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Abstract

Rice restorer lines play an important role in three-line hybrid rice production. Previous research based on molecular tagging
has suggested that the restorer lines used widely today have narrow genetic backgrounds. However, patterns of genetic
variation at a genome-wide scale in these restorer lines remain largely unknown. The present study performed re-
sequencing and genome-wide variation analysis of three important representative restorer lines, namely, IR24, MH63, and
SH527, using the Solexa sequencing technology. With the genomic sequence of the Indica cultivar 9311 as the reference,
the following genetic features were identified: 267,383 single-nucleotide polymorphisms (SNPs), 52,847 insertion/deletion
polymorphisms (InDels), and 3,286 structural variations (SVs) in the genome of IR24; 288,764 SNPs, 59,658 InDels, and 3,226
SVs in MH63; and 259,862 SNPs, 55,500 InDels, and 3,127 SVs in SH527. Variations between samples were also determined
by comparative analysis of authentic collections of SNPs, InDels, and SVs, and were functionally annotated. Furthermore,
variations in several important genes were also surveyed by alignment analysis in these lines. Our results suggest that
genetic variations among these lines, although far lower than those reported in the landrace population, are greater than
expected, indicating a complicated genetic basis for the phenotypic diversity of the restorer lines. Identification of genome-
wide variation and pattern analysis among the restorer lines will facilitate future genetic studies and the molecular
improvement of hybrid rice.
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Introduction

As the main staple food for more than half of the world’s

population, rice (Oryza sativa L.) is one of the most important food

crops. In 1973, the field production of Indica hybrid rice

succeeded when Chinese rice breeders completed the three-line

breeding system [1]. A land area of approximately 130,000 hm2

was soon developed for hybrid rice cultivation, greatly increasing

rice yield in China. In the three-line breeding system, the

cytoplasmic male sterility (CMS) line is crossed with the restorer

line to produce the F1 hybrid rice, and with the maintainer line for

self-reproduction. The restorer line is widely considered as being

key to further improve the resistance, yield, quality, and heterosis

of hybrid rice [1,2]. IR24, an elite rice variety introduced in China

by the International Rice Research Institute, was the most

common restorer line used during the 1970s until the early

1980s. MH63, which was developed from a cross between IR30

and Gui630 [1], is thus far the most widely used restorer line in

China. Its popularity can be attributed to the fact of being a co-

parent of ShanYou63, the largest hybrid rice acreage that has

created substantial economic and social benefits. SH527 is a

heavy-panicle restorer line bred in the 1990s [3]. More than 40

new elite hybrid rice varieties have been bred using SH527 as the

male parent, among which 5 were chosen for super hybrid rice

development. At present, many hybrid rice varieties generated

from SH527 are widely grown in China. IR24, MH63, and

SH527 thus represent the first-, second-, and third-generation

restorer lines, respectively, of the three-line breeding system.

Although they are all significant backbone parents at different

stages of hybrid rice development, their field performances and

combining abilities differ considerably. Further research on the

genetic diversity of these lines, which might be related to their

varying performances, can improve our understanding of restorer

lines and promote improved restorer line selection and super

hybrid rice breeding.

The genomic sequences of the Japonica cultivar Nipponbare [4]

and the Indica cultivar 9311 [5] were recently released. The

availability of high-throughput sequencing technology not only

increases sequencing throughput but also allows for simultaneous

sequencing of a large number of samples [6,7] in addition to

decreasing time and cost. These merits open the door to high-

throughput re-sequencing and genotyping of various rice strains. A

genetic map with a resolution of recombination breakpoints within

an average of 40 kb were previously constructed for ,150 rice
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recombinant inbred lines by utilizing whole-genome re-sequencing

data generated using the Illumina Genome Analyzer [8]. Six elite

maize inbred lines, including the parents of the most productive

commercial hybrid in China, were recently re-sequenced and

more than 1,000,000 SNPs, 30,000 indel polymorphisms and 101

low-sequence-diversity chromosomal intervals were uncovered in

the maize genome [9]. Huang et al. [10] identified approximately

3.6 million single-nucleotide polymorphisms (SNPs) by sequencing

517 rice landraces and constructed a high-density haplotype map

of the rice genome. Moreover, they pioneered genome-wide

association studies for 14 agronomic traits of the O. sativa indica

subspecies. Molecular marker screening has suggested narrow

genetic backgrounds for rice restorer lines [11,12], which play a

vital role in hybrid rice production. However, the current lack of

information on genetic variation over the entire genome has

limited further research into this topic. In the present study, we

conducted re-sequencing and genome-wide variation analysis of

IR24, MH63, and SH527 using the Solexa sequencing technology.

Identification of genome-wide single-nucleotide polymorphisms

(SNPs), insertion/deletion polymorphisms (InDels), and structural

Figure 1. Plant phenotypes of the three core restorer lines and their cross genealogies. a, Plant phenotypes of the three core restorer
lines; shown from left to right are IR24, MH63, and SH527. b, Cross genealogies of the three core restorer lines showing that MH63 and SH527 were
indirectly generated from IR24. A new rice line (at the head of an arrow) was bred by crossing of two or more parents (at the tail of an arrow) and by
several turns of subsequent selfing and selection. A straight line in the figure indicates a backcross.
doi:10.1371/journal.pone.0030952.g001
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variations (SVs) as well as pattern analysis among these lines has

the potential to provide valuable resources for future genetic

studies and the molecular improvement of hybrid rice.

Results

Field performances of the restorer lines and their hybrid
descendants

IR24, MH63, and SH527 (Fig. 1A) are considered hybrid rice

core restorer lines because of the large number of elite commercial

hybrid rice cultivars and useful restorer lines bred and generated

from them. Based on their cross genealogies, MH63 and SH527

were both indirectly generated from IR24 (Fig. 1B), indicating that

these three lines originate from the same restoring genes. We

examined the field performances of these lines by selfing (Table 1).

Performances of the hybrid rice made by crossing these three lines

with six other widely used CMS lines, namely, G3A, Zhongjiu A,

II-32A, G46A, 92A, and Chuangu A, were also examined

(Table 1). No obvious differences were found in the yield

components of MH63 and IR24 except for plant height, while

the hybrid rice of MH63 was significantly different from that of

IR24 in growth period, plant height, panicles per plant and seed

setting rate. Between SH527 and IR24, significant differences

were detected in plant height, panicles per plant and 1000-grains

weight. Significant differences between their hybrid rice were also

detected in growth period, plant height, seed setting rate and

1000-grains weight. In general, from the breeding stage of IR24,

MH63 to SH527, combinations of these changes lead to an

apparent yield increase for hybrid rice, although no obvious yield

differences were found in the restorer lines themselves. Since the

yield increase was evaluated on the average performance of hybrid

rice generated from these three restorer lines with several common

CMS lines, the yield increase of hybrid rice reflect an obvious

genetic improvement of the restorer lines, possibly by improving

the combining ability of the restorer lines.

Genome sequencing and variation identification
The genotypes of IR24, MH63, and SH527 were determined

with approximately 10-fold coverage by genome sequencing using

the Solexa sequencing technology. According to the protocol,

three DNA libraries were constructed and 12.48 G bases were

generated (raw sequence data obtained have been deposited in the

NCBI Short Read Archive with accession number SRP006823).

The alignment of reads was used to build consensus genome

sequences for each rice accession. Furthermore, approximately

10.78 G high-quality raw databases were aligned with the

reference sequence of cultivar 9311 using SOAPaligner [13]

(http://soap.genomics.org.cn/). In total, an effective depth of 306
coverage was achieved, with an average of 106 for each restorer

line (Table 2). The resulting consensus sequence of each rice

accession covered approximately 84.8% of the reference genome

(84%–85.99%), indicating a close relationship between the

samples and cultivar 9311.

SNPs, InDels, and SVs were then examined with SOAPsnp11

and SOAPsv using a conservative quality filter pipeline [14],

yielding 267,383 SNPs from the genome of IR24, 288,764 SNPs

from that of MH63, and 259,862 SNPs from that of SH527

(Table 3, http://rice.sicau.edu.cn/re-sequencing/variation/9311.

rar). These outcomes resulted in a non-redundant collection of

568,787 SNPs after excluding the shared SNPs of each sample by

synteny analysis (Fig. 2A–2C). In total, 100,095 InDels ranging

from 1 to 5 bp in length and 5,561 SVs across the whole genome

were identified. Because of inherent relationship between the

samples, the overall genome diversity among these re-sequenced
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elite restorer lines was much lower than that reported for a more

diverse population [10], which is also in accordance with the close

relationship among the three lines revealed by genealogy analysis.

A phylogenetic tree [15] was constructed using several authentic

collections of SNPs. An extremely closed genetic relationship was

observed between sequencing samples, and a relatively distant

relationship was observed between samples and the reference

(Fig. 2D), which is consistent with a previously reported result of

low genome diversity among rice restorer lines [11,12].

The frequencies of SNPs, InDels, and SVs for each sample were

plotted at a 100 kb sliding window with a step size of 50 kb along

each chromosome. SNP/InDel/SV frequency was defined as the

corresponding number of SNPs/InDels/SVs divided by the

number of nucleotides within the 100 kb interval, excluding the

uncovered nucleotides. Each sample was compared with the

corresponding intervals to identify regions that showed non-

random variation frequencies. In total, 227/936 SNP high/low

regions, 298/889 InDel high/low regions, and 188/1899 SV

high/low regions were identified between IR24 and MH63; 339/

914 SNP high/low regions, 440/1,030 InDel high/low regions,

and 267/2,052 SV high/low regions were identified between IR24

and SH527; and 507/825 SNP high/low regions, 523/1,266

InDel high/low regions, and 235/2,684 SV high/low regions were

identified between MH63 and SH527. Out of these, 135/450 SNP

high/low regions, 229/297 InDel high/low regions, and 87/1,058

SV high/low regions were found to be identical among the three

restorer lines (Figs. 3 and 4).

Variations between samples
As differences between the samples (i.e., not between the

samples and the reference) may reflect the genetic improvement of

the recent restorer lines (such as SH527 and MH63) from older

lines (such as IR24), an analysis of the variations and their

distributions among the samples was performed. Synteny analysis

of variations revealed 81,956 shared SNPs, 2,799 different SNPs,

24,053 shared InDels, and 860 different InDels between IR24 and

MH63; 89,589 shared SNPs, 3,998 different SNPs, 26,936 shared

InDels, and 634 different InDels between IR24 and SH527; and

129,364 shared SNPs, 2,927 different SNPs, 35,066 shared InDels,

and 613 different InDels between MH63 and SH527. The

distributions of these variations on each chromosome are showed

in Table 4. Furthermore, only 10 different SNPs and 12 different

InDels (allelic pleomorphic loci with different nucleotides in each

line) were identified by the variation consensus comparative

analysis of the three sequenced lines, although large numbers of

shared SNPs and InDels were found (Table 5).

The SNPs in coding regions were analyzed to gain further

insights into the potential functional effects of the detected SNPs

(Table 6). Between IR24 and MH63, 13,160 shared SNPs, of

which 2,290 were synonymous coding sequences (Syn CDS) and

2,902 were non-synonymous coding sequences (Non-syn CDS),

and 291 different SNPs, of which 54 were Syn CDS and 99 were

Non-syn CDS, were found. Between IR24 and SH527, 14,473

shared SNPs (2,522 Syn CDS and 3,366 Non-syn CDS) and 594

different SNPs (94 Syn CDS and 138 Non-syn CDS) were found in

Table 2. Summary of original sequencing data.

Sample Insert size Bases (G) Mapped Bases (G) Depth
Coverage
(%)

Mismatch Rate
(%)

IR24 474 4.87 4.28 11.92 85.99 0.60

MH63 473 3.79 3.22 8.97 84.0 0.75

SH527 468 3.82 3.28 9.12 84.43 0.69

doi:10.1371/journal.pone.0030952.t002

Table 3. Variations detected for each sample.

Chromosome SNPs InDels SVs

IR24 MH63 SH527 IR24 MH63 SH527 IR24 MH63 SH527

Chr01 36,134 34,498 33,949 8,026 7,755 7,779 528 488 491

Chr02 25,139 36,400 29,835 5,258 8,064 6,868 215 274 246

Chr03 19,810 30,599 27,263 4,249 7,097 6,519 322 363 352

Chr04 19,042 26,016 22,324 3,413 4,986 4,259 273 276 284

Chr05 32,928 21,990 21,396 6,212 4,726 4,638 283 241 232

Chr06 16,015 24,585 25,190 3,187 4,880 5,247 233 261 262

Chr07 12,093 13,607 10,325 2,061 2,388 1,807 98 108 88

Chr08 29,097 27,334 26,804 5,564 5,501 5,491 423 382 390

Chr09 17,905 13,685 13,451 3,657 2,723 2,891 153 115 120

Chr10 21,873 16,421 14,736 4,281 3,315 3,105 269 201 189

Chr11 19,377 19,470 16,873 3,472 3,625 3,329 297 267 252

Chr12 17,970 24,159 17,716 3,467 4,598 3,567 192 250 221

Total 267,383 288,764 259,862 52,847 59,658 55,500 3,286 3,226 3,127

doi:10.1371/journal.pone.0030952.t003

Genome-Wide Variations among Restorer Lines
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coding regions. Moreover, 22,096 shared SNPs (3,517 Syn CDS

and 4,738 Non-syn CDS) and 417 different SNPs (76 Syn CDS

and 97 Non-syn CDS) were found between MH63 and SH527. In

total, 666, 705 and 735 shared CDS-located InDels were found

between IR24 and MH63, IR24 and SH527, and MH63 and

SH527, respectively (Table 7). Different CDS-located InDels were

not detected.

Three hundred thirty-one large-effect SNPs that were expected

to affect the integrity of encoded proteins were also identified.

These included changes introduced by premature termination

codons (premature termination; 238 SNPs), elimination of

translation initiation sites (ATG change; 11 SNPs), and replace-

ment of nonsense with sense codons (stop change; 82 SNPs). Of

these large-effect SNPs, only 10 SNPs (2 ATG changes, 5

premature terminations, and 3 stop changes) were observed from

the different SNPs; the rest were from the shared SNPs (Table 8).

GO and PFAM analyses were further carried out for the shared

and different SNPs (InDels) in genes between samples to explore

gene functions. In both the shared and different SNPs (InDels), the

top GOs were protein kinase activity, nucleic acid binding, protein

binding, DNA binding, and catalytic activity (Fig. 5 and 6). Genes

coding for leucine-rich repeats and NB-ARC domains were found

to have a significantly higher ratio of nonsynonymous-to-

synonymous SNPs than average. As these domains are common

in proteins that mediate disease resistance in plants, our finding is

consistent with these proteins being particularly diverse due to

pathogen pressure.

Variation analysis on important rice genes
Several important rice genes related to yield, quality, resistance,

and development processes were subjected to molecular cloning

and functional analysis. Natural variations among the genes,

which might explain the phenotypic differences of the sequenced

sample, were then evaluated. A large number of SNPs (Table 9)

were detected both in the DNA sequence and in the coding

regions of genes related to disease/insect resistance, such as Pib

[16], Xa1 [17], Pi9 [18], Xa21 [19], Xa26 [20] and Bph14 [21].

Although found to have many SNPs, genes related to rice

developmental processes, yield, and quality, such as ALK [22],

qSW5 [23], GS3 [24], Gn1a [25], HTD2 [26], GW2 [27] and EUI1

[28], had rare or no variations in the coding regions, which might

explain the functional conservation. In addition, only a few InDels

(or none in some cases) were found in the coding regions

(Table 10), suggesting that SNPs, not InDels, effectively contribute

to functional variation of the genes. When compared to the 9311

sequence, a number of SNPs were found both in the DNA

sequence (,60) and in the coding regions (,40) of Rf1a [29], a

possible allelic gene for Rf4 [30], which is the major restoring gene

of the WA-CMS line, while the sequence difference in this gene

between the sequencing samples was limited. These variations may

account for the differences between the sequenced samples

(restorer lines) and the reference cultivar 9311(non-restorer lines)

in terms of their restoring ability.

Discussion

In the present study, we conducted re-sequencing and genome-

wide variation analysis of three famous representative restorer

lines, namely IR24, MH63, and SH527, with the aim of uncover

genetic variation at a genome-wide scale by using the Solexa

sequencing technology. Identification of genome-wide SNPs,

InDels, and SVs, as well as pattern analysis of restorer lines can

provide valuable resources for future genetic studies and the

molecular improvement of hybrid rice.

We firstly used the 9311 [5] and Nipponbare [4] sequence as the

reference genome, respectively. The genome size of 9311 is

374,545,499, of which the effective size is 359,401,158 (excluding

the N bases in the reference). On the other hand, the genome size

of Nipponbare is 382,150,945, of which the effective size is

372,089,805. When the Nipponbare genome was used as the

reference, the number of SNPs detected was noticeably higher

(data not shown). However, quality of original sequence data such

as mapped bases, sequencing depth, and coverage decreased,

Figure 2. Shared variation clusters among IR24, MH63, and SH527 and phylogenetic tree analysis. a–c, Synteny analysis results for (a)
SNPs, (b) InDels, and (c) SVs. d, Phylogenetic tree constructed by authentic collections of SNPs.
doi:10.1371/journal.pone.0030952.g002
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rendering the SNP data less reliable. Given that genetic variations

between restorer lines, not the japonica and indica rice varieties,

underlie the mechanism of their phenotypic differences, the 9311

genome sequence was then used as the only reference for detecting

SNPs, InDels, and SVs, and for assembling the consensus

sequence to exclude the large amount of background variations

Figure 3. Comparative distributions of variation frequency on 12 chromosomes. s1, IR24; S2, MH63; S3,SH527.
doi:10.1371/journal.pone.0030952.g003

Genome-Wide Variations among Restorer Lines
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Figure 4. High and low regions of variation between samples. a, IR24 vs. MH63. b, IR24 vs. SH527. c, MH63 vs. SH527. d, IR24 vs. MH63 vs.
SH527.
doi:10.1371/journal.pone.0030952.g004

Table 4. Variations detected between each sample.

Chromosome SNPs InDels

IR24 vs MH63 MH63 vs SH527 IR24 vs SH527 IR24 vs MH63 MH63 vs SH527 IR24 vs SH527

Shared Different Shared Different Shared Different Shared Different Shared Different Shared Different

Chr01 16776 364 17425 437 20167 191 5107 86 5380 70 5761 26

Chr02 6207 331 5548 470 13209 586 1833 162 1717 97 3747 170

Chr03 6268 216 6708 275 15437 333 2191 66 2410 51 4699 54

Chr04 5813 257 7138 618 11451 275 1597 49 2184 19 2732 41

Chr05 7075 239 7400 208 10666 121 2056 73 2058 88 3045 28

Chr06 5042 211 4631 229 13302 150 1663 17 1518 22 3541 23

Chr07 3697 92 3412 181 3964 169 1063 22 1017 15 979 17

Chr08 10698 271 10938 335 16565 109 2745 132 2847 117 4227 14

Chr09 3961 164 5089 398 6062 261 1218 56 1693 49 1655 32

Chr10 4809 234 5513 275 5085 152 1514 57 1808 50 1381 56

Chr11 5407 194 9257 150 6440 163 1430 71 2406 22 1594 58

Chr12 6203 226 6530 422 7016 417 1636 69 1898 34 1705 94

Total 81956 2799 89589 3998 129364 2927 24053 860 26936 634 35066 613

doi:10.1371/journal.pone.0030952.t004
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that account for differences between the japonica and indica rice

varieties.

Interestingly, approximately 76,000, 71,000, and 76,000

heterozygous SNPs in IR24, MH63, and SH527, respectively,

were identified throughout the whole rice genome, leading to an

estimated heterozygosity rate of approximately 1.98–2.061024,

which is lower than that for other species, such as pandas [31] and

humans [32]. The heterozygosity rate showed, to some extent, an

un-purified genetic background of the sequenced rice varieties and

indicated that the rice restorer lines still have high genetic

variability, supporting the sporadic phenotypic variability of

individuals observed within a rice line, even it is strictly self-

pollinated. Thus we may speculate that, besides spontaneous

mutations, genomic heterozygosity might also play a role in

phenotypic variations. These results might also suggest that self-

pollinated plants have the potential to maintain a relatively high

heterozygosity rate. More plant lines should be studied to confirm

this idea.

Here we report variations over the whole genome among elite

rice restorer lines. Our results indicate that genetic variations

among these lines, although far lower than those reported for a

more diverse landrace population [10], are greater than expected,

indicating a complicated genetic basis for the phenotypic diversity

of the restorer lines. Although several candidate genes have been

proposed to account for the varying performances of rice lines and

selected for functional analysis, further analysis of more restorer

lines is necessary to better understand the mechanism by which

restorer lines are improved by breeding. Furthermore, several

follow-up steps can be taken to pinpoint candidate genes that may

contribute to phenotypic diversity in rice cultivars. This study

therefore lays the groundwork for long-term efforts to uncover

genes and alleles important for cultivar improvement in rice

restorer lines.

Materials and Methods

Sampling
Seedlings of IR24, MH63, and SH527 and six other widely used

CMS lines, namely, G3A, Zhongjiu A, II-32A, G46A, 92A, and

Table 5. Three sequenced lines shared/different variations.

Chromosome SNPs InDels

Shared Different Shared Different

Chr01 12245 0 4336 0

Chr02 3255 2 1197 2

Chr03 4313 1 1841 2

Chr04 4082 2 1331 1

Chr05 4645 0 1592 0

Chr06 3141 1 1275 0

Chr07 2112 0 750 1

Chr08 7665 1 2339 0

Chr09 2493 0 979 0

Chr10 2460 0 965 5

Chr11 3772 2 1216 0

Chr12 3504 1 1121 1

Total 53687 10 18942 12

doi:10.1371/journal.pone.0030952.t005
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Chuangu A, were planted in the experimental field of the Rice

Research Institute, Sichuan Agricultural University, Wenjiang.

When they reached the flowering stage, these three restorer lines

were crossed with the six CMS lines to obtain the F1 hybrid rice.

The three elite restorer lines, together with the F1 hybrid rice, were

then planted in the following year for phenotypic evaluation and

field test. All the restorer lines and the F1 hybrid rice were planted

across 20 lines, with three replicates totaling 12 plants in each line.

Eight middle plants of the 10 middle lines were surveyed, and data

were recorded for statistical analysis. To compare the field

performances of these elite restorer lines, we used a One-way

ANOVA and LSD’s test of DPS Software (http://www.chinadps.

net/index.htm). To compare the contribution of restorer lines to

their hybrids’ field performances, we used a Two-way ANOVA

and LSD’s test of DPS Software (http://www.chinadps.net/index.

htm) [33].

DNA isolation and genome sequencing
Total genomic DNA was extracted from the leaf tissues of one

individual for each line using a DNeasy Plant Mini Kit (Qiagen).

The DNA of each line was then randomly fragmented. After

electrophoresis, DNA fragments of the desired length were gel-

purified. Adapter ligation and DNA cluster preparation were

performed and subjected to Solexa sequencing.

Table 7. None-CDS and CDS located InDels variations between samples.

chromosomeIR24 vs MH63 IR24 vs SH527 MH63 vsSH527
IR24 vs MH63
vsSH527

Shared Different Shared Different Shared Different Shared

NONE-CDS CDS NONE-CDS CDS NONE-CDS CDS NONE-CDS CDS NONE-CDS CDS NONE-CDS CDS NONE-CDS CDS

Chr01 1159 123 20 1 1212 128 15 1 1288 129 9 1 1033 108

Chr02 433 61 28 0 360 58 18 0 859 73 27 0 278 51

Chr03 524 69 14 0 550 71 8 0 1047 83 13 0 451 61

Chr04 383 63 13 0 499 68 3 0 615 76 12 0 324 55

Chr05 382 52 14 0 404 52 18 0 608 57 2 0 324 42

Chr06 398 48 3 0 381 43 2 0 801 54 5 0 329 37

Chr07 243 42 5 0 233 43 6 0 233 37 2 0 192 34

Chr08 548 56 25 0 554 62 21 0 791 77 3 0 464 49

Chr09 272 34 15 0 383 43 11 0 364 35 9 0 228 29

Chr10 303 41 11 0 371 41 6 0 281 41 16 0 219 34

Chr11 286 36 11 0 462 54 3 0 288 38 10 0 242 30

Chr12 311 41 9 0 358 42 2 0 367 35 19 0 223 29

Total 5242 666 168 1 5767 705 113 1 7542 735 127 1 4307 559

doi:10.1371/journal.pone.0030952.t007

Table 8. large-effect SNPs between samples.

Chromosome IR24 vs MH63 IR24 vs SH527 MH63 vsSH527 IR24 vs MH63 vs SH527

ATG
change

Premature
STOP

STOP
change

ATG
change

Premature
STOP

STOP
change

ATG
change

Premature
STOP

STOP
change

ATG
change

Premature
STOP

STOP
change

Chr01 0 8 3 0 8 4 0 12 4 0 7 2

Chr02 4 3 3 1 2 1 0 4 3 0 0 1

Chr03 1 5 2 1 7 2 0 13 4 0 4 2

Chr04 0 4 3 1 6 3 0 8 3 0 3 2

Chr05 0 7 1 0 9 1 0 5 4 0 5 1

Chr06 0 2 0 0 3 0 0 5 0 0 1 0

Chr07 0 1 0 0 0 0 0 2 0 0 0 0

Chr08 0 6 2 0 9 2 0 14 2 0 5 2

Chr09 0 5 1 0 7 1 0 6 2 0 3 1

Chr10 0 6 3 0 7 1 1 5 3 0 3 1

Chr11 0 2 2 0 6 3 0 2 2 0 0 1

Chr12 0 1 1 0 5 0 0 6 0 0 1 0

Total 5 50 21 3 69 18 1 82 27 0 32 13

doi:10.1371/journal.pone.0030952.t008
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Figure 5. Top 10 GOs of SNPs detected between samples.
doi:10.1371/journal.pone.0030952.g005
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Read mapping
The raw pair-end (PE) sequencing reads were aligned to the

9311 reference genome sequence using SOAPaligner [13] under

the following conditions: if an original read cannot be aligned to

the reference sequence, the first nucleotide from the 59 end and

two nucleotides from the 39 end will be deleted and then realigned

to the reference. If the alignment still cannot be achieved, two

more nucleotides from the 39 end will be deleted. The procedure

Figure 6. Top 10 GOs of InDels detected between samples.
doi:10.1371/journal.pone.0030952.g006
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was repeated until the alignment was available or the read was less

than 27 bp long. Average sequencing depth and coverage were

calculated using the alignment results.

Assembly of consensus sequences and SNP/InDel
detection

Based on the alignment results, and taking into consideration

the analysis of data characters, sequencing quality, and other

factors influencing the experiments, a Bayesian model was applied

to calculate the probability of genotypes with the actual data. The

genotype with the highest probability was selected as the genotype

of the sequencing individual at a specific locus, and a quality value

was designated accordingly to reveal the accuracy of the genotype.

Polymorphic loci against the reference sequence were selected

from the consensus sequence and then filtered under certain

requirements (e.g., the quality value must be greater than 20 and

the result must be supported by at least two reads) using SOAPsnp

[14]. Mapped reads that satisfied the PE requirements and

Table 9. Cloned rice gene SNP detect in IR24, MH63 and
SH527.

Gene IR24 MH63 SH527

DNA mRNA DNA mRNA DNA mRNA

ALK 10 0 4 0 3 0

Bph14 16 8 5 3 7 6

DWARF10 3 12 1 7 0 0

DWARF27 15 5 10 5 13 5

DEP1 10 1 7 0 6 0

EUI1 5 0 3 0 9 0

OsPPDKB 24 3 38 1 34 2

GIF1 13 2 8 1 5 1

Gn1a 11 0 9 0 8 0

GS3 23 0 19 0 17 0

GW2 11 1 12 1 10 0

HTD2 8 0 6 0 9 0

LAX 1 1 0 0 0 0

MOC1 3 1 11 1 13 2

OsGS1 3 0 3 0 3 0

OsMPK6 6 0 4 0 4 0

OsGT1 18 0 13 0 16 0

OsTB1 0 0 1 1 1 1

Pi21 1 0 0 0 1 0

Pi37 7 0 2 2 7 5

Pi9 21 0 21 20 19 19

Pib 39 0 53 35 41 22

Pi-d2 14 0 14 0 17 0

Pik-h 7 7 1 1 1 1

Pi-ta 9 1 5 1 5 1

qSW5 47 0 27 0 41 0

Rf1a 63 40 60 36 65 37

Rf1b 2 2 5 4 2 1

rTGA2.1 6 2 8 3 7 3

SaF 5 2 4 0 5 2

SaM 9 0 5 0 6 0

sd1 1 0 0 0 1 0

OsSSIIIa 25 0 22 5 23 3

Xa13 7 0 3 0 6 0

Xa1 18 12 32 25 33 20

Xa21 11 10 29 29 10 11

Xa26 20 0 14 16 10 8

Xa5 28 0 20 0 27 0

doi:10.1371/journal.pone.0030952.t009

Table 10. Cloned rice gene InDel detect in IR24, MH63 and
SH527.

Gene IR24 MH63 SH527

DNA mRNA DNA mRNA DNA mRNA

ALK 2 0 0 0 0 0

Bph14 0 0 0 0 0 0

DWARF10 0 0 0 0 0 0

DWARF27 5 0 2 0 5 0

DEP1 0 0 1 0 1 0

EUI1 1 0 1 0 3 0

OsPPDKB 7 0 14 0 15 0

GIF1 2 0 3 0 1 0

Gn1a 3 0 2 0 1 0

GS3 8 0 9 0 9 0

GW2 3 0 3 0 4 0

HDT2 3 0 5 0 4 0

LAX 0 0 0 0 0 0

MOC1 1 0 0 0 0 0

OsGS1 2 0 0 0 2 0

OsMPK6 2 0 2 0 1 0

OsGT1 0 0 1 0 0 0

OsTB1 0 0 0 0 0 0

Pi21 0 0 0 0 0 0

Pi37 0 0 0 0 0 0

Pi9 0 0 0 0 0 0

Pib 0 0 2 0 3 0

Pi-d2 0 0 0 0 0 0

Pik-h 0 0 0 0 1 0

Pi-ta 0 0 0 0 1 0

qSW5 10 0 9 0 8 0

Rf1a 1 0 1 0 1 0

Rf1b 0 0 0 0 0 0

rTGA2.1 2 0 1 0 1 0

SaF 1 0 1 0 1 0

SaM 1 0 0 0 1 0

sd1 1 0 0 0 0 0

OsSSIIIa 5 0 4 0 4 0

Xa13 2 0 1 0 1 1

Xa1 1 1 1 1 1 0

Xa21 0 0 0 0 0 0

Xa26 1 1 1 1 1 1

Xa5 1 0 2 0 2 0

doi:10.1371/journal.pone.0030952.t010
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contained alignment gaps at one end were also used to detect the

short InDels. The maximum gap length allowed in the alignments

was 5 bp. Gaps that were supported by at least three gapped PE

reads were extracted in InDel calling.

SV detection
According to the principle of PE sequencing, under normal

situations, one read of PE should be aligned to the forward

sequence and another should be aligned to the reverse. The

distance between the two aligned positions at the reference should

be in accordance with the insert size. Thus, the alignment of the

two paired reads to the genome is regarded to be of normal

direction and appropriate span. If the direction or span of the

alignments of the two paired reads is different from that expected,

then the region might have SVs. Abnormal PE alignments

observed in our analysis were further analyzed by clustering and

compared with previously defined SVs. In this manner, the SVs

were detected using SOAPsv [14], with support from at least three

abnormal PE reads. Currently, the types of SVs that can be

detected include deletion, replication, reversion, and transposition,

among others.

SNP annotation
The localization of SNPs in coding regions, noncoding regions,

start codons, stop codons, and splice sites were based on the

annotation of gene models provided by the Rice Genome

Sequencing Project of 9311 [34]. The characterization of

synonymous or non-synonymous status of SNPs within the CDS

was conducted using Genewise version 30 [35]. The GO/PFAM

annotation data were further used to functionally annotate each

gene [36].

Variation frequency distribution
The frequencies of SNPs, InDels, and SVs for each sample were

plotted over a 100 kb sliding window with a step size of 50 kb

along each chromosome to explore the genomic distribution of

DNA polymorphism in these lines [37]. The scanned regions were

defined as high- or low-variation frequency regions if variation

rates were higher than 4 fold or lower than 1/20th of the average

rate over the whole genome (ARG), respectively. The deviation

ratio (DR) of samples in a given window was first calculated as the

sum of the ratio of each sample that deviated from the average

rate, then the ARG was defined as the arithmetic average of all the

windows across chromosomes.

Variations between samples
The SNPs/InDels/SVs detected for each individual line were

further compared between samples to identify the shared and

unique SNP/InDel loci. Only those loci for which at least one

effective sequence read was mapped for every individual were

selected for comparison. A phylogenetic tree was constructed using

the MEGA4 software [15] based on these data on SNPs.
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