filled with

an internal solution consisted of (in mM): 110 KCl, 4 NaCl, 2

NaHCO3, 1 MgCl2, 0.1 CaCl2, and 2 MOPS (pH adjusted to 7.4).

The extracellular bath solution (,300 ml) contained (in mM): 125

NaCl, 5 KCl, 1.25 NaH2PO4, and 5 Tris HCl. Once a stable

membrane was formed, 3–5 ml suspension of the synaptosomes

was delivered to the bath solution and the ion channel specific

agonist was added. Voltage was applied across the membrane to

evoke single channel activity of the receptors that are reconstituted

in the bilayer membrane. To record AMPA receptor currents,

290 nM AMPA was added to the bath solution which was

supplemented by 50 mM APV (NMDA antagonist), 1 mM

SYM2081 (kainate receptor antagonist), 100 mM Picrotoxin

(GABAA receptor antagonist), 2 mM TEA (potassium channel

antagonist), and 1 mM TTX (sodium channel antagonist). At the

end of each recording, AMPA currents were confirmed by the

addition of 1 mM CNQX. NMDA receptor currents were

activated by 3 mM of NMDA in the presence of 1 mM

SYM2206 (AMPA receptor antagonist), 1 mM SYM2081,

100 mM picrotoxin, 2 mM TEA, and 1 mM TTX. NMDA

currents were confirmed by the addition of 50 mM of APV.

Single channel currents were filtered at 2 kHz and digitized at

5 kHz (Mini-digi, Molecular Devices) with pClamp9 software

(Molecular Devices) and saved in a computer. Only the data

exhibiting long stretches of single channel current transition

without base line drifts were chosen for quantitative analysis.

Data analysis
The mEPSC, sEPSC, and LTP data were analyzed with one-way

ANOVA. The mEPSC and sEPSC data were analyzed with Mini

Analysis program (Synaptosoft, Fort Lee, NJ). The EPSC amplitude

(A) was measured from the baseline with the amplitude threshold for

detection of mEPSCs was set above the noise level, at four times the

SD of mean noise level, and individual mEPSCs satisfying these

criteria were selected manually. For single channel analysis only the

traces showing stable baseline without drastic shifts and having

recurrent channel activity were chosen. The single channel open

probability was estimated as Po = Ro/(Rc+Ro), where Rc and Ro

represent the areas under the current-amplitude histogram

corresponding to close and open states, respectively [56]. The all

points-current amplitude histograms was constructed and fitted with

two-term Gaussian method using Microcal Origin program

(OriginLab Corp., Northampton, MA) to identify individual

conductance levels of channel open and close states. The single

channel conductance was computed by plotting current as a

function of membrane voltage, according to the equation g = I/

(V2Vo), where I is the single channel current, V is the voltage, and

Vo is the reversal potential [56]. Open and close time histograms

were fitted best with the exponential probability function and

variable metric method using pClamp 9.0 Program. Data were

analyzed with ANOVA with Tukey’s post hoc test, and presented as

mean6SEM with statistical significance accepted at P#0.05.
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