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Abstract

Background: The molecular network sustained by different types of interactions among proteins is widely manifested as the
fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between
proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global
networks are imperative when attempting to address the principles of biology.

Results: We have developed a web-based tool ‘‘Sequence-based Protein Partners Search’’ (SPPS) to explore interacting
partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database
containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single
Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the
study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in
the SPPS web server.

Conclusions: SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may
guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.
shsmu.edu.cn/SPPS/.
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Introduction

The molecular network maintained by different types of protein

interactions is widely manifested as the fundamental driving force

of cellular operations [1]. Crosstalk between proteins instead of

individual components leads to many biological functions [2].

Therefore, different means of discovering protein partners in the

global network have been considerably valued since these are

required to address the imperative principles of biological systems

[3]. However, the general methodology for searching protein

interaction partners in the genomes, such as large-scale yeast two-

hybrid approaches or coimmunoprecipitation methods [4], is

time-consuming and expensive, especially in the high-throughput

mode. Therefore, a universal computational tool, which can

provide an expeditious way for the recognition of potential protein

interacting partners in silico, is favourable to enhance the efficiency

on the investigations of new signaling pathways.

Computational methods for protein-protein interaction (PPI)

prediction are based on protein sequence, structural and genomic

features that related to interactions and functional relationships

[5–7]. Such methods include phylogenetic profile [8–10],

phylogenetic tree [11], gene neighbor and gene cluster methods

[12–14], rosetta stone [15], co-evolution [16–18], network related

methods [19–22], interologs [16,23], protein interface analysis and

docking [24–27] etc. Combining multiple prediction methods has

been recently applied to predict PPI, for example, STRING

(Search Tool for the Retrieval of Interacting Genes) [28], IBIS

(Inferred Biomolecular Interactions Server) [29] and PIPS [30].

Although knowledge of interacting proteins is useful, researchers

also require information about the mode of interaction. Then, the

binding interface of PPI has been investigated by several kinds of

methods from segments/motifs/domains (eg. ANCHOR, a-

MoRF and PIPE-sites) [31–35], structural docking [36–38] to

correlated mutations [39,40].

It is virtually axiomatic that ‘‘sequence specifies structure’’,

which gives rise to an assumption that knowledge of the amino

acid sequence alone might be sufficient to estimate the interacting

propensity between two proteins for a specific biological function

[41]. Accordingly, prediction of protein partners only based on

sequence information is an ideal approach with rapidity and

generality. Then, many efforts have been made on the sequence-

based PPI prediction [42–44] and the use of this kind of methods is

becoming increasingly widespread [5]. Inspired by this idea, we

have developed a new method for PPI prediction only using the
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information of protein sequences [45]. This method was developed

based on a new machine learning algorithm-support vector

machine (SVM) combined with a newly designed kernel function

and a conjoint triad feature for describing amino acids. The

prediction ability of our approach is highly competitive in

published sequence-based PPI prediction methods [46]. Herein,

we developed a web-based tool, Sequence-based Protein Partners

Search (SPPS), for high-throughput prediction of potential

partners and networks for a query protein sequence. SPPS makes

use of probability-based SVM method to screen possible protein

partners from a series of protein databases covering several species.

Furthermore, SPPS provides auxiliary analysis of potential protein

partners in terms of some annotations. Therefore, SPPS may serve

as a valuable tool to identify the possible interacting partners for a

new protein with known sequence, or for an existing protein whose

biological mechanism is unknown.

Results

Outline of SPPS server
The SPPS server consists of two parts, a front-end web interface

written in Ajax framework ExtJS, with MySQL as the database

system, and a back-end program ‘‘Kangaroo’’ for protein partners

searching on a Linux Cluster server. The flowchart representation

of the SPPS web server is shown in Figure 1. SPPS server provides

two modes, ‘‘Single Query’’ mode and ‘‘Multiple Query’’ mode, to

capture interacting partners for query protein. ‘‘Single Query’’

mode applies one query protein sequence to fish out its potential

partners in a species-specific database. ‘‘Multiple Query’’ mode

makes a rapid estimation of direct and indirect interactions

between two query protein sequences. The web access is enabled

via JBOSS webserver. Internet Explorer version 7 or above,

Mozilla Firefox version 3.6 or above, Apple Safari and Google

Chrome were thoroughly tested and thus recommended for SPPS.

Availability and requirements
The input format of query protein sequences for SPPS server is

the standard FASTA. The sequences of proteins can be either

derived from in-house experiments, or directly taken from the

databases embodying protein sequences, such as NCBI (http://

www.ncbi.nlm.nih.gov), UniProt (http://www.uniprot.org/), and

PIR (http://pir.georgetown.edu).

The models in SPPS server were originally built in 2006.

Considering much data has been produced in the intervening

time, these models were updated in the study using the latest

collection of PPI data by Jan 2011. The statistical evaluation of all

five models were calculated and shown in Table 1.

The SPPS server is free to all users, including searching and

access to known protein partners. After defining query protein

sequence, two mandatory parameters must be set in order to

submit a job: Specifying a ‘‘Job Name’’ enables the users to easily

locate their queries in the ‘‘Job Queue’’ and selecting the

‘‘Organism’’ for the retrieval of potential partners from our

protein repertoire against the query protein. Once the run is

submitted, a transition window pops up with an associated Job ID.

Each job submission is provided with unique Job ID based on the

current date and time that serves as a permanent bookmarkable

link to the data. The users can apply the unique Job ID or Job

Name to track the progress of the calculation in the ‘Job Queue’

page of SPPS. Typical runs of ‘Single Query’ and ‘Multiple Query’

with ‘Consider indirect interaction’ option takes 2–25 minutes,

depending on the number of protein repertoire in different species.

The estimation of direct interaction in ‘‘Multiple Query’’ only

takes several seconds. Upon completion of a job, a button labeled

‘‘Finished’’ emerges in the ‘‘Job Queue’’ page and can redirect the

users to the result. In the future, we will update the list of proteins

every 6 months in order to provide the latest receptors to screen.

As the result of ‘Single Query’, the output in SPPS is split into

three main sections, namely, ‘‘Protein Partner List’’, ‘‘Protein

Partner Network’’ and ‘‘Result annotation’’. ‘‘Protein Partner

List’’ includes all predicted protein partners along with their

overall confidence scores in probability. The confidence score is

provided for each potential protein-protein interaction as

described in the Materials and Methods and ranges from 0% to

100%, with 0% indicating maximum confidence for non-

interaction and 100% indicating maximum confidence for

interaction between two proteins. For example, a potential protein

partner for a query protein with the estimated probability of 90%

should be more likely to be the physical partner than one with a

probability of 60%. Therefore, only potential partners of the query

protein with probabilities larger than 50% are ranked as positives

in descending order. If partners of a query protein have been

predicted as positives, the potential interactive network from the

query protein is constructed by integration of known PPIs, as

shown in ‘‘Protein Partner Network’’. In the current SPPS,

candidate proteins from five species including ‘‘Homo sapiens’’,

‘‘Mus musculus’’, ‘‘Caenorhabditis elegans’’, ‘‘Drosophila melanogaster’’,

and ‘‘Saccharomyces cerevisiae’’ are prepared to be fished out, each

protein has been annotated with ‘‘Function’’, ‘‘Disease’’, ‘‘Tissue

specificity’’, ‘‘Interaction’’ and ‘‘Subcellular location’’, and depos-

ited in MySQL. User could check them from the result table. In

addition, ‘‘Tissue Match’’ may select the predicted partners with

the specific distribution from keywords by user input. In the

‘‘Known Interaction Match’’, the experimental known partners of

query protein in the predicted list can retrieve when user inputs

the ‘‘Uniprot Entry Name’’ of the query protein (eg.

‘‘BRMS1_HUMAN’’, ‘‘FBX6_HUMAN’’). In addition, a down-

load link is available for all known interactions of the query protein

if ‘‘Uniprot Entry Name’’ of the query protein is submitted, which

were collected from several PPI databases (eg. HPRD, STRING,

DIP etc).

Contrary to ‘‘Single Query’’, the output of ‘‘Multiple Query’’

mainly divides into ‘‘Direct Interaction Prediction’’ and ‘‘Indirect

Interaction Prediction’’ sections. The probability score is always

provided for direct PPI predication. One or two intermediate

proteins linking two query proteins are also estimated if ‘‘Consider

indirect interaction’’ option in ‘‘Multiple Query’’ mode is checked.

All probabilities of prediction in the output are defined the same

way as ‘‘Single Query’’.

In addition to the ‘‘Search’’ option, SPPS also offers all training

data, models and standalone software under its ‘‘Download’’ page,

which facilitate users in their local machines if they have a great

number of data to predict.

Implementation
To test the reliability of the SPPS server, we searched for the

interacting protein partners for human F-box protein 6 (FBXO6)

using ‘‘Single Query’’ and predicted a few direct interactions not

included in the training models from the latest literature among

several species using ‘‘Multiple Query’’.

FBXO6 protein is involved in the endoplasmic reticulum-

associated degradation pathway by mediating the ubiquitination of

glycoproteins. FBXO6 interacts with the innermost chitobiose in

N-glycans of glycoprotein substrates by a small hydrophobic

pocket in FBA domain and the introduction of point mutation into

the residues in that pocket (FBXO6 null) impaired the binding

activity toward its glycoprotein substrates [47]. In the study,

candidates of human FBXO6 interacting partners were predicted

Protein-Protein Interaction Partners Predictor
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Figure 1. An overview of SPPS server.
doi:10.1371/journal.pone.0030938.g001
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using ‘‘Single Query’’ of SPPS server (Table 2) and top-five

candidates were then tested by immunoprecipitation (IP) and

western blot. The result showed that two of them, RPN1

(Ribophorin-1) and DDOST (Oligosaccharyl transferase 48 kDa

subunit), are interacting partners of FBXO6 protein (Figure S1),

suggesting that our computational models represent an effective

means of protein-partner search and could be a useful tool for both

basic PPI and advanced signal transduction studies.

Besides‘‘Single Query’’mode, SPPS server also provides ‘‘Mul-

tiple Query’’ to quickly evaluate whether two proteins are directly

and indirectly interactive based on the score of probability, which

may help biologists to choose the most probable protein-protein

interaction pairs for further experimental validation. Many

directly interacting proteins from the latest literatures in 2011

[48–57], which were not included in the training models, have

been successfully predicted by SPPS server, as listed in Table 3.

SPPS server has been running since 2007 and is updated

annually. Competitive prediction of our algorithm has been

evaluated in 2010 among sequence-based PPI prediction methods

[46]. Over 200 query protein sequences, including catalytic

enzymes detected in biochemical or signal transduction experi-

ments, a regulative factor in the lysosome, and a novel protein

whose functions is unclear, have been screened. Five groups

outside the authors’ labs have become involved in screening.

Therefore, the method could be helpful to more biologists when

the server is open to publics.

Discussion

By bringing together a protein-partner search engine and

protein databases in a single program, the SPPS server is a

convenient tool for the identification of potential protein partners

of query proteins such as kinases, regulatory factors, and other

components of much more complex protein machineries. This

web server can also be used in constructing the signal transduction

network for a known protein or a novel protein whose function is

unknown. In general, one protein may interact with at least several

partners including upstream and downstream regulators. As

illustrated by the example of FBXO6, SPPS provides a good

predictive ability for potential protein partner hits. These are

useful guidelines for further experimental validation of signaling

network around any given protein.

However, SPPS still has certain limitations, one of them being

that the number of the models is not enough for covering all the

Table 1. The accuracies of prediction models constructed using our algorithm.

Species Num. Seq Num. PPIsa 5-CVb
‘‘Single Query’’ Time (min)

SE SP PRE ACC

H.sapiens 20027 39191 0.828 0.978 0.974 0.903 25

C. elegans 5070 4973 0.770 0.901 0.886 0.836 2

D. melanogaster 8767 22482 0.808 0.953 0.945 0.880 8

S.cerevisiae 14925 25064 0.851 0.979 0.976 0.915 10

M.musculus 15185 1225 0.802 0.882 0.872 0.842 4

aKnown interactions for building classifier model, which were collected till Jan, 2011.
bThe 5-CV performance of statistical learning methods can be measured by the quantity of true positives (TP), true negatives (TN), false positives (FP) and false negatives

(FN). Precision [PRE = TP/(TP+FP)] is a measure of the accuracy provided that a specific class has been predicted. Accuracy [ACC = (TP+TN)/(TP+TN+FP+FN)] is another
frequently used index for the overall classification performance, but it may be misleading as a result of highly unbalanced class distribution of used datasets. Sensitivity
[SE = TP/(TP+FN)] and specificity [SP = TN/(TN+FP)] can assess a model’s ability to correctly identify TP and TN, respectively, while they are usually interpreted in
combination with each other.

doi:10.1371/journal.pone.0030938.t001

Table 2. The top 10 potential protein partners of FBXO6 in human by SPPS ‘‘Single Query’’ search.

Rank Probability Gene Name Accession no. Protein Name

1 0.9984 SKP1_HUMAN P63208 S-phase kinase-associated protein 1

2 0.9973 OST48_HUMAN P39656 Dolichyl-diphosphooligosaccharide–protein
glycosyltransferase 48 kDa subunit precursor

3 0.9957 RPN1_HUMAN P04843 Dolichyl-diphosphooligosaccharide–protein
glycosyltransferase subunit 1

4 0.9901 DDOST_HUMAN B4DJE3 cDNA FLJ52929_highly similar to Dolichyl-
diphosphooligosaccharide–proteinglycosyltransferase
48 kDa subunit

5 0.9876 IF4G2_HUMAN P78344 Eukaryotic translation initiation factor 4 gamma 2

6 0.9869 HSP90B1_HUMAN B4DHT9 Uncharacterized Protein

7 0.9851 TBG2_HUMAN Q9NRH3 Tubulin gamma-2 chain

8 0.9846 DDX3Y_HUMAN O15523 ATP-dependent RNA helicase DDX3Y

9 0.9819 SOS2_HUMAN Q07890 Son of sevenless homolog 2

10 0.9814 HS90B_HUMAN P08238 Heat shock protein HSP 90-beta

doi:10.1371/journal.pone.0030938.t002
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species. The second one is that SPPS server has not considered

interspecific interactions, such as the interactions between viral

and human proteins, which may be vital in exploring targets

responsible for infectious diseases. The running time for ‘‘Single

Query’’ job is still slow due to large database and limited CPUs.

To overcome these shortages, we are currently (i) collecting

original interaction data produced by using the yeast two-hybrid

based methods, mass spectrometry, protein chips and hybrid

approaches to construct training models for more species, (ii)

developing new kernel of SVM to adapt crossover interactions

between different species, (iii) planning to provide more CPUs to

accelerate the running process.

Discovering protein partners in large-scale network has been

unprecedentedly appreciated due to the requirement to address

the complicated process of biological systems by means of

integrated technology. SPPS provides a new type of tool to

facilitate the identification of direct or indirect protein partners

and guides scientists to design new experimental directions. The

SPPS server is available at a public web service http://mdl.shsmu.

edu.cn/SPPS/.

Methods

Construction of the protein databases
SPPS requires a sufficient number of known protein sequences

covering a diverse range of species. The protein sequences in our

database were retrieved from UniProt (http://www.uniprot.org/),

which is carried out by a Python script ‘‘Updater’’ at a 6-month

interval. The database currently consists of more than 60,000 non-

redundant protein sequences, with species covering ‘‘Homo sapiens’’,

‘‘Mus musculus’’, ‘‘Caenorhabditis elegans’’, ‘‘Drosophila melanogaster’’,

and ‘‘Saccharomyces cerevisiae’’, as shown in Table 1. In addition, the

annotations for each protein in the database, such as subcellular

location, tissue distribution, tissue specificity, known interactions,

protein functions, and related disease were directly extracted from

UniProt by Python script ‘‘Extractor’’. These annotations were

optionally used to refine the protein partner hits predicted by

SPPS. For efficient analysis and management, all data are stored in

a MySQL database (version 5.0).

Probability estimation of protein partners using SVM
Our predictor is developed based on the estimation of PPI

with SVM model. The details of the original algorithm have

been published [45] and evaluated [46]. Five models including

‘‘Homo sapiens’’, ‘‘Mus musculus’’, ‘‘Caenorhabditis elegans’’, ‘‘Drosoph-

ila melanogaster’’, and ‘‘Saccharomyces cerevisiae’’ have been built

based on the collected known PPIs with good accuracies

(Table 1).

For the SPPS server, we further enhanced the algorithm by

probability. Putative protein partners are ranked by the value of

probabilities. Platt’s approach was used to derive posterior

probabilities for the estimated class membership f(xi) of observa-

tion xi [58]. A sigmoid function is fitted to all estimated g(xi) to

derive probabilities by Eq. (1)

P y~1 g xið Þjð Þ~pi~
1

1zeAg xið ÞzB
ð1Þ

where A and B are estimated by minimizing the negative log-

likelihood of the training data, Eq. (2),

min
A,B

{
Xn

i~1

yiz1

2
log pið Þz 1{

yiz1

2

� �
log 1{pið Þ

� �" #
ð2Þ

The predictive probability ranges from 0% to 100%. In general,

the higher the probability, the more accurate the prediction model

presents.

Immunoprecipitation (IP) and Western blot
293T cells transfected with either Flag-FBXO6 WT or Flag-

FBXO6 Null were lysed in 6 ml of lysis buffer (50 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.5% Nonidet P40, Roche complete

EDTA-free protease inhibitor cocktail) for 20 min with gentle

rocking at 4uC. Lysates were cleared using centrifugation

(13,000 rpm, 10 min), the supernatant was subjected to immuno-

precipitation (IP) with 50 ml of anti-FLAG M2 affinity resin

(Sigma) overnight at 4uC with gentle inversion. Resin containing

immune complexes was washed with 1 ml ice cold lysis buffer 4

times followed by three 1 ml Tris Buffered Saline (TBS) washes.

Proteins were eluted with two 50 ml 150 mg/ml 36Flag-peptide

(Sigma) in TBS for 30 minutes, and the elutions were pooled for a

final volume of 100 ml. Proteins in each elution were precipitated

with cold acetone and the resulting pellet washed 2 times with cold

acetone. Proteins were separated by 10% SDS-PAGE and

transferred to NC membrane (Amersham Bioscience, Buckin-

ghamshire, UK). After blocking with 5% nonfat milk in PBS,

membranes were immunoblotted with indicated antibodies,

followed by HRP-linked secondary antibodies (Cell Signaling).

The signals were detected by SuperSignal West Pico Chemilumi-

nescent Substrate kit (Pierce, Rockford, IL) according to

manufacturer’s instructions.

Supporting Information

Figure S1 Immunocomplexes from either 293T
FBXO6WT or 293T FBXO6Null were immunoblotted with
the indicated antibodies. Both FBXO6WT and FBXO6Null

interacted with Cullin1, only FBXO6WT interacted with the

DDOST and RPN1.

(TIF)

Table 3. Prediction of PPI not included in the models on
variant species by using ‘‘Multiple Query’’ modea.

No.b Species Protein 1 Protein 2 Probability

1 [48] H.sapiens GIP BAI2 0.9735

2 [49] H.sapiens RASD1 EAR2 0.9243

3 [50] H.sapiens RELA KEAP1 0.9999

4 [51] M.musculus TMM88 DVL2 0.9435

5 [52] M.musculus MTF1 SUMO1 0.8299

6 [53] M.musculus GRB2 mCAT1 0.8258

7 [54] C.elegans LST4 DYN1 0.9604

8 [55] S.cerevisiae GID9 GID2 0.9997

9 [56] S.cerevisiae HMO1 SPT6 0.9999

10 [57] D.melanogaster PSB1 PSB3 0.8891

aProtein1 and Protein2 represent two query proteins in ‘‘Multiple Query’’ mode
respectively.

bReference number for experiment validation.
doi:10.1371/journal.pone.0030938.t003
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