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Abstract

Introduction: Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially
modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2
(VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier
dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the
effect of OxPAPC in EC from pulmonary and systemic circulation.

Methods: EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC) and human aortic endothelial
cells (HAEC) was monitored by changes in transendothelial electrical resistance (TER) across EC monolayers. Actin
cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains
(MLC) and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-
induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown.

Results: Low OxPAPC concentrations (5–20 mg/ml) induced a barrier protective response in both HPAEC and HAEC, while
high OxPAPC concentrations (50–100 mg/ml) caused a rapid increase in permeability ; actin stress fiber formation and
increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically
decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with
modest effects on the amount of VE-cadherin phosphorylation at Y731. We present evidence that activation of Rho is
involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of
VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction.

Conclusions: This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high
OxPAPC concentrations and contributes to stress fiber formation and increased MLC phosphorylation.
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Introduction

Endothelial barrier dysfunction plays an important role in a

number of chronic and acute inflammatory diseases such as

atherosclerosis and lung pathologies including asthma, acute lung

inflammation and its severe complication, acute respiratory

distress syndrome (ARDS).

Phospholipid oxidation products, specifically oxidized 1-palmi-

toyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC),

derived from lipoproteins and membranes of cells undergoing

oxidative stress or apoptosis, have been shown to accumulate in a

number of inflammatory diseases including atherosclerosis, lung

inflammation and tissue injury [1,2]. OxPAPC has multiple effects

on the vascular endothelium including a change in the expression

of approximately 1500 genes [3] and the phosphorylation of 228

molecules regulating multiple pathways involved in inflammation,

sterol regulation, coagulation, cell cycle and cell junctions [4].

Increased levels of oxidized phospholipids present in the injured

lung may influence pulmonary endothelial cell (EC) functions

including the modulation of pulmonary inflammatory response

and EC barrier regulation [5,6,7,8].

Previous studies demonstrated that OxPAPC concentrations in

the 5–20 mg/ml range enhanced endothelial monolayer barrier

properties in vitro, and similar doses of intravenously injected

OxPAPC protected lung barrier function and reduced inflamma-

tion in models of acute lung injury caused by LPS injection or

mechanical ventilation at high tidal volume [6,7,8]. Protective

effects of OxPAPC involved enhancement of peripheral actin

cytoskeleton, adherens junctions and tight junctions mediated by

Rac and Rap1 GTPases [9,10]. In contrast, high OxPAPC
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concentrations caused adverse effects on endothelial barrier

function by increasing EC permeability and disrupting cell-cell

junction complexes [11,12,13].

In order to reconcile the difference in the reported effects of

OxPAPC on endothelial cells from different vascular beds and

examine the mechanism by which high doses of OxPAPC

increased EC permeability, we used two different endothelial cell

types isolated from pulmonary and systemic circulation, which

were exposed to low and high OxPAPC concentrations. Previous

studies by our group in human aortic endothelial cells (HAEC)

demonstrated an activation of vascular endothelial growth factor

receptor-2 (VEGFR2), as measured by increased tyrosine

phosphorylation at Y1175,in response to high OxPAPC concen-

trations. These high levels of OxPAPC led to the activation of

SREBP and Erk-1,2 MAP Kinase signaling, and the expression of

LDL receptor and inflammatory molecules- interleukin-8 and

tissue factor [14]. There is evidence that VEGFR2 signaling may

also lead to increased endothelial permeability in vivo and in vitro

[15,16,17]. We present evidence for a role of VEGFR2 in

cytoskeletal remodeling and increased EC monolayer permeability

by high concentrations of OxPAPC via a Rho - Rho kinase -

myosin light chain phosphorylation dependent mechanism.

Results

Dose-dependent effects of Ox-PAPC on permeability
responses of pulmonary and aortic endothelial cell types

Previous reports by our group characterized dose dependent

effects of OxPAPC on barrier properties of human pulmonary

artery endothelial cells (HPAEC). In these experiments, we

examined whether differential barrier responses to low and high

OxPAPC concentrations represent a general feature of endothelial

cells regardless of their origins. We compared the time course and

dose response effects of OxPAPC on barrier function in HAEC

and HPAEC. The maximal barrier-enhancing effect was observed

in HPAEC (Figure 1A) and HAEC (Figure 1B) treated with a

similar range of OxPAPC concentrations (5–10 mg/ml). Higher

OxPAPC concentrations did not further enhance the EC

monolayer barrier properties, but instead decreased barrier

function in both HAEC and HPAEC. The most prominent

barrier disruptive response was observed in the 50–100 mg/ml

range of OxPAPC. The dose range that we employed for high

OxPAPC in the present study was approximately one-fifth of the

levels we previously demonstrated to be present in the vessel wall

of hypercholesterolemic rabbits [18]. The TER increase observed

at low OxPAPC concentrations developed in 5–15 min after

stimulation, reached maximal levels by 30 min and lasted more

than 3 hours. High OxPAPC doses caused rapid TER response,

but in the opposite direction. In both HPAEC and HAEC,

permeability increased and was sustained up to 4 hours when

induced by high OxPAPC concentrations (50–100 mg/ml).

Cytoskeletal remodeling induced by low and high Ox-
PAPC doses in two endothelial cell types

We next examined the effects of high and low OxPAPC doses

on EC actin cytoskeletal arrangement using immunofluorescence

staining of EC monolayers with Texas Red-conjugated phalloidin.

Untreated HPAEC displayed generally random F-actin distribu-

tion throughout the cells with some localization of actin filament

bundles at the cell boundaries (Figure 2A, left panel). A Similar

cytoskeletal arrangement, but with more even cellular F-actin, was

observed in HAEC (Figure 2B, left panel) Treatment with barrier

enhancing OxPAPC concentration (10 mg/ml) caused redistribu-

tion of actin filaments to the cell periphery with formation of the

dense F-actin rings at 30 and 120 minutes of OxPAPC stimulation

in both HPAEC and HAEC (Figure 2A,B). In turn, barrier

disruptive response to 75 mg/ml OxPAPC manifested by forma-

tion of paracellular gaps (shown by arrows) was observed in both

HPAEC and HAEC (Figure 2A,B). Of note, the appearance of

central stress fibers was slightly detectable after 30 minutes but

strongly increased by 120 minutes of OxPAPC treatment

(Figure 2A, right panels).

Involvement of VEGFR2 in Ox-PAPC mediated decreases
in barrier function

We have previously shown that 50 mg/ml, but not 10 mg/ml

OxPAPC significantly activated VEGFR2. We have also shown

that VEGFR2 activation at 50 mg/ml OxPAPC leads to an

increase in interleukin-8 (IL-8) and LDL receptor expression,

while these effects were blocked by VEGFR2 depletion using gene-

specific siRNA [14]. Our and other groups have demonstrated an

important role for VEGF in regulating barrier permeability in

microvascular and macrovascular EC [19,20,21,22,23]. In order

to test potential involvement of VEGFR2 in decreased barrier

function mediated by OxPAPC, HPAEC were transfected with

siRNA to VEGFR2 or nonspecific RNA. We obtained an

approximately 90% knockdown at the RNA and protein levels

(Figure 3A). Transfection with non-specific RNA or siRNA to

VEGFR2 did not affect the basal TER levels or the early phase of

TER drop (before 30 min). However, the late phase of OxPAPC-

induced TER decline (after 1 hour) was significantly attenuated in

EC with depleted VEGFR2, as compared to cells transfected with

nonspecific RNA (Figure 3B). These data suggest that the initial

drop in TER induced by high OxPAPC dose is not mediated by

VEGFR2, whereas the sustained drop requires VEGFR2 activity.

The average of 6 separate TER measurements shows a strong

suppression of EC monolayer barrier dysfunction observed in the

EC monolayers with depleted VEGFR2 after 5 hours of high dose

OxPAPC treatment (Figure 3C).

Depletion of VEGFR2 attenuates stress fiber formation
induced by high Ox-PAPC doses in pulmonary and aortic
EC

The effect of VEGFR2 depletion on F-actin remodeling was

studied in HPAEC treated with high OxPAPC doses (75 mg/ml,

2 hrs). Vehicle treated cells transfected with either nsRNA or

siVEGFR2 showed similar patterns of actin distribution

(Figure 4A, left panels). High OxPAPC doses caused an increase

in stress fibers and formation of paracellular gaps by 2 hours in

cells transfected with nsRNA. These changes were reduced in the

EC treated with VEGFR2 siRNA (Fig. 4A middle and right
panels). Quantitative analysis of paracellular gap formation is

presented in Figure 4B. A similar dramatic reduction of stress

fiber formation induced by high OxPAPC doses was seen in

HAEC treated with VEGFR2 siRNA (Figure 4C).

Mechanism of VEGFR2 regulation of barrier function
Stress fiber formation and gap formation in EC monolayers is

often associated with the activation of myosin light chain (MLC)

phosphorylation, leading to the stimulation of actomyosin

contractility, EC retraction, and increased EC permeability [24].

RhoA GTPase signaling plays a pivotal role in the induction of

MLC phosphorylation in pulmonary endothelium via phosphor-

ylation and inactivation of myosin phosphatase (MYPT) by Rho

associated kinase [25,26,27]. The high dose of OxPAPC

stimulated the phosphorylation of MYPT and MLC in a time-

dependent manner with a significant increase observed at 30 min
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and a maximum response by 1 hour (Figure 5A). Of note,

OxPAPC at barrier protective concentration (10 mg/ml) did not

induce MYPT or MLC phosphorylation. To further verify the

involvement of Rho signaling in stress fiber formation induced by

high OxPAPC doses, we pretreated HAEC with Rho Kinase

inhibitor Y-27632 prior to OxPAPC treatment. Inhibition of Rho

Figure 1. Dose dependent effects of OxPAPC on transendothelial electrical resistance of human pulmonary artery and aortic
endothelial cells. A - Human pulmonary artery endothelial cells (HPAEC); and B - human aorta endothelial cells (HAEC) were seeded in
polycarbonate wells with gold microelectrodes. After 24 hr of culture, HPAEC were stimulated with various OxPAPC concentrations (5, 10, 25, 50 and
100 mg/ml) or vehicle at the time indicated by arrow, and measurements of transendothelial electrical resistance (TER) were monitored over 4 hrs
using an electrical cell-substrate impedance sensing system (ECIS). Results are representative of five independent experiments.
doi:10.1371/journal.pone.0030957.g001
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kinase abolished OxPAPC-induced stress fiber formation

(Figure 5B).

Previous reports demonstrated that the activation of VEGFR2

stimulates RhoA signaling, RhoA-mediated cytoskeletal remodel-

ing, and actomyosin contractility, leading to an increase in

permeability of endothelial monolayers [16,23,28]. We next

examined whether VEGFR2 is involved in the increase of MLC

phosphorylation observed in EC treated with high OxPAPC doses.

HPAEC were transfected with either VEGFR2-specific siRNA or

non-specific RNA. Consistent with results shown above, treatment

of HPAEC with 75 mg/ml OxPAPC did not induce rapid MLC

phosphorylation (no increase at 5 min). However, MLC phos-

phorylation was seen at 30 and 120 minutes and was strongly

inhibited by VEGFR2 depletion (Figure 6A). Quantitative

analysis of MLC phosphorylation in control and VEGFR2

depleted HPAEC is presented in Figure 6B. Increased MLC

phosphorylation in response to high OxPAPC dose was also

observed in HAEC treated with nonspecific RNA, while depletion

of VEGFR2 strongly inhibited MLC phosphorylation

(Figure 6C).

The kinetics of the VEGFR2 effect on TER suggested that there

were different regulators of the early and late decreases in barrier

function caused by high dose OxPAPC and that VEGFR2

activation mainly controls the later phase. The current results and

our recent published studies [29] suggest that the phosphorylation

of adherens junction proteins such as VE-cadherin may be

involved in the early phase of junction breakdown and that an

increase in MLC phosphorylation regulates the later phase. To test

the involvement of VEGFR2 in OxPAPC-induced VE-Cadherin

phosphorylation, we examined the effect of knockdown of

VEGFR2 on VE-Cadherin phosphorylation (Figure 6A). Phos-

phorylation of VE-Cadherin induced by high OxPAPC dose was

rapid, reaching maximal levels by 5 minutes, and was only slightly

attenuated by VEGFR2 knockdown in HPAEC (Figure 6B). In

HAEC, VE-Cadherin phosphorylation was also increased by

5 minutes, and this increase was VEGFR2 independent

(Figure 6C).

We also examined the intracellular distribution of dipho-

sphorylated MLC (ppMLC) by double immunofluorescence

staining with diphospho-MLC specific antibody. Vehicle treated

cells transfected with either nsRNA or VEGFR2 siRNA showed

low levels of diphospho-MLC immunoreactivity (Figure 7A, left

panels). High OxPAPC dose caused a strong increase in ppMLC

aligned with stress fibers. In contrast to nsRNA, treatment

siVEGFR2 dramatically reduced ppMLC immunoreactivity in

OxPAPC-treated cells (Figure 7A, right panels). Quantitative

analysis of MLC phosphorylation in control and VEGFR2

depleted HPAEC is presented in Figure 7B. These results

Figure 2. Dose dependent effects of OxPAPC on HAEC and HPAEC actin cytoskeletal remodeling and monolayer integrity. A –
HPAEC, and B – HAEC monolayers grown on glass coverslips were stimulated with OxPAPC (10 mg/ml or 75 mg/ml) for 30 min or 120 min followed by
immunofluorescence staining for F-actin. Arrows depict areas of intercellular gaps caused by treatment with 75 mg/ml OxPAPC in HPAEC or 50 mg/ml
OxPAPC in HAEC. Shown are representative results of three independent experiments.
doi:10.1371/journal.pone.0030957.g002
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Figure 3. Involvement of VEGFR2 in EC barrier dysfunction induced by high OxPAPC concentration. A – siRNA-induced VEGFR2
depletion in HAEC and HPAEC at mRNA and protein levels was compared to treatment with non-specific RNA. Membrane re-probing with b-tubulin
antibodies was used as normalization control. B – HPAEC grown on gold microelectrodes for TER measurements were transfected with siRNA specific
to VEGFR2 (100 nM). Control cells were transfected with non-specific RNA. After 72 hrs of transfection, cells were stimulated with OxPAPC (75 mg/ml,
shown by arrow) or vehicle, and permeability changes were monitored over 6 hrs. C - Bar graphs depict TER changes measured after 4 hrs of Ox-
PAPC stimulation marked by dotted line in panel B; n = 4–6 per condition; *p,0.05.
doi:10.1371/journal.pone.0030957.g003
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Figure 4. Effect of VEGFR2 depletion on actin remodeling in pulmonary EC exposed to high OxPAPC concentration. HPAECs were
transfected with VEGFR2-specific siRNA. Control cells were treated with non-specific RNA. A - After 72 hrs of transfection cells were stimulated with
OxPAPC (75 mg/ml, 120 min) or vehicle followed by immunofluorescence staining for F-actin. Paracellular gaps are marked by arrows. Insets depict
higher magnification images of cell boundaries showing increased gap formation in Ox-PAPC challenged EC treated with nsRNA, which was
dramatically reduced in EC treated with VEGFR2 siRNA. B - Quantitative analysis of gap formation in OxPAPC treated HPAEC transfected with nsRNA

VEGFR2 Mediates Endothelial Permeability by OxPAPC

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e30957



strongly suggest that phosphorylation of MLC induced by high

OxPAPC doses contributes to increased EC permeability and

occurs via VEGFR2 dependent mechanism.

It remains unclear what is the mechanism of the switch that

converts the OxPAPC protective effect to a disruptive effect. Our

previous studies show that the protective effect of low OxPAPC

doses is mediated by Rac, while Rho signaling was not activated

[11]. The present results show that delayed activation of Rho

signaling contributes to the EC barrier disruptive response at high

OxPAPC concentrations. We next addressed the question of

whether the Rac protective effect is overcome by Rho, or whether

Rac is not activated by high OxPAPC concentrations. To

distinguish between these alternatives, we measured Rac and

Rho activation in the same EC treated with high and low

OxPAPC doses for different time periods. Low OxPAPC

concentrations caused early activation of Rac and autophospho-

rylation (at S423) of Rac effector PAK1 reflecting PAK1

activation, while Rho activity was not affected by low OxPAPC

concentrations (Figure 8AB). High OxPAPC concentration also

caused both the early Rac activation and PAK1 phosphorylation.

However high OxPAPC caused a delayed activation of Rho and

phosphorylation of Rho kinase target MYPT1 which was observed

after 30 min (Figure 8AB). In agreement with these data,

treatment of HAEC with low OxPAPC concentrations induced

membrane translocation of Rac, but not Rho, while high

OxPAPC concentrations caused membrane translocation of both

or VEGFR2 siRNA; n = 4–6 per condition; *p,0.05. C - After 72 hrs of transfection with VEGFR2-specific or non-specific RNA HAECs were stimulated
with OxPAPC (50 mg/ml, 120 min) or vehicle followed by immunofluorescence staining for F-actin.
doi:10.1371/journal.pone.0030957.g004

Figure 5. Involvement of Rho pathway in cytoskeletal effects of high OxPAPC concentrations on endothelial cells. A - Time course of
myosin light chain phosphatase (MYPT) and myosin light chain (MLC) phosphorylation induced by OxPAPC (75 mg/ml and 10 mg/ml) was examined
by western blot with corresponding phospho-specific antibodies. b-Tubulin antibody was used as normalization control. B - HAEC were pretreated
with vehicle or Y-27632 (2 mM, 30 min) prior to stimulation with OxPAPC (50 mg/ml, 2 hrs) followed by immunofluorescence staining for F-actin.
doi:10.1371/journal.pone.0030957.g005
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Figure 6. Effect of VEGFR2 depletion on phosphorylation of MLC and VE-cadherin induced by high OxPAPC concentration. HPAECs
were transfected with VEGFR2-specific siRNA. Control cells were treated with non-specific RNA. After 72 hrs of transfection, cells were stimulated with
OxPAPC (75 mg/ml) or vehicle. A – Time-dependent phosphorylation of MLC and VE-cadherin in OxPAPC-stimulated EC was detected by western blot
with diphospho-MLC and phospho-Y731-VE-cadherin specific antibodies. Equal protein loading was confirmed by probing of membranes with b-
tubulin antibodies. B - Quantitative analysis of MLC and VE-cadherin phosphorylation. All experiments were repeated three times. Values are mean 6
SD, * p,0.05 vs control. C – Phosphorylation of MLC and VE-cadherin in HAEC treated with nonspecific and VEGFR2-specific siRNA and stimulated
with OxPAPC (50 mg/ml, 30 min) was detected by western blot with diphospho-MLC and phospho-Y731-VE-cadherin specific antibodies. Probing with
antibody to GAPDH was used as protein loading control.
doi:10.1371/journal.pone.0030957.g006
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Rac and Rho GTPases (Figure 8C). Taken together with

experiments using inhibition of Rho pathway (Figure 5B), our

results suggest that at high OxPAPC concentrations, the barrier

protective effect of Rac activation is overcome by Rho signaling,

which contributes to the late phase of EC barrier failure via

activation of stress fiber formation and actomyosin contractility. In

addition, pronounced and sustained Rac activation caused by high

OxPAPC concentrations may stimulate NADPH oxidase activity

and cause oxidative stress, which may also contribute to EC

barrier compromise [30,31]. These mechanisms will be discussed

below.

Discussion

Oxidized phospholipids play a critical role in vascular

endothelial barrier regulation in health and disease. Pathologic

elevation of oxidized phospholipids associated with hyperlipide-

mia, organ failure, or acute lung injury may compromise the

Figure 7. Effect of VEGFR2 depletion on intracellular localization of phophorylated MLC in HPAEC treated with high OxPAPC
concentration. HPAEC transfected with VEGFR2-specific siRNA or non-specific RNA were stimulated with OxPAPC (75 mg/ml) or vehicle. A –
Immunofluorescence staining was performed using diphospho-MLC antibodies as described in Methods. B - Quantitative image analysis of MLC
phosphorylation was performed as described in Methods. All experiments were repeated three times. Values are mean 6 SD, * p,0.05 vs. control.
doi:10.1371/journal.pone.0030957.g007
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vascular endothelial barrier and promote pathological processes

such as atherosclerosis or lung injury [2,32]. Previous studies

demonstrated barrier protective effects of low OxPAPC concen-

trations on pulmonary vascular EC in culture [9,10,12] and in

animal models of sepsis and lung injury induced by bacterial

lipopolysaccharide or pathologic mechanical ventilation

[1,6,7,8,33]. In contrast, high OxPAPC concentrations led to

barrier dysfunction in pulmonary EC [11,12,13], which is

associated in part with OxPAPC-induced reactive oxygen species

(ROS) production and degradation of tight junction protein

occludin [13].

Determination of the in vivo concentrations of OxPL under

physiologic and pathologic conditions remains an open issue.

Published measurements differ significantly and often represent

different OxPL species measured in different body compartments.

In two reports, combined concentration of all oxidized phospho-

lipids in human plasma and tissue samples ranged from 5.4 to

51 mM [34,35]. OxPL levels in the normal human plasma have

been estimated in the range of 0.1–1.0 mM [36], but local tissue

concentrations in atherosclerotic regions of the vessels have been

reported in the range of 10–100 mM/kg [18,37]. In the most

recent studies, we used for the first time a ‘‘phospholipidomics’’

analysis by mass-spectrometry to characterize OxPL generation in

the model of LPS-induced lung injury. Lungs were collected 24

and 60 hours after intratracheal LPS injection. The results

demonstrated a significant elevation of OxPL products (both

fragmented and oxygenated phosphatidylcholine derivates) and

their presence in lung tissue samples at micromole levels (K.

Birukov and V. Bochkov, unpublished data). Thus, cumulative

OxPL levels in LPS-challenged lungs are consistent with 50–

100 mg/ml concentrations used in this study.

Since OxPAPC accumulates in many disease settings, we

thought it was important to obtain an understanding of the

mechanism of its permeability regulation . This study examined

whether the dose dependent effects of OxPAPC can be

reproduced in EC from both systemic and pulmonary circulation.

Figure 8. Effect of high and low OxPAPC concentrations on Rac and Rho activation. A - Time course of Rac and Rho activation induced by
low (10 mg/ml) and high (75 mg/ml) OxPAPC concentrations was monitored using Rac- and Rho- GTP pulldown assays. Western blot analysis of Rac
and Rho content in total HPAE cell lysates was used as normalization control. B - Time course of PAK1-Thr423 and MYPT1-Thr850 phosphorylation in
HPAEC induced by low (10 mg/ml) and high (75 mg/ml) OxPAPC concentrations was monitored by western blot with corresponding phospho-specific
antibodies. b-Tubulin antibody was used as normalization control. C – Membrane translocation of Rac and Rho after 4 hrs of HAEC stimulation with
10 mg/ml or 50 mg/ml of OxPAPC was monitored by western blot with corresponding antibodies. Calnexin antibody was used as normalization
control for membrane fractions.
doi:10.1371/journal.pone.0030957.g008
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In addition, we investigated a mechanism of endothelial barrier

dysfunction induced by high OxPAPC concentrations.

One major finding of this study is the demonstration of similar

barrier protective effects of low OxPAPC concentrations on

pulmonary and aortic EC and barrier disruptive responses to high

OxPAPC doses by both cell types. However, HAEC were slightly

more sensitive to the barrier disrupting effects of OxPAPC. We

previously identified the signaling mechanisms by which low

OxPAPC increased the endothelial barrier and demonstrated a

major role of Rac GTPase-dependent strengthening of the

cytoskeleton and adherens junctions [9,38,39,40]. The current

study focused on the effects of higher OxPAPC concentrations

leading to increased EC permeability. Treatment with high

concentrations of OxPAPC caused rapid barrier dysfunction

(observed after 5–10 minutes). Increased permeability lasted for at

least 5 hours without toxic effects on HPAEC monolayers (as

tested by live/dead cell assay, data not shown). In a previous study

in HAEC (using the same concentrations of OxPAPC as in the

current study), survival experiments were performed using

propidium iodide assay which showed a lack of toxicity [41].

High OxPAPC doses induced rapid and significant tyrosine

phosphorylation of adherens junction protein VE-cadherin, which

leads to VE-cadherin internalization and abrupt EC barrier

dysfunction caused by the disassembly of adherens junctions [29].

In the present study, we turned our attention to the question of

whether stress fiber formation and MLC phosphorylation might

play a role in the late phase of barrier decrease mediated by high

concentrations of OxPAPC. In contrast to enhancement of

peripheral actin cytoskeletal rim and unchanged levels of phos-

phorylated MLC observed in EC treated with barrier protective

OxPAPC concentrations [11,42], treatment with high OxPAPC

concentrations increased MLC phosphorylation by 30 minutes,

which was maximal by one hour and remained elevated for at least

4 hours. The increase in stress fibers and gaps in the EC monolayers

followed this time course suggesting that stress fiber formation

contributed to the long-term decrease in barrier function caused by

high concentrations of OxPAPC in pulmonary and aortic EC.

In search of upstream mechanisms stimulating MLC phosphor-

ylation and stress fiber formation by high OxPAPC concentrations,

we examined the potential involvement of VEGFR2. Our previous

studies have demonstrated that OxPAPC induced VEGFR2

activation and examined the mechanism by which Ox-PAPC

activates VEGFR2. We found that high OxPAPC doses induce high

levels of Src activation [29], and activation of VEGFR2 by

OxPAPC can be mostly blocked by pre-treatment with Src kinase

inhibitor PP2 [14]. These data strongly suggested Src-dependent

mechanism of VEGFR2 transactivation by high OxPAPC concen-

trations [14]. VEGFR2 activation by its canonical ligand, VEGF,

leads to activation of RhoA GTPase [16,28,43]. The exact

mechanism of VEGFR2-induced RhoA activation remains unclear,

but may involve heterotrimeric protein Gq/11 and phospholipase C

[43]. In turn, the activation of RhoA and Rho-associated kinase

leads to the inactivation of myosin light chain phosphatase resulting

in increased MLC phosphorylation, stress fiber formation and

increased endothelial permeability [25]. Of note, the activation of

VEGFR2 has been previously demonstrated after 5 minutes of

stimulation with 40 mg/ml OxPAPC, and that activation was

sustained for at least 4 hours [14].

Interestingly, we found that the rapid phase of TER decrease in

the first 30 minutes of EC treatment with high OxPAPC

concentrations did not involve activation of MLC phosphorylation

and stress fiber formation and was not affected by VEGFR2

depletion. High OxPAPC concentrations increased VE-cadherin

tyrosine phosphorylation at Y731 , known to be associated with EC

barrier dysfunction [44], but VEGFR2 depletion caused very little

changes in VE-cadherin phosphorylation state. On the other

hand, TER continued to gradually decrease over a period of 1–

5 hours of treatment with high OxPAPC concentration. This

decrease was associated with increased stress fiber formation and

MLC phosphorylation, while VEGFR2 depletion prevented

further TER decline after 30 minutes of OxPAPC treatment.

VEGFR2 depletion and pretreatment with Rho kinase inhibitor

Y-27632 abolished stress fiber formation and MLC phosphoryla-

tion observed at later times of EC stimulation with high OxPAPC

doses. Taken together, these results support the notion that VE-

cadherin phosphorylation likely contributes to the early phase of

EC barrier dysfunction caused by high OxPAPC concentrations,

and this phase is largely independent of VEGFR2. In turn,

activation of VEGFR2 – Rho - Rho kinase pathway mediates the

late phase of barrier dysfunction and cytoskeletal remodeling in

HPAEC and HAEC in response to 50–75 mg/ml OxPAPC.

The complexity of signaling pathways activated by different

doses of oxidized phospholipids in endothelial cells still leaves some

open questions to be addressed. Why is VEGFR2-dependent

phase of Rho activation and MLC phosphorylation delayed and

observed only after 30 min? One mechanism may involve negative

Rac-Rho crosstalk, as Rac activation has been shown to be

induced by OxPAPC [11,39]. Another plausible explanation is the

previously described OxPAPC-induced stimulation of cAMP

signaling [41,45], which reached peak activation at 5–15 min

and declined by 30 min [42]. This increase in cAMP may suppress

early Rho activation via direct and indirect effects on Rho and

Rho kinase activities [46,47,48].

The other question is the role of Rac in the different effects of

OxPAPC on endothelial barrier function. We have previously

demonstrated Rac activation by both low and high concentrations

of OxPAPC [11,30]. Since Rac has been shown by multiple

groups to be a barrier protective molecule, why does high dose

OxPAPC open the barrier in spite of high levels of Rac activation?

We think this can be attributed to: a) the role of Rac in activation

of NAPDH oxidase enzymatic complex by high OxPAPC

concentrations, which triggers ROS production and leads to

oxidative stress and EC barrier dysfunction; or b) the increase in

Rho activation that occurs in response to VEGFR2 activation and

counterbalances the Rac impact in cytoskeletal mechanisms of

barrier enhancement.

In summary, these studies suggest that VEGFR2 involvement in

vascular endothelial barrier breakdown caused by high OxPAPC

concentration is a general mechanism effective in both pulmonary

and systemic circulation, which may help explain in part the

reported activation of pathologic VEGFR2 signaling in both acute

lung injury and atherogenesis. Beneficial effects of inhibition of

VEGFR2 signaling in reduction of atherosclerosis in mice have

been attributed to the reduction of neo-angiogenesis in the plaque

[49]. However, VEGFR2 signaling may also contribute to a barrier

dysfunction of endothelium from the large systemic vessels, as has

been described in this study. Although the origin and pathogenic

mechanisms resulting in high levels of oxidized phospholipids in the

pulmonary circulation or in systemic arteries may be quite different,

inhibition of VEGFR2 signaling may prove to be a reasonable

strategy to suppress pathologic endothelial barrier dysfunction in a

number of diseases where OxPAPC accumulates.

Methods

Reagents and cell culture
Diphospho-MLC and b-tubulin antibodies, rabbit anti-human

VEGFR2 antibody, HRP-linked anti-mouse and anti-rabbit IgG
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were obtained from Cell Signaling (Beverly, MA). 1-Palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC) was obtained

from Avanti Polar Lipids (Alabaster, AL). PAPC was oxidized by

exposure to air for 72 hours. The extent of oxidation was measured

by positive ion electrospray mass spectrometry (ESI-MS) as

previously described [37]. After completion of oxidation, the

phospholipids were stored at 270uC dissolved in chloroform and

were used within 2 weeks of MS analysis. .All oxidized and non-

oxidized phospholipid preparations were analyzed by the limulus

amebocyte assay (BioWhittaker, Frederick, MD) and shown

negative for endotoxin. All reagents for immunofluorescence were

purchased from Molecular Probes (Eugene, OR). Human lung

pulmonary artery endothelial cells (HPAEC) were obtained from

Lonza (Walkersville, MD), cultured according to the manufacturer’s

protocol, and used at passages 5–7. Unless specified, biochemical

reagents were obtained from Sigma (St. Louis, MO).

Isolation and propagation of HAEC
Human aortic endothelial cells (HAECs) were isolated as

described previously [50] and cultured in M199 medium

supplemented with FBS (20% v/v), penicillin (100 U/mL),

streptomycin (100 mg/mL), sodium pyruvate (1 mmol/L), heparin

(90 mg/mL), and endothelial cell growth supplement (20 mg/mL).

VEGFR2 depletion using siRNA approach
Two sets of VEGFR2-specific oligonucleotides (Stealth Select)

were obtained from Invitrogen (Carlsbad, CA) and characterized in

our previous study [14]. A GC% matched negative control siRNA

(scrambled) was also obtained from Invitrogen. Transfection of EC

with siRNA was performed as described previously [11,51]. After

72 hr of transfection cells were used for experiments or harvested

for western blot verification of specific protein depletion.

Measurement of transendothelial electrical resistance
The cellular barrier properties were analyzed by measurements

of transendothelial electrical resistance (TER) across confluent

endothelial monolayers using an electrical cell-substrate imped-

ance sensing system (Applied Biophysics, Troy, NY) as previously

described [11,12].

Immunofluorescence staining
Endothelial cells were grown to confluence, stimulated with

agonist of interest, and immunofluorescence staining for F-actin

was performed as described elsewhere [25]. Likewise, after

72 hours of transfection with nsRNA or VEGFR2 siRNA, EC

were stimulated with Ox-PAPC followed by immunofluorescence

staining for F-actin using Texas Red-conjugated phalloidin or

visualization of diphosphorylated MLC using phosphospecific

antibody [25]. Images were processed with Adobe Photoshop 7.0

(Adobe Systems, San Jose, CA) software. Quantitative analysis of

paracellular gap formation in OxPAPC treated cells transfected

with nsRNA or VEGFR2 specific siRNA was performed as

previously described [25,52,53].

Western Blot
Protein extracts were subjected to SDS-polyacrylamide gel

electrophoresis, transferred to nitrocellulose membrane, and

probed with antibodies of interest, as previously described

[54,55,56].

GTPase activation assays
GTPase activation assays were performed using commercially

available assay kits purchased from Upstate Biotechnology (Bill-

erica, MA). In brief, after stimulation, cell lysates were collected,

and GTP-bound Rac or Rho were captured using pull-down

assays with immobilized PAK1-PBD or rhotekin-RBD, respec-

tively, according to the manufacturer protocol. The levels of

activated small GTPases as well as total Rac or Rho content were

evaluated by western blot analysis.

Rac and Rho membrane translocation
Cells were resuspended in buffer (10 mM HEPES, 40 mM KCl,

5 mM MgCl2, 1 mM, EDTA) containing protease and phospha-

tase inhibitor cocktails, and PMSF (1 mM). Cells were disrupted

by 10 passages through a 26 gauge needle, followed by freezing

and thawing. Lysates were centrifuged for 10 min at 4000 rpm.

The supernatant was centrifuged for 1 hr 15 min at 35,000 rpm.

The final membrane pellets were resuspended in RAL buffer

(50 mM Tris-HCl, pH 7.5, 200 mM NaCl, 2.5 mM MgCl2, 1%

NP-40, 10% glycerol) containing protease and phosphatase

inhibitor cocktails, and PMSF (1 mM).

Statistical analysis
Results are presented as mean 6 SD of three to six independent

experiments. Stimulated samples were compared to controls by

unpaired Student’s t-test. For multiple-group comparisons, a one-

way analysis of variance (ANOVA), followed by the post hoc

Tukey test, were used. P,0.05 was considered statistically

significant.
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