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Abstract

Nuclear receptors (NRs) form a family of ligand-activated transcription factors that regulate a wide variety of biological
processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding
NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their
different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein
sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized
protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address
these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel
mode of pseudo amino acid composition (PseAAC) whose components were derived from a physical-chemical matrix via a
series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by
iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven
subfamilies: NR1{thyroid hormone like, NR2{HNF4-like, NR3{estrogen like, NR4{nerve growth factor IB-like, NR5{fushi
tarazu-F1 like, NR6{germ cell nuclear factor like, and NR0{knirps like. These rates were derived by the jackknife tests on a
stringent benchmark dataset in which none of protein sequences included has §60% pairwise sequence identity to any
other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.
jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how
to use the web-server to get the desired results without the need to follow the complicated mathematics involved in
developing the predictor. It is anticipated that iNR-PhysChem may become a useful high throughput tool for both basic
research and drug design.
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Introduction

Found within cells, nuclear receptors (NRs) are a class of proteins

responsible for sensing steroid and thyroid hormones and certain

other molecules. In response, these receptors work with other

proteins to regulate the expression of specific genes, thereby

controlling the development, homeostasis, and metabolism of the

organism. A unique property of NRs that distinguishes themselves

from other classes of receptors is their ability to directly interact with

and control the expression of genomic DNA, and hence they are

also classified as transcription factors [1,2]. Since NRs bind small

molecules that can be easily modified by chemical manipulation,

and also since NRs control the functions closely associated with

major diseases (such as cancer, osteoporosis, and diabetes), they

have become promising pharmacological targets [3,4,5].

Grouped into a superfamily that includes receptors for steroid

hormones, vitamin D, ecdysone, retinoic acid and thyroid

hormone [6,7], NRs are modular proteins composed of six distinct

regions (A–F) [8,9] that correspond to functional and structural

domains. Not all the NRs contain all the six domains. Regions C

and E display the highest degree of conservation. C is involved in

DNA binding and E involved in ligand binding and dimerization.

Owing to its high conservation, the C domain is the signature

motif of the superfamily. It is composed of two zinc fingers; the

presence of such feature facilitates the identification of NRs [5].

Based on the alignments of the conserved domains [4,10], the

superfamily has been subdivided into seven subfamilies [11,12].

The importance of NRs has prompted a rapid accumulation of

the relevant data from a great diversity of fields of research:

sequences, expression patterns, 3-D (three-dimensional) structures,

protein-protein interactions, target genes, physiological roles,

mutations, etc. These accumulated data are very helpful for data

mining and knowledge discovery. Since the function of a NR is

closely correlated with which subfamily it belongs to, facing the

avalanche of protein sequences generated in the post-genomic age,

it is highly desired to develop automated methods for rapidly and

effectively identifying NRs and their subfamilies according to their

sequences information alone, because the knowledge thus acquired

may benefit both basic research and drug development. Actually,

some efforts have already been made in this regard.
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In 2004, Bhasin and Raghava [13] have proposed a method for

predicting the subfamilies of NRs using SVM as the prediction

engine and the amino acid composition and dipeptide composition

as the input. In 2009, Gao et al. [14] reconstructed the benchmark

dataset for NRs and introduced the pseudo amino acid

composition (PseAAC) [15] to represent the protein samples in

hope to improve the prediction quality. As pioneering efforts in

this area, the works by Bhasin and Raghava [13] and Gao et al.

[14] did play a stimulating role in this area. However, the above

two predictors have the following problems needed to be further

addressed: (1) The benchmark datasets used to train the two

predictors only covered four subfamilies, too narrow for the

coverage scope. (2) There are many high homologous sequences

included in their benchmark datasets because the cutoff threshold

set by these authors to remove homologous sequences was 90%; a

much more stringent threshold should be adopted to avoid

homology bias. (3) The predictions by the two predictors were

made under the assumption that the input query sequences are

already known belonging to NRs; in other words, they cannot be

used to identify whether a query protein as a NR or non-NR. (4)

No web-server was provided [13] or the web-server provided by

[14] is currently not working, and hence their methods cannot be

easily used by the majority of experimental scientists to acquire the

desired data for basic research and drug development.

To address the aforementioned four problems, recently a

different predictor was proposed by extending the coverage scope

from the four subfamilies of NRs as covered in [13,14] to seven

subfamilies [16]. The name of that predictor is called NR-2L,

where 2L means that it is a two-level predictor. The 1st level is for

identifying query proteins as NRs or non-NRs, while the 2nd level

for identifying the NRs among their seven subfamilies.

In view of the importance of NRs to both basic research and

drug development, the present study was initiated in an attempt to

further improve the prediction quality of NR-2L by developing a

new and more powerful predictor for identifying NRs and their

subfamilies.

According to a recent review [17], to establish a really useful

statistical predictor for a protein system, we need to consider the

following procedures: (1) construct or select a high quality

benchmark dataset to train and test the predictor; (2) formulate

the protein samples with an effective mathematical expression that

can truly reflect their intrinsic correlation with the target to be

predicted; (3) introduce or develop a powerful algorithm (or

engine) to operate the prediction; (4) properly perform cross-

validation tests to objectively evaluate the anticipated accuracy of

the predictor; (5) establish a user-friendly web-server for the

predictor that is accessible to the public. Below, let us describe how

to follow the above procedures to develop a new predictor that can

further enhance the prediction quality in identifying NRs and their

subfamilies.

Materials and Methods

1. Benchmark Datasets
In this study, we selected the datasets from [16] as the

benchmark dataset. The reason for doing so is because that the

datasets constructed in [16] for establishing the predictor NR-2L
are relatively more rigorous, and that it is also more convenient to

compare our new predictor with NR-2L by using a same

benchmark dataset. The benchmark dataset in [16] can be

formulated as

S~SNR|SnNR ð1Þ

where SnNR contains 500 non-NR protein sequences; while SNR

contains 159 protein sequences classified into the following seven

subfamilies: (1) NR1: thyroid hormone like (thyroid hormone,

retinoic acid, RAR-related orphan receptor, peroxisome prolif-

erator activated, vitamin D3-like), (2) NR2: HNF4-like (hepatocyte

nuclear factor 4, retinoic acid X, tailless-like, COUP-TF-like,

USP), (3) NR3: estrogen like (estrogen, estrogen-related, gluco-

corticoid-like), (4) NR4: nerve growth factor IB-like (NGFI-B-like),

(5) NR5: fushi tarazu-F1 like (fushi tarazu-F1 like), (6) NR6: germ

cell nuclear factor like (germ cell nuclear factor), and (7) NR0:

knirps like (knirps, knirps-related, embryonic gonad protein,

ODR7, trithorax) and DAX like (DAX, SHP). For the dataset

SnNR, none of the proteins therein has §60% pairwise sequence

identity to any other; for each of the seven subsets in SNR, none of

the proteins included has §60% pairwise sequence identity to any

other in a same subset. Listed in Table 1 is a breakout of the

proteins in the benchmark dataset used in the current study. The

codes and sequences for the proteins in the benchmark dataset S

can be obtained from the Supporting Information S1 of [16] or

directly downloaded from the website http://icpr.jci.edu.cn/

bioinfo/NR2L/Supp.html.

2. Protein Sequence Formulation
One of the keys in developing a method for identifying protein

attributes is to formulate the protein samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the target to be predicted [18]. However, it is by

no means an easy job to realize this because this kind of correlation

is usually deeply ‘‘buried’’ or ‘‘hidden’’ in piles of complicates

sequences.

The most straightforward method to formulate the sample of a

query protein P was just using its entire amino acid sequence, as

can be generally described by

P~R1R2R3R4R5R6R7 � � �RL ð2Þ

where R1 represents the 1st residue of the protein P, R2 the 2nd

residue, …, RL the L-th residue, and they each belong to one of

the 20 native amino acids. In order to identify its attribute, the

sequence-similarity-search-based tools, such as BLAST [19,20],

was utilized to search protein database for those proteins that have

high sequence similarity to the query protein P. Subsequently, the

attribute annotations of the proteins thus found were used to

deduce the attribute for the query protein P. Unfortunately, this

Table 1. Breakdown of the benchmark dataset S (cf. Eq. 1)
used in this study.

Attribute Dataset Subfamily Subset Number

NR SNR NR1 SNR
1

50

NR2 S
NR
2

36

NR3 SNR
3

37

NR4 SNR
4

7

NR5 S
NR
5

12

NR6 S
NR
6

5

NR0 SNR
0

12

Non-NR SnNR N/A N/A 500

doi:10.1371/journal.pone.0030869.t001
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kind of straightforward sequential model, although quite intuitive

and able to contain the entire information of a protein sequence,

failed to work when the query protein P did not have significant

sequence similarity to any attribute-known proteins.

Thus, various non-sequential or discrete models to formulate

protein samples were proposed in hopes to establish some sort of

correlation or cluster manner by which to enhance the prediction

power.

Among the discrete models for a protein sample, the simplest

one is its amino acid (AA) composition or AAC [21]. According to

the AAC-discrete model, the protein P of Eq. 4 can be formulated

by [22]

P~ f1 f2 � � � f20½ �T ð3Þ

where fi(i~1,2, � � � ,20) are the normalized occurrence frequencies

of the 20 native amino acids in protein P, and T the transposing

operator. Many methods for predicting various protein attributes

were based on the AAC-discrete model (see, e.g., [21,23,24,25,26]).

However, as we can see from Eq. 3, if using the ACC model to

represent the protein P, all its sequence-order effects would be lost,

and hence the prediction quality might be considerably limited. To

avoid completely losing the sequence-order information, instead of

the simple amino acid composition (AAC), the pseudo amino acid

composition (PseAAC) was proposed [15] to represent the protein

samples.

The PseAAC approach has been widely used by investigators to

predict various attributes of proteins, such as identifying bacterial

virulent proteins [27], predicting homo-oligomeric proteins [28],

identifying metalloproteinase family [29], predicting protein

secondary structure content [30], predicting supersecondary

structure [31], predicting protein structural classes [32], predicting

enzyme family and sub-family classes [33,34,35], predicting protein

subcellular location [36,37], identifying cell wall lytic enzymes [38],

identifying risk type of human papillomaviruses [39], predicting

apoptosis protein subcellular location [40,41,42,43], predicting

outer membrane proteins [44], predicting subnuclear protein

location [45], identifying bacterial secreted proteins [46], predicting

protein submitochondria locations [47,48,49], predicting G-Pro-

tein-Coupled Receptor Classes [50,51], predicting protein folding

rates [52], predicting cyclin proteins [53], predicting GABA(A)

receptor proteins [54], identifying the cofactors of oxidoreductases

[55], identifying lipase types [56], identifying protease family [57],

predicting Golgi protein types [58], among many others.

According to a recent review article [17], the general form of

PseAAC for a protein P can be formulated as

P~ y1 y2 � � � yu � � � yV½ �T ð4Þ

where the subscript V is an integer and its value as well as the

components y1, y2, … will depend on how to extract the desired

information from the amino acid sequence of P.

Below, we are to use the ‘‘Physical-Chemical Property Matrix’’

and ‘‘Auto- and Cross- Covariance Transformation’ to define the

V elements in Eq. 4.

2.1. Physical-chemical property matrix. Each of the

constituent amino acids in a protein has many physical-chemical

properties. Therefore, a protein sequence can be encoded by a

series of physical-chemical property values. In this study, the

following ten physical-chemical (PC) properties were adopted: (1)

PC1: hydrophobicity [59]; (2) PC2: hydrophilicity [60]; (3) PC3:

side-chain mass (which can be obtained from any biochemistry

text book), (4) PC4: pK1 (Ca-COOH [61]; (5) PC5: pK2 (NH3)

[61]; (6) PC6: PI (25uC) [62]; (7) PC7: average buried volume; (8)

PC8: molecular weight; (9) PC9: side chain volume; (10) PC10:

mean polarity.

Thus, according to the ten PC properties, the protein P of Eq.
2 can be formulated with a 10|L physical-chemical property

matrix as given by

P~

PC1(R1) PC1(R2) � � � PC1(RL)

PC2(R1) PC2(R2) � � � PC2(RL)

PC3(R1) PC3(R2) � � � PC3(RL)

PC4(R1) PC4(R2) � � � PC4(RL)

PC5(R1) PC5(R2) � � � PC5(RL)

PC6(R1) PC6(R2) � � � PC6(RL)

PC7(R1) PC7(R2) � � � PC7(RL)

PC8(R1) PC8(R2) � � � PC8(RL)

PC9(R1) PC9(R2) � � � PC9(RL)

PC10(R1) PC10(R2) � � � PC10(RL)

2
66666666666666666664

3
77777777777777777775

ð5Þ

where PCi(Rj) is the value of PCi (i~1, 2, � � � , 10) for residue Rj

(j~1, 2, � � � , L).

Of the ten PC properties, the values for the first six can be

directly obtained from the website http://www.csbio.sjtu.edu.cn/

bioinf/PseAAC/PseAAReadme.htm, a part of the web-server

PseAAC established for computing pseudo amino acid composi-

tions of proteins according to their sequences [63]. The remain-

der can be obtained from AAindex (http://www.genome.jp/

aaindex/), which is a database of numerical indices for various

physicochemical and biochemical properties of amino acids and

pairs of amino acids. All data in this database [64,65] are derived

from published literatures. Listed in Table 2 are the values for the

ten PC properties of the 20 amino acids, respectively. However,

before submitting them into Eq. 5, all the data in Table 2 were

subject to a standard conversion through the following equation

[66]:

yi~
xi{mean(x)

std(x)
ð6Þ

where xi (i~1,2, � � � , 20) stands for the original score of the ith

amino acid, mean(x) for the mean score of the 20 amino acids,

and std(x) for the corresponding standard deviation. The

converted values obtained via Eq. 6 will have a zero mean value

over the 20 amino acids, and will remain unchanged if they go

through the same conversion procedure again [66].

Thus, given a protein with L amino acids, it can be expressed as

a 10|L numerical matrix via the ten physical-chemical properties

as given in Eq. 5. Such a matrix is called the physical-chemical

property matrix or PC matrix, for protein P. It is assumed that

those NRs that belong to a same type should have a similar PC

matrix, or vice versa.

2.2. Auto-covariance and cross-covariance. In statistics,

the auto-covariance is the covariance of a stochastic process

against a parameter-shifted version of itself (Fig. 1a), while the

cross-covariance is used to refer to the covariance between two

random vectors (Fig. 1b). Here, let us use the two concepts of

covariance to transform the matrix of Eq. 5 to a length-fixed

feature vector, as described below.

According to the concept of auto-covariance (AC), the

correlation of the same PC property between two subsequences

separated by l amino acids can be formulated as

Predict Nuclear Receptors and Their Subfamilies
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AC(i,l)~
XL{l

j~1

PCi(Rj){PCi
h i

PCi(Rjzl){PCi
h i,

(L{l) (i~1,2, � � � , 10)

ð7Þ

where l~(1, 2, � � � , vL) [15] and PC
i

represents the mean

value of the ith horizontal line in Eq. 5, as given by

PC
i
~
XL

j~1

PCi(Rj)=L ð8Þ

As we can see from Eq. 7, using auto-covariance on the physical-

chemical property matrix of Eq. 5, we can generate 10|l auto-

covariance components.

On the other hand, according to the concept of cross-covariance

(CC), the correlation between two subsequences with each

belonging to a different PC property can be formulated by

CC(i1,i2,l)~
XL{l

j~1

PCi1(Rj){PCi1
h i

PCi2(Rjzl){PCi2
h i,

(L{l)(i1~1,2, � � � ,10; i2~1,2, � � � ,10; i1=i2)

ð9Þ

Hence, using cross-covariance on the physical-chemical property

matrix of Eq. 5, we can generate 10|9|l cross-covariance

components.

Accordingly, a total of (10|lz10|9|l)~100|l compo-

nents can thus be generated from Eq. 5. However, it was

indicated by preliminary computations and analyses that when

l~10, better results would be obtained. Thus, in this study the

PseAAC for protein P is expressed as

P~ y1 y2 � � � yu � � � y100|l½ �T

~ y1 y2 � � � yu � � � y1000½ �T

where yu is the uth components generated by operating the above

auto-covariance and cross-covariance on the physical-chemical

property matrix of Eq. 5.

2.3. Support vector machines. Support vector machines

(SVMs) are a set of related supervised learning methods that are

usually used to analyze data and recognize patterns. The original

SVM algorithm was proposed by Vapnik [67] and the current

standard incarnation (soft margin) was proposed by Cortes and

Vapnik [68]. When used in the current study, its mathematical

principles can be briefly described as follows.

Table 2. List of the values of the ten physical-chemical
properties for each of the 20 native amino acids.

Amino
acid PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

A 0.62 20.5 15 2.35 9.87 6.11 91.50 89.09 27.5 20.06

C 0.29 21.00 47 1.71 10.78 5.02 117.7 121.2 44.6 1.36

D 20.90 3.00 59 1.88 9.60 2.98 124.5 133.1 40.0 20.80

E 20.74 3.00 73 2.19 9.67 3.08 155.1 147.1 62.0 20.77

F 1.19 22.50 91 2.58 9.24 5.91 203.4 165.2 115.5 1.27

G 0.48 0.00 1 2.34 9.60 6.06 66.40 75.07 0.0 20.41

H 20.40 20.50 82 1.78 8.97 7.64 167.3 155.2 79.0 0.49

I 1.38 21.80 57 2.32 9.76 6.04 168.8 131.2 93.5 1.31

K 21.50 3.00 73 2.20 8.90 9.47 171.3 146.2 100.0 21.18

L 1.06 21.80 57 2.36 9.60 6.04 167.9 131.2 93.5 1.21

M 0.64 21.30 75 2.28 9.21 5.74 170.8 149.2 94.1 1.27

N 20.78 0.20 58 2.18 9.09 10.76 135.2 132.1 58.7 20.48

P 0.12 0.00 42 1.99 10.60 6.30 129.3 115.1 41.9 0.00

Q 20.85 0.20 72 2.17 9.13 5.65 161.1 146.2 80.7 20.73

R 22.53 3.00 101 2.18 9.09 10.76 202.0 174.2 105 20.84

S 20.18 0.30 31 2.21 9.15 5.68 99.10 105.1 29.3 20.50

T 20.05 20.40 45 2.15 9.12 5.60 122.1 119.1 51.3 20.27

V 1.08 21.50 43 2.29 9.74 6.02 141.7 117.2 71.5 1.09

W 0.81 23.40 130 2.38 9.39 5.88 237.6 204.2 145.5 0.88

Y 0.26 22.30 107 2.20 9.11 5.63 203.6 181.2 117.3 0.33

doi:10.1371/journal.pone.0030869.t002

Figure 1. An illustration to show two types of covariance. (a) The auto-covariance refers to the coupling between two subsequences from a
same sequence when they are separated by l~1 unit. (b) The cross-covariance refers to the coupling between two subsequences from two different
sequences as indicated by two open curly braces.
doi:10.1371/journal.pone.0030869.g001

(10)
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Given a set of N samples, i.e. a series of input vectors

Pk[Rt(k~1, 2, � � � , N) ð11Þ

where Pk can be regarded as the k-th protein sample or vector as

formulated by Eq. 10, and Rt is an Euclidean space with t
dimensions. For the current case, Rt is actually a PseAAC space

with t~1000 (cf. Eq. 10). The SVM algorithm performs a

mapping of the vectors of proteins in the training dataset from the

space Rt into a higher dimensional space RH by a kernel function

and finds an optimal separating hyperplane, which maximizes the

margin between the hyperplane and the nearest data points of

each class in the space RH. Different kernel functions define

different SVMs. In principle, SVM is a two-class classifier. With

the recent improvements, the SVM can now be directly used to

cope with multi-class classification problem via the one-against-all

or pairwise approach. For the detailed mathematical formulations,

see Eqs. 3–18 in [69], where instead of the 1000-D PseAAC space,

a protein sample was defined in the 2005-D FunD (functional

domain) composition space.

SVM has been widely used to classify various attributes of

proteins according to their sequences information (see, e.g.,

[33,43,69,70,71,72,73,74]). In this study, the LIBSVM package

[75] was used as an implementation of SVM, which can be

downloaded from http://www.csie.ntu.edu.tw/,cjlin/libsvm/,

the popular radial basis function (RBF) was taken as the kernel

function. For the current SVM classifier, there were two unknown

parameter: penalty parameter C and kernel parameter c. The

method of how to determine the two parameters will be discussed

later.

The predictor established via the aforementioned procedures is

called iNR-PhysChem, where the character ‘‘i’’ stands for

‘‘identifying’’, ‘‘NR’’ for ‘‘nuclear receptors and their subfamilies’’,

and ‘‘PhysChem’’ for ‘‘using physical-chemical property features’’.

To provide an intuitive overall picture, a flowchart is provided in

Fig. 2 to illustrate the process of how iNR-PhysChem works in

identifying nuclear receptors and their subfamilies.

2.4. Performance metrics. The performance of the

predictor is evaluated by the overall accuracy, which is the most

commonly used metric for assessing the global performance of a

multi-class problem. The overall accuracy (ACC) is defined as the

ratio of correctly predicted samples to all tested samples:

ACC~
CN

N
|100% ð12Þ

where CN is the number of proteins whose attribute have been

correctly identified and N the total number of proteins in the

benchmark dataset. Also, to examine the stability of the pretictor,

the Matthew’s correlation coefficient (MCC) is computed according

to the following formulation:

MCC~
(TP)(TN){(FP)(FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½TPzFP�½TPzFN�½TNzFP�½TNzFN�
p ð13Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; and FN, the false negative (Fig. 3).

2.5. Web-server guide. The mathematic equations pre-

sented above are just for the integrity in developing the iNR-
PhysChem predictor. For those who are interested in only using

iNR-PhysChem, a web-server has been established. Below, let us

give a step-by-step guide on how to use it to get the desired results

without the need to follow the complicated mathematic equations

at all.

Step 1. Open the web server at either http://www.jci-bioinfo.

cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-

PhysChem, and you will see the top page of the predictor on

your computer screen, as shown in Fig. 4. Click on the Read

Figure 2. A flowchart to show the prediction process of iNR-
PhysChem. T1 represents the benchmark dataset from [16] for training
the 1st-level prediction; T2 represents the benchmark dataset from [16]
for training the 2nd-level prediction. See the text for further explanation.
doi:10.1371/journal.pone.0030869.g002

Figure 3. An illustration to show the predicted results fallen
into four different quadrants. (I) TP, the true positive quadrant
(green) for correct prediction of positive dataset, (II) FP, the false
positive quadrant (red) for incorrect prediction of negative dataset; (III)
TN, the true negative quadrant (blue) for correct prediction of negative
dataset; and (IV) FN, the false negative quadrant (pink) for incorrect
prediction of positive dataset.
doi:10.1371/journal.pone.0030869.g003
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Me button to see a brief introduction about the iNR-
PhysChem predictor, and its anticipated accuracy.

Step 2. Either type or copy/paste the query protein sequence

into the input box at the center of Fig. 4. The input sequence

should be in the FASTA format. A sequence in FASTA format

consists of a single initial line beginning with a greater-than symbol

(‘‘.’’) in the first column, followed by lines of sequence data. The

words right after the ‘‘.’’ symbol in the single initial line are

optional and only used for the purpose of identification and

description. The sequence ends if another line starting with a ‘‘.’’

appears; this indicates the start of another sequence. Example

sequences in FASTA format can be seen by clicking on the

Example button right above the input box. The maximum

number of query proteins allowed for each submission is 500.
Step 3. Click on the Submit button to see the predicted result.

For example, if you use the two query protein sequences in the

Example window as the input, after clicking the Submit button,

you will see from your computer screen that the 1st query protein

(THB2_RAT) is a ‘‘NR’’ belonging to the subfamily of ‘‘NR1
(Thyroid hormone like)’’, and that the 2nd query protein

(E1FMC1_LOALO) is a ‘‘non-NR’’. All these results are fully

consistent with the experimental observations. It only took a few

seconds to get the above results. If the input contains 500 query

protein sequences, the job will be finished in less than 2 minutes.
Step 4. Click on the Data button to download the benchmark

datasets used to train and test the iNR-PhysChem predictor.
Step 5. Click on the Citation button to find the relevant paper

that documents the development of the iNR-PhysChem
predictor.

Results and Discussion

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, K-fold (such as 5-

fold, 7-fold, or 10-fold) subsampling test, and jackknife test [76].

However, as elucidated by [77] and demonstrated by Eqs. 28–32

of [17], among the three cross-validation methods, the jack-

knife test is deemed the least arbitrary that can always yield a

unique result for a given benchmark dataset, and hence has

been increasingly used and widely recognized by investigators

to examine the accuracy of various predictors (see, e.g.,

[37,39,50,53,78,79]). Therefore, in this study the jackknife cross-

validation was adopted to calculate the success prediction rates as

well.

However, for a system involved with two uncertain parameters

(C and c), it will need a lot of computational times to find their

optimal values. Therefore, as a fist step, let us determine the values

of C and c for the current SVM operation engine just by

optimizing the overall 5-fold cross-validation success rate thru a 2-

D grid search (Fig. 5). The values thus obtained for the two

parameters are given by

C~27, c~2{3 for the 1st-level prediction

C~27, c~2{5 for the 2nd-level prediction

(
ð14Þ

where the 1st-level prediction is for identifying a query protein as

NR or non-NR; while the 2nd-level prediction is for identifying a

NR among its seven subfamilies (cf. Table 1).

Subsequently, using the parameters values of Eq. 14 for the

SVM operation engine, the jackknife tests were performed on the

benchmark dataset S (cf. Eq. 1).

The results thus obtained in identifying proteins as NRs or non-

NRs are given in Table 3; while those in identifying NRs among

their seven subfamilies are given in Table 4. For facilitating

comparison, the corresponding results obtained by the predictor

NR-2L [16] are also listed in the two tables.

As we can see from Table 3, the overall jackknife success rate

in identifying NRs and non-NRs by the current iNR-PhysChem
is 98.16%, which is obviously higher than the corresponding rate

by the NR-2L predictor [16]. Meanwhile, the overall MCC by

iNR-PhysChem is 0.96, which is also more close to 1 than that

by the NR-2L predictor [16]. Also, it can be seen from Table 4,

the overall jackknife success rate in identifying NRs among their

seven subfamilies and the overall MCC by the current iNR-
PhysChem are 92.45% and 0.91, respectively, which are also

higher than the corresponding rates by the NR-2L predictor [16].

All these results indicate that the current iNR-PhysChem is

superior to NR-2L [16] not only in achieving higher success rates,

but also in getting more stable predicted results.

The higher success rates with more stability indicate that it is a

promising strategy to use the physical-chemical matrix to

Figure 4. A semi-screenshot to see the top page of iNR-PhysChem. The web-server is at either http://www.jci-bioinfo.cn/iNR-PhysChem or
http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem.
doi:10.1371/journal.pone.0030869.g004
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investigate the attributes of proteins, and that it can catch the

essential features of NRs by representing their sequence samples

with PseAAC consisting of the components derived from their

physical-chemical matrix via the auto-covariance and cross-

covariance transformation.

It is anticipated that iNR-PhysChem may become a use-

ful high throughput tool for both basic research and drug

development.

Finally, people might be interested to know how to rank the

impacts of the ten amino acid properties (cf. Eq. 5) for their roles

in identifying the NRs and their subfamilies. To address this

problem, a leave-one-out test was performed for each of the ten

amino acid properties. The property would be deemed having the

most significant impact if the overall success rate dropped down

the most after excluding it from the ten properties. It was observed

that for the 1st- level prediction (i.e., in identifying query proteins

as NRs or non-NRs), their impacts were ranked as

PC4
4PC5 ¼D PC6

4PC1
4PC2 ¼D

PC7 ¼D PC10
4PC3 ¼D PC8

4PC9
ð15Þ

where the symbol 4 means ‘‘greater than in impact’’, and the

symbol ¼D means ‘‘equal to in impact’’. For the 2nd-level prediction

(i.e., in identifying the NRs among their seven subfamilies), the

impacts of the ten amino acid properties were ranked as

PC5
4PC4 ¼D PC6

4PC2
4PC1

4PC7
4PC3 ¼D

PC8 ¼D PC9 ¼D PC10
ð16Þ

In other words, pK1 had the highest impact in identifying query

proteins as NRs or non-NRs, followed by pK2 and PI, and so forth

(cf. Section 2.1 of Materials and Methods); while pK2 had the

highest impact in identifying NRs among their seven subfamilies,

followed by pK1 and PI, and so forth.
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Figure 5. The 3D graph to show the success rates by the 5-fold
cross-validation with different values of C and ª in the SVM
engine. (a) The results obtained for the 1st-level prediction. (b) The
results obtained for the 2nd-level prediction.
doi:10.1371/journal.pone.0030869.g005

Table 4. Comparison of the success rates and MCC values
obtained by the current iNR-PhysChem and NR-2L [16] in
identifying the subfamilies of NRs by the jackknife test on the
benchmark dataset SNR (cf. Eq. 1).

NR subfamily iNR-PhysChem NR-2L

ACC MCC ACC MCC

NR1 47

50
~94:00%

0.87 43

50
~86:00%

0.88

NR2 35

36
~97:22%

0.93 31

36
~86:11%

0.85

NR3 37

37
~100%

0.95 37

37
~100%

0.86

NR4 5

7
~71:43%

0.84 6

7
~85:71%

0.70

NR5 10

12
~83:33%

0.91 10

12
~83:33%

0.86

NR6 5

5
~100%

1.00 5

5
~100%

1.00

NR0 8

12
~66:67%

0.81 9

12
~75:00%

0.86

Overall 147

159
~92:45%

0.91 141

159
~88:68%

0.87

doi:10.1371/journal.pone.0030869.t004

Table 3. Comparison of the success rates and MCC values
obtained by the current iNR-PhysChem and NR-2L [16] in
identifying NRs and non-NRs by the jackknife test on the
benchmark dataset S (cf. Eq. 1).

Attribute iNR-PhysChem NR-2L

ACC MCC ACC MCC

NR 153

159
~96:23%

0.95 156

159
~98:11%

0.83

Non-NR 494

500
~98:80%

0.95 454

500
~90:80%

0.83

Overall 647

659
~98:18%

0.96 610

659
~92:56%

0.85

doi:10.1371/journal.pone.0030869.t003
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