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Abstract

The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is
directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term
plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS)
applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor
performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1
results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its
functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during
rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to
Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and
thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional
networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to
volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local
connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more
efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations
were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1,
and to image such alterations.
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Introduction

Motricity is the fundamental mechanism that mammals use to

interact with the environment. The control of such motor actions

is carried out by the primary motor cortex (M1), whose output

functions are somatotopically ordered in a medial-to-lateral

representational map with three major subregions: leg, arm and

face [1]. More recent studies accept the subdivision of these three

major M1 regions, but reject the idea of a precise topography with

discrete representations, and instead show that M1 is best

described as a broadly distributed network involving large

populations of neurons between and within subregions [2,3,4].

Following this concept, the intrinsic organization of M1 was shown

to have distributed and overlapping representations which are

suggestive of intrinsic substrates for learning of motor skills

accompanied by functional reorganization [5,6]. This dynamic

functional architecture of M1 appears to be related with long-

lasting changes of the efficacy of intrinsic horizontal connections,

whose foundation is thought to be long-term potentiation (LTP)

and long-term depression (LTD) [7,8,9].

Transcranial direct current stimulation (tDCS) is a non-invasive

brain stimulation tool suited to alter cortical excitability and

activity via application of direct currents. Anodal tDCS over the

motor cortex during rest has been shown to increase and cathodal

tDCS to decrease excitability of this area [10,11]. Interestingly, the

after-effects of tDCS are NMDA receptor-dependent [12,13,14],

thus sharing some similarities with LTP, and LTD, which

resemble well-known neuroplastic alterations thought to underlie

cognitive processes like learning and memory formation [15]. In

line with these studies in humans, anodal tDCS over M1 was

shown to promote synaptic plasticity in rat brain slices, producing

synaptic LTP [16]. In accordance, anodal tDCS improves motor

learning and non-dominant hand function in healthy subjects

[17,18,19], as well as facilitate performance of motor skills in

stroke patients with respective deficits [20,21,22].

In prevoious imaging studies the impact of tDCS over M1 have

been studied at the large-scale level (i.e. studying whole brain

interactions), where it has been reported that excitatory anodal

tDCS is capable of modulating motor-task related cortico-cortical

[23,24,25] and cortico-subcortical [26] functional circuits. How-

ever it has been not yet stablished how tDCS-induced neuroplas-

ticity over M1 intra-regionally reorganizes its functional architec-

ture.

In the present study we hypothesized that the relatively long-

lasting synaptic modification induced by tDCS over M1 results in

the alteration of associations among populations of M1 neurons
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which may be reflected in a change of its functional architecture.

Such a tDCS-generated alteration of intrinsic connectivity might

help to explain the previously reported impact of tDCS on motor

learning. To test this hypothesis, we explored tDCS-related

changes of functional M1 connectivity by aid of spontaneous

BOLD fMRI activity. M1 functional networks were characterized

using graph theory at voxel level resolution. Graph parameters

that provide useful information regarding the functional architec-

ture (e.g. connectivity degree, clustering coefficient and charac-

teristic path-length [27,28,29,30,31,32]) of M1 were computed

and compared at the global and nodal level before and after

anodal, cathodal or sham stimulation sessions.

Methods

Subjects
14 healthy volunteers (8 women; mean age 2664 years; age

range 21–40 years) were included in the study. Subjects were

informed about all aspects of the experiments and all gave

informed consent before participation. None of the subjects

suffered from any neurological or psychological disorder, had

metallic implants/implanted electric devices, or took any medica-

tion regularly, or in the 2 weeks before participation in any of the

experiments. All subjects were right-handed, according to the

Edinburgh handedness inventory [33]. The experiments conform

to the Declaration of Helsinki, and the experimental protocol was

approved by the Ethics Committee of the University of Göttingen.

tDCS
Direct current was provided via a pair of square rubber

electrodes (765 cm) compatible to be used in MR-scanner

environment, which were connected to a specially developed

battery-driven stimulator outside the magnet room (NeuroConn

GmbH, Ilmenau, Germany). Further technical details regarding

the characteristics of the stimulator can be found elsewhere

[23,25]. In order to properly position the electrodes over the M1 of

the subjects’ head, the representational field of the right hand was

determined using suprathreshold TMS (optimal M1 representa-

tion of the right first dorsal interosseous muscle (FDI) by single

pulse TMS). Before subjects entered the MR scanner, for anodal

stimulation over M1, the anodal tDCS electrode was placed over

the respective left M1 hand area and the cathode above the

contralateral right orbit using conventional electrode cream. For

cathodal stimulation over M1, the current flux was reversed. tDCS

was applied for 10 minutes at 1 mA current intensity inside the

MRI scanner. For sham stimulation sessions, the current was

applied for 30 seconds at the beginning of the stimulation and

then turned off (20 seconds linear down-ramping until 0 mA was

reached). Using this placebo stimulation technique subjects are not

able to distinguish between real and sham stimulation [34]. The

rationale to target tDCS over the dominant hemisphere is that

functional connectivity of this hemisphere is expected to be larger

than that of the non-dominant one [35]. Moreover, this electrode

montage – anode over the M1 and cathode over the contralateral

frontopolar cortex – has been shown to be the optimal montage to

enhance excitability of the motor cortex [36].

fMRI
fMRI was conducted in a 3 Tesla scanner (Magnetom TIM

Trio, Siemens Healthcare, Erlangen, Germany) using a standard

eight-channel phased array head coil. Subjects were placed supine

inside the magnet bore and wore headphones and additional ear

plugs for noise protection. Initially, anatomic images based on a

T1-weighted 3D turbo fast low angle shot (FLASH) MRI sequence

at 1 mm3 isotropic resolution were recorded (repetition time

(TR) = 2250 ms, inversion time: 900 ms, echo time

(TE) = 3.26 ms, flip angle: 9u). For BOLD fMRI, a multislice

T2*-sensitive gradient-echo echo-planar imaging (EPI) sequence

(TR = 1800 ms, TE = 30 ms, flip angle 70u) at 363 mm2 resolu-

tion was used. Twenty nine consecutive sections at 3 mm

thickness, angulated in an axial-to-coronal orientation, covering

the whole brain, were acquired. 175 contiguous EPI volumes were

acquired for each fMRI data set i.e. ,6 minutes resting fMRI.

After the initial T1 dataset acquisition, two resting-state fMRI

datasets were acquired immediately before and after the

application of tDCS inside the MRI scanner. The tDCS electrodes

were disconnected from the stimulator during fMRI acquisition.

No distortion was seen in the images as reported previously [25].

fMRI images were acquired before and after, but not during tDCS

application. Subjects were asked to relax, keep their eyes closed

and ‘‘not to think about anything in particular’’. Each subject

underwent three sessions: anodal, cathodal and sham stimulation;

the order of sessions was interindividually randomized and the

single sessions were separated at least 8 days from each other.

Subjects were blinded for the stimulation conditions in order to

control for possible placebo effects. Thus, altogether 84 resting

state fMRI data sets were acquired i.e. N = 14 subjects * tDCS

session (anodal, cathodal, sham) * time (before and after tDCS)

MRI and fMRI pre-processing
The first step was to perform cortical segmentation and labelling

of the left BA4. In order to take into account variations in cortical

folding across subjects, cortical segmentation of the T1 sequence

was carried out in a standard spherical surface space, performed

with the Freesurfer software package (http://surfer.nmr.mgh.

harvard.edu/). The cortical segmentation was visually inspected

for each subject by overlapping the grey matter (GM) - white

mater (WM) boundary over the T1 image. No large misclassifi-

cation of white matter or cerebral spinal fluid (CSF) voxels as grey

matter voxels was found in any of the individual T1 images. After

segmentation completion, Freesurfer generates surface labels for

some cytoarchitectonic brain regions including BA4a and BA4p.

The generated surface labels left-BA4a and left-BA4p were

merged into a single label BA4. Afterwards, the surface label

BA4 was transformed back to the original T1 space, visually

inspected and manually corrected, if necessary (figure 1). For

visualization purposes, we show the approximate location of the

tDCS electrode over left BA4 in figure S1. The next step was pre-

processing of the functional datasets.

All functional pre-processing steps were carried out with the

FSL software package (http://www.fmrib.ox.ac.uk/fsl/). The first

two volumes of each fMRI dataset were discarded to allow for

magnetization equilibrium. Motion correction was applied using

MCFLIRT and slice-timing correction using Fourier-space time-

series phase-shifting [37]. Because the graph theoretical analysis

was performed at the voxel level, no spatial filtering or spatial

normalization was performed in order to avoid introduction of

artificial correlations between neighbouring voxels. Additionally,

to control for physiological processes and motion-related artefacts

in the functional connectivity analysis [38], we regressed the

following nine signals from each subject’s 4-D datasets: the six

motion parameters, the nuisance parameters from the white

matter WM, CSF and the global signal. The regression of CSF

and WM removes fluctuations unlikely to be involved in specific

regional correlations. Additionally, the whole brain signal is

thought to reflect a combination of physiological processes (such as

cardiac and respiratory fluctuations) and scanner drift [39,40].

Correction for time series autocorrelation (prewhitening) was
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performed. The six motion parameters were generated by

MCFLIRT. The global signal parameter was generated by

averaging across all voxels within the brain. We assured that for

each subject the root mean square (rms) of the movement

parameters did not exceed 1 mm or 1u in any of the cardinal

directions or rotational axes.

To generate the WM and CSF nuisance parameters we first

segmented each subject’s T1 weighted high-resolution image using

the FAST segmentation program in FSL. The resulting segmented

WM and CSF images were thresholded to ensure 90% tissue type

probability. The thresholded masks were applied to each subject’s

time series and the mean time series was calculated by averaging

across all voxels within the mask. This nuisance signal regression

procedure produced prewhitened, 4D residual datasets for each

subject.

Afterwards, the surface label BA4 was re-sliced and co-

registered to the 36363 mm native resolution of the resting

fMRI time-series of each resting fMRI dataset using an FSL-

Freesurfer interface registration program that uses a complex

convex hull algorithm to optimize the co-registration between the

segmented T1 images to the FSL native functional space (http://

surfer.nmr.mgh.harvard.edu/). The co-registered BA4 label was

masked in order to identify the voxels in the native functional

space that belong to BA4. Finally, the functional time-series

belonging to the BA4 mask were band-pass filtered with a zero-lag

band-pass filter to select the low resting state frequencies of interest

(0.01–0.09 Hz). After pre-processing, the fMRI time-series

belonging to the BA4 mask were analysed using graph theory.

Graph theory
Zero-lag temporal correlations between all pair-wise combina-

tions of the functional time-series belonging to the BA4 mask were

computed, resulting in an N6N synchronization matrix M for each

functional data set – before and after tDCS. N was about 470

across the group of subjects (Figure 2, second row - second column

of each panel). Then, for each M a connectivity graph G was

formed consisting of N nodes and a set of undirected edges E

(functional connectivity) by applying a correlation threshold T to

M:

eij~
1 if MijwT

0 otherwise

�
:

Hence, if the zero-lag correlation value between a pair of grey

matter voxels i and j is greater than the given value T , an edge is

said to exist. It is important to notice that it was convenient to

build the synchronization matrices M in the native functional

space rather than in the normal space in order to avoid the

introduction of artificial correlations due to spatial normalization

(for more details please see [25]). Each M was thresholded starting

at T = 0.1 in steps of 0.002 until the largest connected cluster

included more than 95% of all nodes in G, thus obtaining a Tmax

for each data set, and ĜG formed by the largest cluster. For each ĜG,

we computed graph parameters that provide useful information

regarding the functional architecture of the network (BA4). In the

present study we initially computed the following global network

properties: the mean connectivity degree K, which is the average of

edges (functional connections) per node (BA4 voxel); the

clustering-coefficient C, which provides information about the

efficacy of the local connectedness of the network; and the

characteristic path-length L, which provides information about the

efficacy of global network communication [27,28,31]. Small-world

properties were calculated by comparing the absolute cluster

coefficient and the absolute path lengths between the experimen-

tally altered and random networks. That is gamma = C/Crand.1 and

lambda = L/Lrand<1, finally obtaining the small-worldness coeffi-

cient ratio sigma = gamma/lambda [32]. The theoretical values that

can be used for random clustering and path length coefficients are:

Crand = K/N and Lrand = ln(N)/ln(K) [41]. However, these theoretical

Figure 1. BA4 labelling and registration to the functional space. An example of the quality of the cortical segmentation and labelling of BA4
is depicted, which was performed with Freesurfer in one of the participants. Panels A and B show the BA4 label over the pial and inflated brain
surface respectively. Panel C shows the left BA4 label registered in the original T1 image. The red line shows the portion of the cortical segmentation
performed by Freesurfer that corresponds to the left BA4 label (in this image left is right). Notice the tDCS electrode over the scalp of the subject is
positioned over the central sulcus. Panel D shows the registration of the cortical segmentation and BA4 label in the native functional space of the
same subject (first row: first 14 images of the native functional space. Second row: cortical segmentation registered from Freesurfer to the native
functional space was overlapped. Third row: BA4 label (red) registered from Freesurfer space to the native functional space). For visualization
purposes, we show the approximate location of the tDCS electrode over left BA4 in figure S1.
doi:10.1371/journal.pone.0030971.g001
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networks have Gaussian distributions and might not provide

accurate values when we compare them with our experimental

networks which might have totally different distributions. In order

to control for that, we built random networks which preserved the

degree of distributions of our experimental networks [32]. For

each threshold T, the values for Crand and Lrand were calculated as

the average of the computed graph characteristics of 1000 random

graphs.

Next, we used the minimum Tmax obtained from all data sets

and all subjects to construct undirected connectivity graphs ĜG
from the largest connected cluster for all subjects (at least 95%

from all of the nodes should belong to the largest cluster, see

above) and subsequently built volume maps using the graph theory

metrics. From ĜG, we built volume maps in the native functional

space within the BA4 mask using: (1) the nodal connectivity degree

Ki (K map), where Ki is the number of direct neighbours of i; (2) the

nodal clustering-coefficient Ci (C map), where Ci is defined as:

Ci~
#edges in ĜGi

1

2
ki(ki{1)

,

Where Gi

^
is the subgraph formed by the node i and its direct

neighbours and ki is the number of edges of voxel i; and (3) the

nodal characteristic path length Li (L map), where let d(i,j) be the

minimum functional distance between voxel i and j i.e. the

minimal number of edges needed to travel from voxel i to voxel j.

The nodal minimum path length Li is defined as:

Li~

PN
j~1;i=j

d(i,j)

N{1
,

which provides information regarding the functional connectivity

distance between voxel i with all the other voxels in BA4 i.e. how

well the voxel i is globally-functionally linked with all the other

grey matter voxels in BA4 (for further information regarding graph

theoretical parameters see: [28,32,42]). The individual K volume

maps were then scaled from 0 to 1, by dividing the K values by the

maximum value of the individual map to normalize the values

over the group of subjects. The C volume maps were normalized

by applying Ci/Crand. In contrast, the L volume maps were

normalized by applying Lrand/Li (the reason for this was that the

lower Li is, the better the node i is connected to the rest of the

network; thus for visualization it is intuitively more convenient if

higher connectivity according to the parameter L is indicated by

larger values in the L volume maps). Afterwards, multi-subject

statistics for the K, C and L maps were carried out in the standard

spherical surface space – the Freesurfer surface space – instead of

the normal 3D space, thus eliminating a large source of inter-

subject variability (variations in cortical folding across subjects). To

this end, the normalized K, C and L maps were transformed back

from the native functional space to the Freesurfer space by using

the information of the transformation matrix in the initial

registration (see fMRI pre-processing section). In the surface space

the individual K, C and L maps were smoothed with a 6 mm

FWHM smoothing kernel and transformed to the mean surface of

the brains of the subjects included in the present study.

Statistical analysis
Initially, the global network parameters K, C and L were

compared before and after each stimulation condition using paired

t-tests for all thresholds T (starting at T = 0.1 in increasing steps of

0.002). Afterwards, statistical comparisons for K, C and L surface

maps were performed in the surface space by initially carrying out

a repeated measures ANOVA (for both factors Stimulation and

time), and evaluating the interaction effects (stimulation*time).

Only if an effect of interaction was found, we conducted post-hoc

paired t-tests. ANOVAs and paired t-test maps were thresholded

at uncorrected p,0.05 and the resulting clusters were then

p,0.05 Monte-Carlo corrected (5000 random permutations). All

computations performed in this study were done off-line by in-

house software written by one of the authors (RP) fully developed

under: FSL, Freesurfer, R (http://www.r-project.org/) and C++
compiled using gcc version 4.3.2 under Linux i386.

Results

The first step is to analyze the global characteristics of the

graphs representing the M1 networks. The approximate number

of grey matter voxels belonging to the left M1 region was ,470.

Before and after tDCS, we found that the mean connectivity

degree monotonically decreases as the threshold is incremented,

which is typical for brain networks [41]. Additionally, the ratio of

the clustering coefficient in the M1 experimental networks

compared to random networks is gamma&1, meaning that local

M1 networks efficiently communicate at the local level. On the

other hand, when the characteristic path lengths where compared,

the ratio between real and random networks (lambda) showed to be

approximately 1, suggesting that M1 has an efficient segregated

functional connectivity. With these results, it is not surprising that

the ratio sigma = gamma/lambda to be much larger than 1,

suggesting that M1 has small-world properties (Figure 2). After-

wards, all studied global network parameters (mean connectivity

degree K, and the small-world parameters gamma, lambda and sigma)

were compared by performing paired t-tests. Here no significant

differences were found (P.0.05) at all the studied thresholds T

(Figure 2). For visualization purposes we show in figure S2 the left

BA4 connectivity matrices for one of the subjects in all of the six

resting state conditions (time*stimulation).

The second step was to perform an analysis at the nodal level.

Therefore, a threshold common for all subjects was selected as

described in detail in the methods section. The maximum T that

included at least 95% of the nodes in the largest cluster across all of

the subjects was T = 0.352. Therefore, we used this threshold to

build the undirected graphs and subsequently generate volume/

surface maps with each network metric (K, C and L) for all of the

resting state data-sets before and after tDCS. For visualization

purposes, the undirected graph representation for one of the

correlation matrices thresholded at T = 0.352 is shown in Figures

S3 and S4. The ANOVAs calculated in the surface space revealed

Figure 2. Global network metrics. Shown are the results of the global network parameters that were calculated in the present study (mean
connectivity degree (K) and the small-world parameters gamma, lambda and sigma [32]) calculated at each threshold T (0.25–0.35 in increasing steps
of 0.002) before and after each Sham (A), Cathodal (B) and Anodal (C) tDCS. The second row - second column of each panel show that the
approximate number of nodes (M1 voxels) of each undirected graph was ,470. As expected, the mean connectivity degree monotonically decreases
as T increases. M1 has salient small-world properties i.e. lambda<1, gamma&1, thus sigma&1 [32,41]. No significant differences were observed for
any of the network metrics before and after each of the tDCS sessions (P.0.05 paired two-tailed t-tests). Error bars represent the s.e.m.
doi:10.1371/journal.pone.0030971.g002
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a significant interaction effect (stimulation*time) for the clustering

coefficient (Talairach x = 240,y = 29,z = 57, peak F-value = 5.1,

p,0.005; cluster size 439 mm2; figure 3C) and the characteristic

path length (Talairach x = 239,y = 211,z = 55, peak F-value = 5.9,

p,0.005; cluster size 392 mm2; figure 3D). These significant

clusters are located in the dorsolateral BA4 and approximately

belonging to the arm/hand area according to an fMRI M1

mapping carried out by Meier et al. [43]. With regard to the

connectivity degree, we did not find any interaction effect

(figure 3A). After Monte-Carlo cluster correction (P,0.05) to the

paired t-tests statistical clustering coefficient maps after-before of

each stimulation condition, we identified one positive cluster in the

cathodal stimulation condition (Talairach x = 239,y = 211,z = 56,

peak t-value = 5.2, P,0.001; cluster size 499 mm2; figure 3F). The

After – Before contrasts applied to anodal and sham conditions did

not show any significant cluster. A re-test paired t-test analysis to the

contrast AfterCathodal – AfterSham also revealed a positive cluster

located at approximately the same location of the ANOVA test

(Talairach x = 239,y = 211,z = 57, peak t-value = 5.2, p,0.005;

cluster size 468 mm2; figure 3E). T-tests applied to the baselines

between conditions did not reveal any significant cluster. The same

analysis was repeated for the paired t-tests on the characteristic path

length maps. The AfterAnodal – BeforeAnodal contrast revealed a

positive cluster (Talairach x = 237,y = 213,z = 53, peak t-val-

ue = 4.7, p,0.005; cluster size 520 mm2; figure 3H). The After –

Before contrasts applied to cathodal and sham conditions did not

show any significant cluster. A retest paired t-test analysis to the

contrast AfterAnodal – AfterSham also revealed a positive cluster

Figure 3. Graph parameter statistics at the BA4 cortical surface. (A) Shown is the flattening of the left BA4 (green labelled region) obtained
from the left hemisphere surface average subject, which was used to project the statistical maps. Panels B to D show the ANOVA for the interaction
effects (time*stimulation) Montecarlo cluster corrected at p,0.05 for the nodal connectivity degree maps (B), clustering coefficient maps (C) and the
characteristic path length maps (D). Panels E to H show post hoc paired t-tests for the following contrasts: (E) After_Cathodal – After_Sham in the
clustering coefficient maps; (F) After_Anodal – Before_Anodal in the clustering coefficient maps; (G) After_Anodal – After Sham in the characteristic
path length maps; (H) After_Anodal – Before_Anodal in the characteristic path length maps. Notice that the L maps were Lrand/Li normalized, which
means that the values of L in the significant cluster are lower after stimulation (see methods section).
doi:10.1371/journal.pone.0030971.g003
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located at approximately the same location of the ANOVA test

(Talairach x = 240,y = 29,z = 55, peak t-value = 4.9, p,0.005;

cluster size 451 mm2; figure 3G). T-tests applied to the baselines

between conditions did not reveal any significant cluster.

In an exploratory analysis, we investigated whether tDCS

applied over the left M1 may have resulted in functional

connectivity changes of the contralateral M1. Thus, we repeated

the whole analysis (MRI-fMRI pre-processing and graph theory)

using the right BA4. However we did not find any significant

alterations of functional connectivity with regard to this area (no

significant cluster showed up using ANOVA and evaluating the

interaction group(anodal, cathodal, sham) * time(pre- and post-

tDCS) for any of the nodal network parameters used in the present

study (nodal connectivity degree, characteristic path length and

clustering coefficient)). This lack of tDCS-induced functional

reorganization in the contralateral hemisphere might correlate

with a study of Lang and colleagues [44], where exactly the same

electrode size (567 cm), stimulation intensity (1 mA) and duration

(10 min) were applied; however the investigators failed to find

changes of cortical excitability in the opposite hemisphere (also the

right M1) – the authors only observed some weak effect in

interhemispheric inhibition. One possible explanation for this is

that interhemispheric connections have higher thresholds than

local cortico-cortical and cortico-spinal connections [45], hence a

lack of contralateral excitability. Additionally, it might be also

possible that the intensity of 1 mA is too weak to modulate

transcallosal activity. These are important points that should be

examined in future studies by combining functional reorganization

evaluated with graph theory accompanied by electrophysiological

measures.

In a post-hoc analysis, we investigated whether the tDCS-induced

functional connectivity alterations observed in the C and L maps

depended on the initial functional network metric of each subject.

The average of the effect within the cluster (after-before within

tDCS) was computed for each subject and then these values were

linearly regressed against the baseline value of its respective

network metric, e.g. the after-before mean values of the significant

cluster found in the C Maps in the cathodal tDCS condition were

regressed against the before cathodal C maps. The effect of a

clustering coefficient increase following cathodal tDCS strongly

correlated with the baseline C (P = 0.0051; R2 = 0.46) (Figure 4A).

The negative increase in the characteristic path length that was

found after anodal tDCS also correlated positively with the

baseline metric (P = 0.002; R2 = 0.51) (Figure 4B). Regressions

applied to the same clusters in the sham condition did not result in

any significant correlation.

In a second post hoc analysis we investigated the reason to have

such localized effect of tDCS in the dorsolateral BA4 region

(Figures 3C–H). We hypothesized that the reason for the arm/hand

region to be significantly altered by tDCS during rest is that this is

the M1 region with the most efficient dynamic architecture. We

mapped the nodes that communicate more efficiently independent-

ly from stimulation (i.e. before tDCS intervention) within the M1

network. To this end, the average L maps for all subjects and all

before-tDCS fMRI scans were averaged. Nodes with the highest

Lrand/Li values (i.e. nodes that communicate more efficiently within

M1) were mapped over the flattened BA4. As an exploratory

threshold we used the 15% of the voxels that showed the highest

Lrand/Li values. The largest hub was located at the centre of the

flattened BA4 area, which approximately represents the arm/hand

area according to an fMRI M1 mapping carried out by Meier et al.

[43] (peak value at Talairach x = 236,y = 215,z = 55). Two

additional smaller hubs were identified: one belonging to approx-

imately the leg area (cluster at the top of the flattened BA4 (medial

BA4); Talairach x = 236,y = 215,z = 55); and a second cluster

belonging approximately to the face/tongue area (cluster at the

bottom-tight of the flattened BA4 (most lateral BA4); Talairach

x = 236,y = 215,z = 55) according to an fMRI M1 mapping

carried out by Meier et al. [43] (Figure 5).

Discussion

Here we have shown via fMRI and graph theoretical functional

connectivity analysis that: (a) M1 is functionally organised in a

highly efficient and distributed way; (b) at the arm/hand M1

region cathodal tDCS boosts local connectedness, while anodal

Figure 4. Dependency of the tDCS-induced effects on baseline
functional architecture. Panel A shows that the effect of nodal
clustering coefficient (C) increase found in the cluster of Figure 3F
strongly correlated with baseline C (P = 0.0051; R2 = 0.46). Panel B shows
that the positive decrease found in the characteristic path length (L)
maps that was found after anodal tDCS (Figure 3H) also has a positive
correlation with the baseline L (P = 0.002; R2 = 0.51).
doi:10.1371/journal.pone.0030971.g004
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tDCS boosts long distance functional connections within M1; and

(c) the more efficient the functional architecture of M1 at the arm/

hand region is at baseline, the more efficient the tDCS-induced

functional modulations are. In the following, we will discuss each

of these points in more detail.

We tested the hypothesis that tDCS-induced neuroplasticity

over M1 results in an alteration of associations among populations

of M1 neurons, reflected in a change of its functional architecture.

However, before it was important to show that the functional

connections of M1 are organized in distributed and efficient way,

rather than having a lattice organization. For stimulation-

independent functional connectivity of M1 during rest, the results

show that M1 has salient small-world properties, i.e. lambda<1,

gamma&1, thus sigma&1 [32,41], indicative for highly efficient

integration of both, localized and segregated information process-

ing, in M1. If M1 functional organization would reflect a precise

topography with discrete representations, we would have expected

reduced segregated connectivity (i.e. lambda&1 [32]), which is

clearly not the case. This finding is important, because this kind of

functional architecture should be relatively flexible for modifica-

tion and map reorganization. In accordance, it has been shown

that the control and learning of simple and complex voluntary

movements emerge from M1 distributed networks rather than

discrete representations [46].

Hence, the second step was to explore if tDCS-induced

neuroplasticity of M1 is reflected in a modulation its functional

architecture. At first instance, Figure 2 shows a lack of global

alterations of functional connectivity of M1 induced by tDCS, i.e.

the global M1 network parameters remained constant (for all

studied thresholds no significant changes in the global mean

connectivity degree K, as well as the small-world properties were

obtained (Figure 2)). This means that the application of relatively

weak constant currents (1 mA) over the scalp of healthy humans for

few minutes still preserves the global functional structure of M1.

However, when we compared the surface maps that contained the

information of the nodal network metrics, we found significant

changes at local clusters within M1 following tDCS. Cathodal

stimulation induced an increase in the clustering coefficient at the

dorsolateral BA4 – approximately the M1 arm/hand area. It should

be noticed that this effect was not accompanied by a significant

modulation in the connectivity degree (i.e. the number of functional

connections did not significantly increased or decreased). This

means that the strength of the functional connections at the local

level was significantly increased by cathodal tDCS. This is an

interesting finding considering that the primary mechanisms of the

excitability shifts induced by tDCS are subthreshold neuronal

membrane depolarization by anodal stimulation and membrane

hyperpolarization by cathodal stimulation, and similar consecutive

alterations of spontaneous cortical activity as shown directly in

animal studies [47,48], but also suggested for tDCS of the human

motor cortex [13]. A likely explanation for this result might be that

the local decrease of spontaneous activity induced by cathodal tDCS

increased the signal to noise ratio (by inducing neuronal

hyperpolarization) and consequently increased synchronization at

the local level. This hypothesis might be supported by previous

studies where cathodal tDCS targeted at other brain regions is

suggested to increase signal to noise ratio e.g. the motion processing

areas in the visual cortex [49]. Following this concept, we would

expect that anodal tDCS might have induced a decrease in local

synchronization at M1 level due to a reduction of the signal to noise

ratio. Although for anodal tDCS we did not find any region where

the clustering coefficient or connectivity degree significantly

increased or decreased, the characteristic path length significantly

decreased in a cluster centred – again – at approximately the arm/

hand area of M1. This means that the nodes belonging to that

cluster communicate more efficiently with the rest of the M1

network. Similar to cathodal tDCS-induced effects, the significant

decrease in the characteristic path length induced by anodal tDCS

was not accompanied by a significant increase in the connectivity

degree. Therefore, the increase in efficiency does not depend on an

increase in the number of functional connections, but is rather due

to a reorganization of the functional network. Thus, our results

provide for the first time evidence that the promotion of LTP-like

plasticity induced by anodal tDCS [16] might be related to an

efficient reorganization of the functional architecture of M1.

Interestingly, a recent study shows that both anodal and cathodal

tDCS over M1 induces a change in the generalization of the

intrinsic coordinates of movement representations within M1 [50].

In that study the authors speculated that this change could result

either from larger recruitment of the neurons during learning

(increase in population number) or from a larger modification of the

activity the respective neurons (increase in modulation), thus

suggesting that the behaviourally quantified generalization patterns

are due to tuning properties of neurons in specific networks within

M1. Our results may in part confirm these hypotheses.

In a post-hoc analysis we investigated whether the tDCS-induced

modifications of functional architecture may depend on the

baseline functional organization of the identified clusters in

Figure 3. We found that the effect of cathodal tDCS on the

clustering coefficient strongly depends on the efficacy of the local

connectedness before stimulation (Figure 4A). The same was true

for the effects induced by anodal tDCS, where the baseline efficacy

in the communication of the detected cluster in Figure 3C with the

rest of M1 was positively correlated with anodal tDCS-induced

alterations (Figure 4B). Interestingly, motor cortex plasticity

induced by paired associative stimulation has been shown to be

more effective in physically active than in sedentary individuals

[51]. The investigators speculated that participation in regular

physical activity may offer global benefits to motor cortex function

Figure 5. Highly efficient nodes within M1. The average L maps
for all subjects and all before-tDCS fMRI scans were averaged. Nodes
that showed the highest Lrand/Li values (i.e. nodes that communicate
more efficiently within M1) were mapped over the flattened BA4. As an
exploratory threshold we used the 15% of the voxels that showed the
highest Lrand/Li values.
doi:10.1371/journal.pone.0030971.g005
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that makes easier to enhance neuroplasticity. In principle

accordance, the results of the present study suggest that the more

efficient the functional architecture of M1 is at baseline, the more

efficient the tDCS-induced functional modulations are. Following

this concept, we hypothesized that the reason for the arm/hand

region to be significantly altered by tDCS during rest is that this is

the M1 region with the most efficient dynamic architecture. To

test this hypothesis, we carried out a second post-hoc analysis, where

we mapped the nodes that communicate more efficiently

independently from stimulation (i.e. before tDCS intervention)

within the M1 network. To this end, the average L maps for all

subjects and all before-tDCS fMRI scans were averaged.

Interestingly, we found that the regions where we found the

significant tDCS-induced alterations belong to the largest M1 hub

which is located at approximately the arm/hand region (Figure 5).

The substrate for plasticity induction within M1 is most likely a

system of horizontal connections that spans M1, which may mediate

the formation of associations among populations of M1 neurons and

have been repeatedly shown in several studies to have the capacity

for long-lasting synaptic modification [52,53,54]. Altogether, our

results suggest that the mechanisms of the excitability shifts induced

by tDCS (primary membrane hyper- and de-polarization by

cathodal and anodal tDCS respectively, which results in NMDA

receptor-dependent alterations of synaptic strength [12]) may take

advantage of this M1 intrinsic circuitry, which supports the

previously mentioned optimal conditions for network reorganization.

One of the most studied and well established outcomes of tDCS-

induced neuroplasticity over M1 is the alteration of the size of motor

evoked potentials (MEPs) as a measure of regional plasticity. Anodal

tDCS increases and cathodal tDCS decreases the MEP size

respectively, providing evidence for tDCS polarity-dependent

neuroplasticity [10,11]. The exact relation between this regional

neuroplasticity and alterations of functional connectivity is so far

unclear. Hereby, connectivity modulations induced by tDCS – as

shown in the present study – might hint to a neuroplastic effect of

tDCS on functional connectivity. However, this should be explored

more directly in future studies. Additionally, it is important to notice

that in the present study we evaluated the effects of tDCS alone – i.e.

no motor training or learning was performed during or after the

application of the stimulation. Thus it cannot be derived from the

results of the study if tDCS improves motor learning due to its

impact on functional connectivity. Since we have shown that tDCS

reorganizes the functional architecture at the local level, and task-

dependent alterations of functional connectivity have been

demonstrated in other studies, this is however a tempting

speculation which should be tested directly in future experiments.

Summarizing, in the present study we have shown that

neuroplasticity induced by non-invasive stimulation over the

primary motor cortex results in a reorganization of its functional

architecture. This extents or knowledge about stimulation-induced

alterations of brain functions relevantly beyond local excitability

changes. The behavioural relevance of these alterations should be

explored in forthcoming studies. We also show here that

alterations of functional architecture can be imaged and mapped

using graph theory at the voxel resolution level. Since the

respective technique is suited to explore stimulation-induced

alterations of functional connectivity throughout the brain, it

might be an attractive tool to look for respective changes also in

areas not easily addressed by surface EEG or excitability evoked

potential measures alone.

Supporting Information

Figure S1 Shown is a 3D reconstruction of the T1 image
of one of the subjects during a MRI scanning session (A).
The red rectangle shows the approximate location of the electrode

over the scalp of the subject (A) and the surface average of all the

subjects used in the present study (B). The left side of panel C

shows the approximate boundaries of the tDCS electrode over the

flattened representation of theleft BA4 (see figure 3A in the main

text). On the right side of the panel C we show a rough

approximation of the leg (purple), hand (green) and face (yellow)

areas based on [43].

(TIF)

Figure S2 Shown are the left BA4 connectivity matrices
for one of the subjects in all of the six resting state
conditions (time*stimulation). The scale represents the

Pearson’s correlation value. The matrix in the before sham

condition was thresholded and transformed to undirected graphs

(Figures S3 and S4).

(TIF)

Figure S3 The matrix in the before sham condition
(upper left matrix in figure S2) was thresholded at
T = 0.352 transformed to an undirected graphs. Nodes

were grouped in leg, arm and face subregions according to the

division proposed in figure S1C. The values of the network

parameters computed in the present study are shown in the upper

left corner of the figure.

(TIF)

Figure S4 The matrix in the before sham condition
(upper left matrix in figure S2) was thresholded at
T = 0.352 transformed to an undirected graphs. Nodes

were grouped in leg, arm and face subregions according to the

division proposed in figure S1C. The graph is presented used a

ring layout. The values of the network parameters computed in the

present study are shown in the upper left corner of the figure.

(TIF)
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