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Abstract

MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological
processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers
cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not
been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global
alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC
showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were
found to be highly temporally and cell line - dependent in hESC. Time-course studies showed that the 16 hr miRNAome
radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be
involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness
of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane
system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings
reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of
radiation in hESC.
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Introduction

MicroRNAs (miRNAs) are considered to constitute a class of

small noncoding RNAs vitally involved in regulation of gene

expression and signal transduction [1]. Published data suggest

miRNAs act as post-transcriptional regulators that may control the

expression of about 60% of human genes [2] by means of

messenger RNA (mRNA) decay and/or translational repression

[3]. Deregulated expression of miRNAs was shown to underlie

many diseased states; and miRNAome patterns prove to be highly

specific, in many cases accurately reflecting the stage and

prognosis of disease [4,5]. Increasing body of evidence implies

changes in miRNA expression profiles after genotoxic stress

exposures, including ionizing radiation (IR) [6,7,8]. Previous

studies analyzed miRNA expression following IR either in fully

differentiated human normal somatic cells/artificial 3D tissues

[9,10,11,12,13,14] or in cancerous cells [15,16,17,18,19,20].

Human embryonic stem cells (hESC) represent pluripotent cells

with unique capabilities to differentiate into virtually all cell types

of a human body. Human stem cells are believed to be endowed

with mechanisms to ensure the superior genome fidelity that are

just begun to be explored systematically [21,22]. Exposures to

medical, environmental or accidental sources of radiation can

challenge the human well-being in the exposed populations,

including pregnant women. We, and others, recently studied the

IR response of hESC extensively [23,24,25,26,27,28,29]. Howev-

er, none of the published papers focused on elucidating the

miRNA signatures in hESC after IR exposures. Moreover, since

the human genome is estimated to encode more than 1,000 of

distinct miRNA species, it is imperative to employ high-

throughput methodologies to fully analyze the role of miRNA

species in biological processes. To the best of our knowledge, only

one recent report analyzed miRNAome changes in irradiated

human cells at a whole genome-wide level [20].

In the present work, we aimed to study the effects of IR on

global miRNAome in hESC, to perform prediction of the

biological processes/themes affected by miRNAome changes,

and to develop a miRNA-based gene expression signature specific

for irradiated, but not for non-irradiated, hESC. For the first time,

we found that miRNAome undergoes genome-wide alterations in

hESC after IR. All miRNAs published in the Sanger miRBase

release version 15.0 (http://microrna.sanger.ac.uk/sequences/

index.shtml) were interrogated. The expression levels of 1,090

miRNA species in irradiated hESC showed statistically significant

changes in 54 genes following 1 Gy of X-ray exposures (p,0.05).

We found that many miRNA species were modulated in a cell line-

specific manner in hESC after IR, with H1 cell line being more

radiation responsive than H9. Hierarchical clustering, class

prediction and Gene Ontology analysis were performed to

characterize hESC miRNAome response to radiation in more

detail. Positive regulation of differentiation-, cell cycle-, ion

transport- and endomembrane system-related processes were

predicted as being negatively affected by alterations in miR-

NAome in irradiated hESC.
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Materials and Methods

1. Cell culture and treatments
Human ESCs (H1 and H9 cell lines, WiCell, Madison, WI,

passage 35–40; BG01V line, ATCC, Manassas, VA) were

routinely cultured in mTeSR-1 medium (Stemcell Technologies,

Vancouver, Canada) using cell culture vessels coated with BD

Matrigel hESC-qualified Matrix (BD Biosciences, San Jose, CA) at

37uC and 5% CO2. Cells were grown following supplier’s protocol

and as described in [23,24]. Cell cultures were exposed to 1 Gy of

X-ray irradiation using X-RAD 320 Biological Irradiator unit

(Precision X-Ray, Inc., North Branford, CT; dose rate about

1 Gy/min; 320 kV, 12.5 mA); then the cells were returned to CO2

incubator and harvested at 2 h and 16 h post-irradiation for

analysis. The mock-irradiated cells for each time-point were used

as a control. For functional analysis of hsa-mir-575, both gain- and

loss-of-function studies were carried out. For overexpression

studies, specific hsa-mir-575 mirVana miRNA mimic transfection

experiments were performed with H1 hESC cultures according to

manufacturer’s protocol (Applied Biosystems, Carlsbad, CA).

MirVana miRNA inhibitor (Applied Biosystems, Carlsbad, CA)

was used to knock-down hsa-mir-575 expression in a separate set of

experiments. Transfection studies, in parallel with negative control

miRNA inhibitor experiments, were carried out with Stemfect

RNA Transfection kit per vendor’s protocol (Stemgent, Cam-

bridge, MA). To examine the viability of hESC in colonies upon

hsa-mir-575 overexpression, cells were incubated at 37uC for 1 h

with Hoechst 33342 (8 mg/ml; Molecular Probes, Eugene, OR)

and propidium iodide (PI, 20 mg/ml; Sigma, St. Louis, MO) as in

[25]. Cell colonies were visualized using a fluorescence microscope

(Axioplan 2, Zeiss, Thornwood, NY) equipped with a fluorescent

light source.

2. RNA sample preparation, probe labeling and DNA
microarray procedure

The extraction of total RNA was performed with miRNeasy kit

(Qiagen, Valencia, CA) per manufacturers’ instructions. The

amount and quality of RNA samples were assessed on the Agilent

2100 Bioanalyzer with RNA 6000 Nano Reagents and Supplies

(Agilent, Santa Clara, CA). Subsequently, 0.5 mg of total RNA was

used in each reaction to generate labeled samples with miRCURY

LNA microRNA Hy5 Power labeling kit (Exiqon, Woburn, MA).

MiRNA spike control was added to the RNA samples prior to the

labeling reactions following the manufacturer’s protocol. The

labeled targets corresponding either to experimental or control

samples were separately hybridized to ‘‘3D-Gene’’ oligo micro-

arrays provided by the manufacturer’s (Toray Industries Inc.,

Tokyo, Japan; miRBase release 15.0) containing 1,090-elements

spotted in duplicate using Takara Hybridization chambers

(Takara Bio, Inc., Japan). Protocols for microarray hybridization

and washing were as provided by manufacturer. Hybridized DNA

microarrays were scanned on an Axon GenePix DNA microarray

scanner (Molecular Devices, Inc., Sunnyvale, CA), and TIFF

images were subsequently generated for further analysis. The

sample labeling, hybridization, ‘‘3D-Gene’’ array washing and

scanning were conducted by Toray Industries Inc. (Tokyo, Japan).

3. Microarray data analysis
Analyses were performed using BRB-ArrayTools Version 4.2.0

developed by Dr. Richard Simon and BRB-ArrayTools Develop-

ment Team (Biometric Research Branch, National Cancer

Institute, NIH). Time-matched irradiated versus sham-irradiated

samples were used to determine the radiation–responsive miRNA

species for each data point. The data from the microarray was

collected and analyzed in accordance to the Minimum Informa-

tion About a Microarray Experiment (MIAME) guidelines.

MIAME-compliant raw data for this series of experiments have

been deposited in the ArrayExpress database maintained by the

European Bioinformatics Institute (accession no. E-MEXP-3366).

Differentially expressed miRNA genes were identified using

random-variance t-test [30] and as in [31,32]. Changes in gene

expression were considered statistically significant if the p values

for corresponding genes were less than 0.05.

4. Prediction of miRNA targets
Candidate miRNA species with a microarray intensity signal

$100 and p-value#0.05, identified as being differentially

expressed after IR exposures with BRB-ArrayTools, were chosen

for target prediction analysis. MiRanda database was used to

predict miRNA targets [33]. Targets were input to the Database

for Annotation, Visualization and Integrated Discovery (DAVID)

[34,35] themes analysis. Biological themes/processes were deter-

mined using the Functional Annotation Clustering feature using p-

value less than 0.05.

5. Quantitative real-time PCR
Total RNA samples used for the microarray analysis were

reverse transcribed to cDNA template using RT-specific primers

(Applied Biosystems, Carlsbad, CA). Then, TaqMan miRNA

assays were performed in triplicate using miRNA Cells-to-Ct kit

reagents (Applied Biosystems) per manufacturer’s instructions. The

U6 snRNA was used as an internal control. RT-PCR was

performed on iCycler iQ (Bio-Rad, Inc., Hercules, CA) in 20-ml

reactions by using TaqMan Assay-on-Demand primers/probe sets

(Applied Biosystems) for the following miRNA genes: hsa-miR-

302b, hsa-miR-575, hsa-miR-1274b, hsa-miR-1915 and hsa-miR-

1973. In a separate set of experiments, H1 hESC cultures

transfected either with hsa-mir-575 mirVana miRNA mimic or

miRNA inhibitor were subjected to lysis 5 days post-transfection.

TaqMan gene expression studies for POU5F1 and SOX2 were

carried out in triplicate with Cells-to-Ct kit reagents (Applied

Biosystems), and 18S RNA expression was used as a reference.

Quantitative RT-PCR data were analyzed as in [32].

Results and Discussion

To identify radiation inducible miRNA species and characterize

changes in miRNAome after IR in hESC, we exposed both H1

and H9 cell lines to 1 Gy of X-rays. These cell lines are most

extensively studied among hESC. Our miRNA microarray data

analysis revealed that 53 and six miRNAs, were differentially

expressed in irradiated H1 and H9 cells respectively, compared to

corresponding sham-irradiated hESC cultures (Figure S1). These

results indicate that miRNA expression profiles of hESC after IR

exposures are largely cell line-dependent.

Further bioinformatics analyses revealed that only seven

miRNA genes were differentially expressed in H1 at the ‘‘early’’

(2 hr) time point post-IR (p,0.05) (Figure 1); among them, only

four miRNA species showed more than 1.5 – fold induction

compared to sham-irradiated cells (hsa-miR-15b, hsa-miR-1274b,

hsa-miR-302b and hsa-miR-1973) (Table 1). Gene expression studies

showed that IR-induced alterations in miRNAome in H9 cell line

(2 hr post-IR) involve the up-regulation of only two miRNA genes,

namely, hsa-miR-1973 and hsa-miR-92a (Table 2). In both cell lines,

the level of upregulation of miRNA species at this time point was

less or equal to 2-fold over corresponding non-irradiated baseline

values. No significant down-regulation of miRNA was observed at

2 hr following IR exposures. Interestingly, lack of statistically
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proven repression of any miRNA species at relatively early 4 hr

post 1.25 Gy IR exposure of human blood was reported recently

[13].

On the contrary, at 16 hr timepoint after IR, we observed both

statistically significant up-regulation (Table 3) and repression

(Table 4) of select miRNA species in H1 hESC. Irradiated H1 cells

showed up-regulation of 42 miRNA genes, and down-regulation of

only eight miRNAs at this time post 1 Gy IR exposure (p,0.05). A

much higher magnitude of changes in the level of expression of IR-

modulated miRNAs was observed as part of the ‘‘late’’ hESC

response to IR (Table 3); 33 miRNA species were induced more

than 2 – fold in irradiated H1 compared to control sham-exposed

cell cultures. In contrast, we found that only five miRNAs were

significantly overexpressed in H9 cell line, with a single miRNA

species, hsa-miR-575, being overexpressed more than 2 fold

(p,0.05) (Table 5).

To identify the factors that affect the patterns of microRNAome

changes after IR exposures, all experimental samples were

subjected to hierarchical clustering (Figure 2). This analysis

grouped hESC samples in accordance to IR exposure conditions,

with the most dramatic changes in miRNAome occurring as a

result of dynamic of cellular response to radiation. The timing of

post-IR exposure response, and not a cell type – specific changes,

was the most prominent determinant of the clustering of samples

analyzed.

Our recent study demonstrated no statistically significant

downregulation of mRNA gene transcripts after 1 Gy of IR

exposure in H9 cells [24]. Intriguingly, in the present study we

observed a few miRNAs that were upregulated in H9 under these

same conditions (Table 2 and Table 5). Since miRNAs are

considered to be one of the powerful epigenetic means to silence

gene expression, it may seem puzzling at first glance. However, it

is thought that in mammals the primary mode of miRNA-

mediated gene repression is through inhibition of translation, not

direct mRNA target degradation [36]. Therefore, it could explain

the lack of downregulation of any protein-coding transcripts

observed in our previous work [24]. The repression of genes

involved in hESC differentiation after IR exposures may explain

the maintenance of pluripotentiality in surviving irradiated hESC

that we reported before [25]. Changes in cell cycle profile of IR-

exposed hESC [24] may also be the consequence of miRNAome

alterations. For example, one of the key genes responsible for cell

cycle progression and about 26% of all phosphorylation events in

hESC is CDK1/2 [37], which we found to be the major predicted

target of the most highly upregulated miRNA (hsa-miR-575) in our

present study. Interestingly, hsa-miR-575 is known to be overex-

pressed in some aggressive human cancers [38], and is

downregulated upon human leukemic HL-60 cell differentiation

induced by 4-hydroxynonenal, a product of lipid peroxidation

[39]. We sought to investigate the role of hsa-miR-575 in hESC in

more detail. Our studies aimed to mimic the overexpression of this

miRNA species showed no evidence for an increase in cell killing

in H1 hESC cultures (Figure S2). Moreover, we did not observe

signs of differentiation in these cultures since continuous

expression of markers of pluripotency, such as POU5F1 and

SOX2, was evident at least 5 days post-transfection (Table S1).

Interestingly, upon treatment of irradiated H1 cells with hsa-miR-

575 inhibitor as part of our loss-of-function studies, we observed

substantial down-regulation of POU5F1 and upregulation of SOX2

(Table S1). Both genes are known to play an important role in

maintenance of pluripotency in undifferentiated hESC, and major

alterations in their expression levels may result in differentiation

[40,41]. Our results may support the assumption that upregulation

of hsa-miR-575 in irradiated hESC serves to prevent differentiation

of these cells, but additional studies into the exact function of hsa-

miR-575 are needed to be performed in a future.

In general, the majority of differentially expressed miRNAs that

we identified in our global screen of irradiated hESC are not well-

Figure 1. Venn diagrams of significantly upregulated miRNA species in human embryonic stem cells after IR exposures (p,0.05).
Comparison of the dynamics of IR response between H1 and H9 cell lines.
doi:10.1371/journal.pone.0031028.g001

Table 1. Differentially expressed miRNA species in H1 hESC at
2 hr post 1 Gy of X-ray exposures (p,0.05).

Name p-value Fold change 2 hr

hsa-miR-15b 0.0136 2.018

hsa-miR-1274b 0.0161 1.789

hsa-miR-302b 0.0107 1.623

hsa-miR-1973 0.0126 1.504

hsa-miR-720 0.0151 1.484

hsa-miR-1274a 0.0385 1.480

hsa-miR-20a 0.0007 1.475

doi:10.1371/journal.pone.0031028.t001

Table 2. Differentially expressed miRNA species in H9 hESC at
2 hr post 1 Gy of X-ray exposures (p,0.05).

Name p-value Fold change 2 hr

hsa-miR-1973 0.0309 1.732

hsa-miR-92a 0.0193 1.548

doi:10.1371/journal.pone.0031028.t002
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characterized yet. However, the involvement of some IR-

responsive miRNAs in biological processes was already reported.

For example, the most highly induced miRNA in H1 cells at 2 hr

post-1 Gy of IR exposures, hsa-miR-15b, was shown to sensitize

human cancer cells to apoptosis [42]. This might be relevant for

cell fate choice in hESC as well, since massive apoptosis was

observed in irradiated hESC after 1 Gy of X-ray exposures [25].

In addition, the up-regulation of this miRNA species could

influence many other aspects of cellular homeostasis: miR-15b is

overexpressed in bronchioalveolar lung stem cells [43], is a direct

transcriptional target of E2F1 modulating cell cycle progression

[44], and is known to affect cell metabolism through decreasing

ATP levels [45].

Hsa-mir-302b was shown to be highly expressed in hESC [46]

and is directly responsible for ‘‘stemness’’ characteristics in human

cells being part of stem cell-enriched mir-302-367 cluster [47,48].

Mir-302 species were determined to be highly integrated with

Oct4/Sox2 transcriptional machinery in hESC being partly

responsible for unique abbreviated cell cycle profile in hESCs

[49]. The modest upregulation of this miRNA species following IR

exposures may prevent hESC from undergoing spontaneous

differentiation. Other IR-modulated miRNA species, such as

hsa-mir-20a, is a component of yet another stem cell-enriched

family, namely, mir-17-92, which is implicated in modulating E2F

activity on cell cycle progression [50] and in the repression of

execution of cellular senescence program [51,52]. Hsa-mir-149*

also regulates E2F1 activity and exerts its function through

induction of apoptosis [53]. One more hESC highly expressed

miRNA, hsa-mir-1909, was implicated in hESC physiology by

targeting Notch [54].

A large number of overexpressed IR-responsive miRNAs that

we identified in our work were found to be deregulated in human

cancers, such as hsa-mir-513 [55], hsa-mir-744 [56], hsa-mir-92a

[57,58], hsa-mir-1228* [59], hsa-mir-671-5p [60], hsa-mir-638 [38],

hsa-mir-370 [61], and hsa-mir-675 [62]. Hsa-mir-663 is involved in

inflammatory conditions and suppression of cell proliferation

[63,64] which can underlie hESC response to IR exposures.

Interestingly, two of significantly upregulated miRNAs after IR

exposures in hESC, such as hsa-mir-1275 and hsa-mir-494, were

Table 3. Up-regulated miRNA species in H1 hESC at 16 hr
post 1 Gy of IR exposures (p,0.05).

Name p-value Fold change 16 hr

hsa-miR-575 0 3.817

hsa-miR-1915 0.0003 3.322

hsa-miR-3195 0.0004 3.105

hsa-miR-3196 0.0002 2.845

hsa-miR-744 0.0018 2.843

hsa-miR-1908 0.0002 2.804

hsa-miR-1975 0.0069 2.780

hsa-miR-663 0.0005 2.762

hsa-miR-3178 0 2.744

hsa-miR-149* 0.002 2.728

hsa-miR-4257 0.0002 2.726

hsa-miR-762 0.0005 2.671

hsa-miR-1469 0.0003 2.668

hsa-miR-4281 0 2.663

hsa-miR-614 0.0003 2.646

hsa-miR-4327 0.0004 2.609

hsa-miR-2861 0.0022 2.581

hsa-miR-1268 0.0014 2.555

hsa-miR-24 0.0013 2.492

hsa-miR-1228* 0.0002 2.461

hsa-miR-638 0.0012 2.401

hsa-miR-1275 0.0034 2.396

hsa-miR-711 0.0001 2.385

hsa-miR-671-5p 0.0005 2.340

hsa-miR-3197 0.0004 2.312

hsa-miR-1909 0 2.205

hsa-miR-3141 0.0001 2.167

hsa-miR-3180-3p 0 2.130

hsa-miR-1308 0.0009 2.112

hsa-miR-92b* 0.0005 2.105

hsa-miR-187* 0.0009 2.055

hsa-miR-513a-5p 0.0081 2.032

hsa-miR-1973 0.0126 2.028

hsa-miR-370 0.0015 1.943

hsa-miR-494 0.0063 1.866

hsa-miR-1914* 0.0004 1.758

hsa-miR-940 0.0189 1.725

hsa-miR-1274b 0.0161 1.631

hsa-miR-1260b 0.0007 1.547

hsa-miR-675 0.0311 1.497

hsa-miR-874 0.0159 1.418

hsa-miR-612 0.0219 1.404

doi:10.1371/journal.pone.0031028.t003

Table 4. Down-regulated miRNA species in H1 hESC at 16 hr
post 1 Gy of IR exposures (p,0.05).

Name p-value Fold change 16 hr

hsa-miR-886-3p 0.0448 0.712

hsa-miR-93 0.0013 0.706

hsa-miR-302d 0.003 0.681

hsa-miR-17 0.028 0.639

hsa-miR-20a 0.0007 0.626

hsa-miR-302a 0.0004 0.586

hsa-miR-20b 0.0008 0.567

hsa-miR-302b 0.0107 0.449

doi:10.1371/journal.pone.0031028.t004

Table 5. Differentially expressed miRNA species in H9 hESC at
16 hr post 1 Gy of X-ray exposures (p,0.05).

Name p-value Fold change 16 hr

hsa-miR-575 0.0227 2.171

hsa-miR-513a-5p 0.0383 1.796

hsa-miR-711 0.0283 1.686

hsa-miR-1973 0.0309 1.535

hsa-miR-1275 0.0387 1.501

doi:10.1371/journal.pone.0031028.t005
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recently found to localize to mitochondria [65]. Given the

importance of mitochondrial compartment in the maintenance

of stem cell homeostasis and responses to different stress factors

[66], the functional validation of targets of these miRNA species

might prove to be instrumental in unraveling the underpinnings of

hESC unique biological capabilities.

We observed several miRNA species that were downregulated

following irradiation (Table 4). Repression of hsa-mir-93 could

block cell differentiation after IR exposures in part by relieving

STAT3 [67]. Other biological effect of decreased expression of

hsa-mir-93 at 16 hr post-IR in H1 could be a decreased cell

survival [68], probably as a result of modulation of its targets such

as E2F1 and CDKN1A [69]. Interestingly, CDKN1A was found to

be a target for other down-regulated miRNA species we identified

in our present study, namely, hsa-mir-302a, hsa-mir-302b, and hsa-

mir-302d [70]. With CDKN1A being one of the key radiation-

responsive genes in human cells, the possible involvement of

miRNAome alterations in its regulation after IR definitely merits

further investigations.

We attempted to compare our data on global miRNAome

alterations in irradiated hESC with published datasets. However,

since the knowledge about changes in miRNA levels in human

cells following irradiation is very limited to date, we were able to

identify only a few miRNA species in our subset of IR-modulated

miRNAs which were reported before as responsive to IR

exposures. Among them, we found hsa-mir-20a, shown to be IR-

responsive in fully differentiated human endothelial cells [10] and

implicated in regulation of IR-induced premature senescence [52];

hsa-mir-24, a member of the miR-23b cluster that interferes with

TGF-b expression and shown to be up-regulated after IR [20].

Mir-24 is implicated in halting cell cycle progression and

inhibition of apoptosis [71], and impairment of DDR and

senescence program execution [72,73]. In addition, hsa-mir-744

and hsa-mir-17 were also found to be deregulated by IR exposures

by others [20]. Our studies with BG01V line of hESC, considered

being karyotypically abnormal, identified hsa-mir-1915 and hsa-mir-

1274b as differentially expressed at 2 hr and 16 hr post-IR,

respectively (Table S2). We believe that further experiments will

examine the relative contribution of cell type specificity to a

repertoire of IR-modulated miRNAs at a whole-genome level in

various human cells.

We analyzed the possible targets of differentially expressed

miRNAs by running MiRanda algorithm search. The results are

presented in Tables S3, S4, S5, S6, S7. At least some of the highly

scored targets may represent an integrated network with

miRNAome and act in concert in irradiated hESCs; for example,

LIN9, a putative target of hsa-mir-1973, regulates MYB which is by

itself is predicted to be a target of hsa-mir-15b (Table S3), and

crucially affects the cell cycle machinery through the cyclins and

CDK1 [74]. Hence, modulation of regulators of key biological

processes by alterations in miRNAome may represent a powerful

strategy used by IR-exposed hESC to cope with genotoxic stress.

Despite numerous recent advances, the human miRNAome still

remains mainly unexplored regarding the physiological function of

specific miRNA species within cells. It should be noted that

deciphering the function of individual miRNAs is challenging.

There are many families comprising microRNAs differing only in

one-two nucleotides which make a functional assignment to these

Figure 2. Heatmap representation of differentially expressed
miRNA species in human embryonic stem cells after IR
exposures (p,0.05). Clustering analysis was performed on all IR-
modulated miRNAs with the signal intensity more than 50.
doi:10.1371/journal.pone.0031028.g002
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redundant genes a complicated task. Each miRNA is thought to

target numerous putative transcripts that have non-related

functions, thereby the experimental validation of specific targets

for miRNAs is still in its infancy. Therefore, determining which

biological processes might be prime candidates for miRNA-

mediated regulation of gene expression after IR exposures might

Table 6. Gene Ontology analysis of affected biological themes based on predicted miRNA targets in H1 cell line.

Exposures Overrepresented categories EASE score

1 Gy, 2 hrs Positive regulation of cell differentiation 2.0E-4

Cell projection 6.3E-4

Ion binding 0.004

Transcription activator activity 0.0041

Alternative splicing 0.0067

Cell cycle 0.01

Response to endogenous stimulus 0.013

Pore complex 0.015

Response to hormone stimulus 0.019

Endomembrane system 0.026

Regulation of transcription 0.045

1 Gy, 16 hrs Protocadherin gamma 5.0E-19

Alternative splicing 1.6E-16

Membrane-enclosed lumen 2.3E-5

Regulation of mRNA stability 2.9E-5

Cell projection 6.2E-5

Positive regulation of cell differentiation 2.2E-4

Positive regulation of transcription from RNAP2 promoter 5.1E-4

mRNA stabilization 7.6E-4

Muscle tissue development 0.0027

Positive regulation of cell proliferation 0.0032

Heart development 0.0091

doi:10.1371/journal.pone.0031028.t006

Table 7. Gene Ontology analysis of affected biological themes based on predicted miRNA targets in H9 cell line.

Exposures Overrepresented categories EASE score

1 Gy, 2 hrs Ion transport 0.0027

Ion binding 0.0071

Membrane-bounded vesicle 0.012

Heart development 0.018

Cell projection part 0.019

Endomembrane system 0.02

Positive regulation of cell differentiation 0.022

Cytoskeleton 0.035

Cell death 0.049

1 Gy, 16 hrs Mesenchyme development 4.6E-4

Cell cycle control 5.2E-4

Negative regulation of nucleic acid metabolic process 6.9E-4

Negative regulation of macromolecule biosynthesis 0.0014

Negative regulation of transcription 0.0019

Heart development 0.0056

Cell morphogenesis involved in differentiation 0.011

Cytoskeleton 0.048

doi:10.1371/journal.pone.0031028.t007

Human Embryonic Stem Cell miRNAome and Radiation

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31028



prove to be more informative than querying individual miRNA-

mRNA pairs. To this end, we performed Gene Ontology (GO)

analysis of biological themes/processes. The aim of the GO

analysis was to predict the effect of overexpressed miRNAs on

cellular functions. The downregulated genes predicted to be

targeted by the radiation-induced miRNAs, were uploaded to the

DAVID GO database, and gene-set enrichment analysis was

carried out in the biologic process/molecular function/cellular

component categories. The results of the GO analysis of the

biological themes overrepresented in the pools of the genes

predicted to be targeted by miRNAs are shown in Table 6 and

Table 7. Our data indicate that IR exposures of H1 and H9

hESCs could result in an increased miRNA control of genes

involved in positive regulation of cell differentiation, cell

projection, transcription activation, alternative splicing, cell death

and cell cycle regulation.

To partially validate miRNAome changes we obtained in our

study, we compared data on miRNAs expression with two

independent techniques, that is, miRNA microarray platform

and quantitative RT-PCR (Table 8). In general, we observed a

good concordance between these datasets, thus confirming the

robustness of our approach.

In summary, we found that microRNAome of human

embryonic stem cells undergoes global alterations following

ionizing radiation exposures. We showed that the gene

expression signature for global miRNAome alterations at a

‘‘late’’, 16 hr time point is significantly different in comparison

to that of ‘‘early’’ response. The changes that we observed in the

levels of miRNA species constituting the whole human

microRNAome are substantially cell line-dependent, with H1

cell line of hESC being more responsive to IR than H9 line.

Surprisingly, there were just a few H9-specific IR-modulated

miRNA species compared to H1. Since these two cell lines are

most thoroughly analyzed to date among all published hESC

lines, it might be of interest to probe miRNAome of these lines

under more various experimental settings in a future. We

observed consistent patterns of miRNA response to IR

exposures, including several miRNA species that were system-

atically differentially expressed at both time intervals. But the

majority of IR-modulated miRNA showed a time-dependent

response in both H1 and H9 hESCs, with a more robust

response occurring at a late time point. It should be noted that

the degree of target repression imposed by miRNAs is probably

quantitatively modest since most of specific miRNA species

endogenous targets is usually downregulated by less than 50%

[75]. Given these considerations, most proteins comprising the

human proteome presumably remain effective over this degree

of inhibition. Therefore, future studies will focus on how

alterations in miRNAome affect the proteome of hESC

following IR-exposures, and how it translates to the ultimate

cell fate of these unique human cells that show great promise in

both disease modeling and cell regenerative therapy approaches.

The strength of our study is based upon the comprehensive

coverage of the whole human miRNAome in an experimental

platform that we employed, in profiling the changes in miRNAs in

two different hESC lines, and in analyzing the dynamics of

response of hESC to IR exposures at the level of miRNAome. We

identified a number of radiation-responsive miRNA species with as

yet unknown functions that provide a broad avenue to future

research in this area. We attempted to outline some of hypothesis

that can foster the investigation of functional relevance of

miRNAome alterations in hESC. Our study reveals new insights

into how hESC respond to genotoxic stress, in particular, to IR

exposures resulting in global alterations in microRNAome in these

cells. The findings may contribute to improved understanding of

the biology of hESC, and the mechanisms underlying enhanced

genomic maintenance in hESC.

Supporting Information

Figure S1 Venn diagram of a total number of differentially

expressed miRNA species in human embryonic stem cells after IR

exposures (p,0.05).

(TIF)

Figure S2 H1 hESC culture staining for viability upon hsa-mir-

575 changes in gene expression studies. Cell cultures were stained

with Hoechst 33342 (shown in blue) and propidium iodide (in red).

A – control, 0 Gy; B – mock transfection; C – hsa-mir-575 mimic

transfection; D – 1 Gy, 24 hrs post- IR.

(TIF)

Table S1 Taqman qRT-PCR on cultured H1 hESCs. Shown

are means and standard errors for gene expression changes

obtained following hsa-mir-575 expression modulation in compar-

ison to mock-treated cell cultures.

(DOC)

Table S2 Taqman qRT-PCR on cultured BG01V hESCs.

Shown are means and standard errors for miRNA expression

changes obtained for indicated timepoints after irradiation in

comparison to mock-treated cell cultures.

(DOC)

Table S3 Up-regulated (.1.5 - fold) miRNA genes (1 Gy, 2 hr)

in H1 as determined by microarray analysis (p,0.05).

(DOC)

Table S4 Selection of top 10 up-regulated miRNA genes (1 Gy,

16 hr) in H1 as determined by microarray analysis (p,0.05).

(DOC)

Table 8. Verification of miRNA microarray data with Taqman qRT-PCR. Shown are means and standard errors for corresponding
values obtained by two techniques.

Hsa-miR-302b Hsa-miR-575 Hsa-miR-1274b Hsa-miR-1973

Array qRT-PCR Array qRT-PCR Array qRT-PCR Array qRT-PCR

H1 1 Gy 2 hrs 1.6660.05 1.3260.25 1.1060.06 1.1260.47 1.8360.08 0.9060.44 1.5460.27 0.7760.17

H1 1 Gy 16 hrs 0.4860.09 0.3560.05 3.9660.33 2.9062.43 1.8060.41 2.1860.88 2.2160.97 1.7560.46

H9 1 Gy 2 hrs 1.4060.28 1.6260.77 1.0560.15 1.0560.35 1.3860.41 1.5260.15 1.8560.76 1.3160.38

H9 1 Gy 16 hrs 1.0760.02 1.1760.36 2.2660.33 2.8260.79 1.1760.12 0.9060.73 1.5560.06 2.5960.60

doi:10.1371/journal.pone.0031028.t008
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Table S5 Down-regulated (.1.5 - fold) miRNA genes (1 Gy,

16 hr) in H1 (p,0.05).

(DOC)

Table S6 Up-regulated (.1.5 - fold) miRNA genes (1 Gy, 2 hr)

in H9 (p,0.05).

(DOC)

Table S7 List of up-regulated (.1.5 - fold) miRNA genes (1 Gy,

16 hr) in H9 (p,0.05).

(DOC)
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