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Abstract

To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of
information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of
robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination
of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation.
These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of
correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the
principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically
consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence
supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range
supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and
Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is
near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced
perceptual dimensionality for speech perception and plausible neural substrates are discussed.
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Introduction

To the extent that characteristics of a structured world are

predictably related, inputs to sensory systems are redundant. It has

long been proposed that the role of early sensory processing is to

detect, extract, and exploit redundancy in the input [1,2].

Through processes of evolution and experience, response

properties of sensorineural systems should complement statistical

regularities of the stimuli to which they are exposed [1–8]. These

claims of ‘efficient coding’ enjoy a long history in vision research,

although direct evidence from perceptual experiments is not

abundant [9]. There is physiological evidence that responses of

neurons at successive stages of processing become increasingly

independent from one another [10,11], with such demonstrations

clearest in the auditory system. For example, Chechik and

colleagues [12,13] report redundancy-reducing transformations

of neural responses to bird call stimuli in the ascending auditory

pathway of the cat. Auditory cortex responses shared less mutual

information (less redundancy, or more independence) compared to

neural responses in the inferior colliculus.

Reduction of redundancy has often been inferred from

perceptual findings. The most well-known example is the

McCollough effect [14], where observers adapt to a contingency

between line orientation (horizontal, vertical) and color (red,

green), but not to either dimension singly (see [15] for review).

Adaptation to complex visual patterns [16–18] or to initially

arbitrary but thoroughly trained crossmodal contingencies (be-

tween luminance and stiffness [19]) provide further examples from

which redundancy reduction has been inferred.

One limitation to broad application of efficient coding models is

the nearly exclusive investigation of such processes in visual

perception. Just as it is true for the optical world, lawful constraints

on sound-producing events give rise to natural sounds that are

acoustically complex with multiple, redundant attributes. For

sounds created by real structures including musical instruments

and vocal tracts, changes in different acoustic dimensions cohere

in accordance with physical laws governing sound-producing

sources. For example, articulatory maneuvers that produce

consonant and vowel sounds give rise to multiple acoustic

attributes, and changes among these attributes are often correlated

[20,21].

To investigate whether and how auditory perception is sensitive

to correlations (redundancy) among acoustic properties, Stilp et al.

[22] created novel stimuli (heavily edited mixtures of French horn

and tenor saxophone samples) that varied along two complex

dimensions: attack/decay (AD; Figures 1A–1C) and spectral shape

(SS; Figures 1D–1F). Each dimension was independently normed

so that all pairs of sounds separated by a fixed number of stimulus

steps were approximately equally discriminable. Series were fully

crossed to generate a stimulus matrix from which subsets of stimuli

were selected to present listeners with either a robust (r = 60.97) or

weaker correlation (r = 60.54) between changes in AD and SS.

Listeners completed AXB discrimination trials without feedback

on stimulus pairs that either respected (Consistent condition) or
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violated the correlation (Orthogonal, Single-cue conditions). When

AD and SS were highly correlated, discriminability of sound pairs

obeying the correlation maintained, but became significantly

worse for pairs that violate the correlation. This difference in

discrimination was evident early in testing, and performance on

Orthogonal and Single-cue pairs recovered by the end of the

experiment. Conversely, when AD and SS were relatively weakly

correlated (r = 60.54), discrimination was equivalent throughout

the experiment, suggesting that correlation must be relatively

robust to produce differences in discriminability.

Stilp and colleagues tested three unsupervised neural network

models, each testing a different hypothesis of how sensorineural

systems exploit covariance, to examine how they accounted for

listener performance. A Hebbian model [23,24], in which

connection weights adjust in proportion to the correlation between

input and output unit activations, predicted reduced discrimina-

bility of sounds violating the correlation, but not recovery to

baseline levels later in the experiment as observed in listener data.

An anti-Hebbian or decorrelation model [16,25], in which output

dimensions become orthogonal via symmetric inhibition between

output units proportional to their correlation, predicted superior

discrimination of sounds violating the correlation (Orthogonal),

contrary to listener performance. Finally, a connectionist simula-

tion of principal components analysis (PCA) [26] predicted the full

pattern of results across experiments.

In the PCA network, the first output inhibits inputs to subsequent

outputs, thereby removing the principal component from the input

pattern and leaving remaining outputs to capture residual covariance.

Consistent with listener performance, network outputs initially

organized with respect to the principal component (correlation) in

the stimulus set, only gradually coming to discriminate or encode

remaining variance (orthogonal and single-cue changes).

The statistical purpose of PCA is to linearly transform input

data to a new coordinate system for which the greatest amount of

variance lies along the first coordinate, or principal component.

The second coordinate must be uncorrelated with (orthogonal to)

the first and under this restriction, captures the greatest amount of

variance not accounted for by the first component. The same

restrictions of orthogonality and maximization of variance not yet

explained hold for subsequent components. In practice, PCA

provides a highly efficient way to represent multidimensional data

because derived component dimensions are orthogonal (share no

variance), and relatively few components are typically necessary to

capture most of the variance in the data. In the present

application, there are only two input variables (AD and SS) and

thus two components capture all of the variance.

The linear algebraic solution to PCA yields an ordered set of

orthogonal components (Eigenvectors) with accompanying weights

(Eigenvalues). Each Eigenvalue is proportional to the variance that

is accounted for by its associated Eigenvector, and these can be

derived from either the covariance matrix or correlation matrix of

the input variables. Because covariance among variables is

sensitive to units (e.g., degrees Fahrenheit versus Celsius), it is

more common to solve for components and weights from a

correlation matrix (normalized covariance.) Extending earlier

work by Oja [24] and others, Sanger [26] demonstrated that the

model employed by Stilp and colleagues [22] finds the

Eigenvectors of the input correlation matrix, and is certain to

converge to the same solution as closed-form PCA.

To the extent that listener performance can be predicted by

PCA, one may infer that redundant attributes are efficiently coded

into experience-driven perceptual dimensions at the expense of

physical acoustic dimensions. Changes in performance reported by

Stilp et al. [22] are predicted by correlations between attributes,

not attributes AD or SS per se. Further, changes in discriminability

consequent to nearly-perfect, but not weaker, correlation are

functionally sensible. Perceptual representation of the correlation

is restricted to cases with sufficiently reliable evidence to limit the

perceptual costs (error) of reduced dimensionality.

Why efficient coding was not observed for stimuli with less

robust but still notable correlation among attributes (r = 60.54)

remains unclear. Relative to the highly-correlated stimulus set

presented in Experiment 2 of Stilp et al. [22], the less-correlated

stimulus set (Experiment 3 in [22]): tested fewer correlated sounds

(six versus 18), tested more orthogonal sounds (four versus two),

and presented more orthogonal trials overall (three times as many,

owing to testing three orthogonal pairs rather than just one). Each

manipulation reflects distinct statistical properties that attenuate

correlation between AD and SS. As such, each manipulation may

contribute differently to perceptual organization and subsequent

effects on discrimination, but the perceptual significance of each

manipulation is unknown because all were made in concert.

Figure 1. Example stimuli used in the present experiments. The
first row shows steps 1 (A; shortest attack/longest decay), 9 (B;
intermediate attack/decay) and 18 (C; longest attack/shortest decay)
out of 18 in the AD series. The second row shows steps 1 (D; most-
French-horn-like), 9 (E; intermediate mixture) and 18 (F; most-tenor-
saxophone-like) out of 18 in the SS series, with frequency axes
magnified (shown only up to 6 kHz) to emphasize differences in
spectral envelopes. The third row shows examples of the two
experimental conditions. Black circles depict stimuli that obey a positive
correlation between AD and SS (i.e., lie on a main diagonal of the
stimulus matrix; Consistent condition). Grey circles depict stimuli that
violate that correlation (i.e., lie on the perpendicular diagonal;
Orthogonal condition). Examples in 1G depict no overall correlation
between AD and SS, but experiments present a high ratio of
Consistent:Orthogonal sounds to introduce correlation among complex
acoustic attributes. In counterbalanced conditions, grey sounds support
a negative correlation between AD and SS while black sounds directly
violate it. Figures 1A and 1D correspond to the black circle in the lower-
left corner of 1G, figure 1C to the grey circle in the upper-left corner,
and figure 1F to the grey circle in the lower-right corner.
doi:10.1371/journal.pone.0030845.g001
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Redundancy between acoustic attributes is attenuated system-

atically across the following experiments to determine perceptual

consequences of different statistical properties of correlations

among stimulus attributes that are less than nearly-perfect (Expt.

2, [22]) but greater than that for which no difference in

discrimination is observed (Expt. 3, [22]). Separate manipulations

of stimulus sets are performed to investigate how strong

correlations must be to elicit differential discriminability, and

whether different means of attenuating correlation are perceptu-

ally equivalent. Predictions made by the PCA neural network are

compared to listener performance in each experiment. The

model’s sensitivity to these manipulations and intermediate

correlations is a strong test of its ability to predict listener

performance. Finally, how different model predictions, operating

on correlation versus covariance matrices, relate to listener

performance are explored. Behavioral and computational results

support near-optimal weighting of covariance among acoustic

attributes.

Materials and Methods

1. Ethics Statement
All experiments were approved by the Education and Social &

Behavioral Sciences Institutional Review Board at the University

of Wisconsin. Written informed consent was obtained from all

participants.

2. Listeners
Two hundred undergraduates (40 per experiment, five exper-

iments) from the University of Wisconsin – Madison participated,

with no individual participating in multiple experiments. All

reported normal hearing, and received course credit in exchange

for their participation.

3. Stimuli
All stimuli are novel complex sounds described in detail in Stilp

et al. [22]. Briefly, one waveform period (3.78 ms dura-

tion = 264 Hz fundamental frequency) from samples of a French

horn and a tenor saxophone [27] was iterated to 500-ms duration.

Samples were then edited to vary along one of two complex

acoustic dimensions: attack/decay (AD) or spectral shape (SS),

dimensions that are in principle relatively independent both

perceptually and in early neural encoding [28]. AD was

manipulated by varying the amplitude envelope of the stimulus

which was set to zero at stimulus onset and offset, with linear

ramps from onset to peak and back to offset without any steady

state (Figure 1A–C). Attack duration in AD ranged from 20–

390 ms in 17 steps (18 stimuli), with decay duration being the

remainder of 500 ms (total duration) minus attack duration. SS

was manipulated by mixing instrument samples in different

proportions, ranging from 0.2 to 0.8 for each instrument and

always summing to 1.0 across instruments (e.g., adding 0.4 [French

horn]+0.6 [tenor saxophone] to form a new spectral shape).

Proportions were derived such that neighboring sounds in the SS

series (17 pairs, 18 stimuli total) had equal Euclidean distances

between their ERB-scaled magnitude spectra [29] that had been

processed through a bank of auditory filters [30] (Figure 1 D–F).

Euclidean distance between spectra processed in such a manner

has been shown to correspond well with perceptually significant

change over time in speech [31]. Specific values for AD and SS

series reported above were derived following exhaustive adjust-

ment across hundreds of participants until every pair of sounds

separated by three stimulus steps was equally discriminable to

every other pair within and across stimulus series (<65% correct

for changes along one dimension, <69% for changes along both

dimensions; see [22] for details). AD and SS series were fully

crossed to generate a 324-sound stimulus matrix. Subsets of this

matrix are presented to listeners in all of the following experiments

(Figure 1G).

4. Experimental Design
a. All experiments. All experiments employ designs similar

to those reported by Stilp et al. [22] with one notable change.

While Stilp et al. [22] also assessed discrimination of sounds

varying along AD or SS with the other dimension fixed (Single-cue

stimuli), those trials are eliminated here so that all performance

comparisons are made between experimental conditions in which

both acoustic cues change. Stimuli belong to one of two

conditions: sounds that lay along the main diagonal of the

stimulus matrix, conforming to the robust correlation between AD

and SS (Consistent condition), or sounds that lay along the

perpendicular diagonal that bisects the matrix, directly violating

this correlation (Orthogonal condition; see Figure 1G). Each

experiment is counterbalanced such that twenty participants

discriminated stimuli with a positive correlation between AD

and SS, and twenty discriminated stimuli with a negative

correlation (i.e., 90u rotation of stimuli depicted in Figure 2).

Thus, one group’s Orthogonal stimuli serve as Consistent stimuli

to the other group and vice versa. Sounds in the Consistent

condition are arranged into pairs each separated by three stimulus

steps, and likewise for Orthogonal sounds. Each stimulus pair was

presented in all possible AXB triads (AAB, ABB, BAA, BBA) with

250-ms ISIs.

Correlation coefficients were calculated for each stimulus set

using nominal values from 1 to 18 to represent AD and SS values.

Without any sounds along the perpendicular (orthogonal)

diagonal, the correlation between AD and SS would equal 1.

Across experiments, different stimuli presented in the Orthogonal

condition attenuate this correlation to varying degrees.

b. Experiment 1. Experiment 1 serves as a replication of

Experiment 2 in Stilp et al. [22], but without any Single-cue

stimuli. Successful replication permits Experiment 1 to serve as the

base design for Experiments 2 through 5, in which the correlation

among acoustic attributes is systematically violated to evaluate the

perceptual significance of different statistical characteristics of the

stimulus set and whether they promote or hinder efficient coding.

The Consistent condition was comprised of all 18 sounds (15 pairs)

along the main diagonal of the stimulus matrix, and the

Orthogonal condition was comprised of 2 sounds (one pair)

along the perpendicular diagonal, resulting in a nearly-perfect

correlation between AD and SS (r = 60.98; Figure 2A).

c. Experiment 2. Experiment 2 tests the degree to which

differences in discriminability (Consistent versus Orthogonal) are

sensitive to the physical acoustic/psychoacoustic range of

exemplars supporting the correlation (i.e., the diagonal bisecting

the stimulus matrix) relative to the variability supporting the

orthogonal dimension. By reducing the extent of evidence

supporting the correlation, listeners may more quickly discover

variability not explained by the correlation, resulting in

comparable discrimination across conditions throughout the

experiment. Two sounds on the Orthogonal diagonal are

arranged into one stimulus pair as before, but the range over

which AD and SS covary is truncated from 18 to eight sounds (15

pairs to five), reducing the correlation between AD and SS

(r = 60.81; Figure 2C).

d. Experiment 3. Experiment 3 examines whether

perception is sensitive to the range of variance orthogonal to the

correlation. Stimulus sets tested in Experiments 1 and 2 included

Efficient Coding of Stimulus Covariance
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only two Orthogonal sounds, both located very close to the

correlated diagonal in the stimulus matrix. However, the less-

correlated stimulus set tested in Experiment 3 of Stilp et al. [22]

included both these two proximal Orthogonal sounds and two more

extreme sounds, presenting a wider range of evidence violating the

correlation. Presentation of Orthogonal sounds increasingly distinct

from the correlation (i.e., located further away from the diagonal in

the stimulus matrix) may contribute to listeners discovering this

variance more quickly, reducing or even eliminating significant

differences in discrimination early in testing. In a review of visual

adaptation studies, Kohn [32] notes that adaptation effects are

directly affected by the similarity between adaptor and test item. By

decreasing similarity between conditions through presentation of

more extreme Orthogonal sounds, listeners’ adaptation to the

contingency between AD and SS (i.e., differences in discriminability

depending on whether trials respect or violate the correlation)

should reduce in magnitude, duration, or both. Stimuli in

Experiment 3 consist of 18 sounds on the correlated diagonal (15

pairs) and the same four sounds on the orthogonal diagonal (3 pairs)

as presented in Experiment 3 of [22] (r = 60.83; Figure 2E).

e. Experiment 4. By adding more extreme Orthogonal

sounds to the stimulus set, Experiment 3 tests three Orthogonal

pairs rather than the one pair tested in Experiments 1 and 2, thus

conflating the extent of Orthogonal evidence with increased

probability of Orthogonal pairs. Experiment 4 unconfounds these

factors, examining changes in discriminability as a function of the

simple probability of Orthogonal test trials. The lone Orthogonal

pair presented in Experiments 1 and 2 was tested three times as

often as each of the 15 Consistent pairs, producing the same ratio of

Consistent-to-Orthogonal test trials as in Experiment 3. Increasing

the probability of the Orthogonal pair threefold only slightly

reduces the correlation between AD and SS (r = 60.95; Figure 2G).

f. Experiment 5. The possibility exists that any significant

differences in discriminability in Experiment 4 may be attributable

to the robustness of correlation (r = 60.95) rather than probability

of Orthogonal test trials (presented three times as often as any

Consistent trial). Experiment 5 presents a stronger test by

increasing the frequency of Orthogonal test trials until the

strength of correlation is equated to that of Experiment 3

(r = 60.83). This was accomplished by presenting the lone

Orthogonal pair 10 times as often as any given Consistent pair

(15 total; Figure 2I).

4. Procedure
Sounds were upsampled to 48828 Hz, D/A converted (Tucker-

Davis Technology RP2.1), amplified (TDT HB4), and presented

diotically over circumaural headphones (Beyer Dynamic DT-150)

at 72 dB SPL. Following acquisition of informed consent, between

one and three individuals participated concurrently in single-

subject soundproof booths. Each participant heard trials in a

different randomized order. Trials were presented twice in each of

three blocks in Experiments 1 and 3, and were presented three

times per block in Experiment 2 in order to produce an

experimental session of comparable overall duration. In Experi-

ments 4 and 5, the Orthogonal pair is deliberately oversampled.

No feedback was provided. Listeners were given the opportunity to

take a short break between testing blocks. Owing to the varying

numbers of trials presented (E1: 128 trials/block, 384 trials total;

E2: 72 trials/block, 216 trials total; E3: 144 trials/block, 432 trials

total; E4: 144 trials/block, 432 trials total; E5: 200 trials/block,

600 trials total), experiments had different durations (E1: 25 min;

E2: 15 min; E3: 30 min; E4: 30 min; E5: 40 min).

5. Computational Modeling
a. Correlation-based model. The same unsupervised PCA

network model [26] employed by Stilp et al. [22] was used. This

model discovers Eigenvectors based on the correlation matrix of

Figure 2. Stimuli and behavioral results for all experiments
(black = Consistent condition, grey = Orthogonal condition).
Stimulus representations follow Figure 1G. While only positive
correlations are shown, experiments were counterbalanced between
positive and negative correlations. All behavioral results depict
proportion correct discrimination on the ordinate and testing block
number on the abscissa. Stimuli (A) and results (B) for Experiment 1
(base design; r = 60.98). Stimuli (C) and results (D) for Experiment 2
(truncation of evidence supporting the correlation; r = 60.81). Stimuli
(E) and results (F) for Experiment 3 (expansion of evidence supporting
the orthogonal dimension; r = 60.83). Stimuli (G) and results (H) for
Experiment 4 (threefold increase in sampling Orthogonal stimuli;
r = 60.95). Stimuli (I) and results (J) for Experiment 5 (tenfold increase
in sampling Orthogonal stimuli; r = 60.83). * indicates significant
difference (p,.05) as assessed by paired-sample two-tailed t-tests.
doi:10.1371/journal.pone.0030845.g002
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the inputs. The present experiments demonstrate this aspect of the

standard model (versus calculating Eigenvectors from the

covariance matrix of the inputs) to be a perceptually important

one, and its success predicting results of Stilp et al. [22] makes it an

appropriate starting point. The model featured two input units

(one corresponding to AD, the other to SS) which were fully

connected in a feed-forward manner to two output units with no

hidden layer and no bias (Figure 3). Inhibitory connections

projected from the first output back to input units at a fixed value

of 1. Output activations and subsequent effects on input states

were implemented serially: the first output unit was activated; its

activation was ‘‘subtracted out’’ of the input values; then, the

second output unit was activated. Feed-forward weights were

trained using standard Hebbian learning, resulting in the first

output unit representing the principal component of the inputs

while the second output captured residual (orthogonal) covariance.

Importantly, while closed-form (linear algebraic) PCA calculates

Eigenvectors and corresponding components simultaneously, the

model calculates these elements iteratively. The rate at which the

model learns the second component (as reflected by decreased

Euclidean distances between Orthogonal stimuli compared to

Consistent stimuli before returning to baseline) is of key interest in

the comparison to listener data.

The model was initialized with weights (2-by-2 identity matrix)

that ensured output patterns initially mirrored input patterns.

Weights ultimately converge to Eigenvectors of the input

correlation matrix, organized in decreasing Eigenvalue order.

Simulations were comprised of continuous testing with a small

learning rate. The model was trained with analogs of each stimulus

set, with 18 steps of AD and SS normalized and coded as values

28.5 through 8.5. Euclidean distances calculated between output

patterns (i.e., representations of stimulus pairs) after each epoch

provide a model analog of perceptual discriminability.

Simulations were conducted for a standard duration of 500

epochs for ease of visualization and comparison across experi-

ments. Simulation of all experiments achieved convergence (no

further changes in weights) following this duration except for

Experiment 1, which reached convergence after 600 epochs. The

reasons for portraying the first 500 epochs of this simulation are

twofold. First, the first 500 epochs are plotted to better illustrate

changes in Euclidean distances early in the simulation, which are

of principal interest as discriminability is predicted to be equivalent

across conditions later in the experiment. Second, Euclidean

distances and weights associated with the second Eigenvector

(Orthogonal stimuli) were within 2% of their final values at 500

epochs, so the model makes qualitatively the same prediction at

both points in the simulation – that Consistent and Orthogonal

stimuli should be equally discriminable. Simulation results are

presented in the left (solid lines) column of Figure 4.

b. Covariance-based model. The present effort reveals an

important limitation of Sanger’s [26] PCA model. By calculating

Eigenvectors of the inputs based on their correlation matrix, the

model will produce identical predictions for dissimilar stimulus sets

that have the same correlation coefficients. Correlation is the

normalized version of covariance, calculated as the covariance

between two variables divided by the product of their standard

deviations. Thus, one stimulus set with greater covariance between

variables and greater standard deviations may produce the same

correlation coefficient as a different stimulus set with lesser

covariance between variables with smaller standard deviations.

For example, consider the case for the model predictions of

Experiments 3 and 5 (Figure 4). Relatively few stimuli in

Experiment 3 violate the correlation (four Orthogonal sounds),

contributing to covariance of 20.93. However, inclusion of more

extreme Orthogonal sounds with greater distances away from the

main (correlated) diagonal results in a higher standard deviation of

5.02 for AD and for SS. Conversely, extreme oversampling of the

lone Orthogonal pair in Experiment 5 reduces the covariance

between AD and SS (11.88). However, the proximity of these

stimuli to the diagonal decreases stimulus variability, as reflected

by smaller standard deviations (3.78). Despite stark differences in

the Orthogonal information in each stimulus set, each experiment

maintains the same correlation between AD and SS (20.93/

5.022 = 11.88/3.782 = 0.83). Despite different covariances and

covariance matrices, these stimulus sets possess the same

correlation coefficients and correlation matrices, and the correla-

tion-based PCA model makes identical predictions for both despite

any potential differences in listener performance across experi-

ments.

It is common to conduct PCA using the correlation matrix in

order to normalize out effects of scaling. However, acoustic

dimensions AD and SS were thoroughly piloted by Stilp et al. [22]

to assure that steps along each dimension were equally

discriminable absent experimental effects of redundancy among

attributes. Thus, stimuli are designed to be psychophysically

normalized. Using the correlation-based model imposes additional

normalization on stimuli that have already been perceptually

normalized. Subsequently, covariance among attributes may

better reflect perceptual processes for the present stimuli. Models

of Hebbian-type learning based on covariance have been used to

model long-term depression of synaptic strength in the hippocam-

pus [33–35]. Further, a covariance-based model is capable of

making different predictions for stimuli with the same correlation

matrices but different covariance matrices. Thus, a PCA model

that operates on the covariance matrix of the inputs may be a

more appropriate means of predicting listener performance.

Sanger’s [26] PCA model was modified to operate on the

covariance matrix of the inputs in the following manner. Equation

1 depicts Sanger’s original algorithm ([26], p. 465):

DC(t)~C(t) Q{diag½C(t) Q C(t)T�C(t) ð1Þ

where C represents the weight (Eigenvector) matrix, Q represents

the correlation matrix of the inputs, diag indicates elements on the

main diagonal of the matrix, and T denotes matrix transposition.

Figure 3. PCA network architecture. Two input units (one
corresponding to AD, one to SS) are fully connected to two output
units via feed-forward excitatory weights (solid arrows) without any
hidden layer or bias. The first output unit projects inhibitory weights
(dashed lines) back to the inputs, effectively removing the principal
component from the inputs and leaving the second output to encode
remaining (orthogonal) covariance. Euclidean distances among output
patterns were calculated after each epoch.
doi:10.1371/journal.pone.0030845.g003
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Figure 4. PCA network simulations (left column) and choice model performance (center, right columns) for all experiments
(black = Consistent condition, grey = Orthogonal condition). The first row corresponds to Experiment 1, the second row to Experiment 2, etc.
In PCA simulations (A, D, G, J, M), Euclidean distance between test stimuli is on the ordinate and simulation epoch on the abscissa. Solid lines portray
predictions made by the correlation-based model, while (often highly overlapping) dashed lines portray predictions of the covariance-based model.
Choice model performance (center, right columns) plots proportion correct discrimination on the ordinate and testing block number on the abscissa.
Choice model performance based on the correlation-based PCA model is shown in the center column (B, E, H, K, N), and performance based on the
covariance-based PCA model is shown in the right column (C, F, I, L, O). Choice model patterns of performance for both correlation and covariance
are identical for Experiments 1–4. However, the correlation model fails to predict listeners’ superior discrimination of statistically consistent sound
pairs (O) early in Experiment 5 (N) while the covariance-based model successfully predicts this performance.
doi:10.1371/journal.pone.0030845.g004
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In the present application, weight changes are calculated at each

epoch of the simulation, so (t) is implied and thus omitted for

simplicity. Through the mathematical proof that the Generalized

Hebbian Algorithm produces Eigenvectors of the input correlation

matrix ordered by decreasing Eigenvalue, Sanger ([26], p. 462)

expressed Equation 1 in terms of each row of the weight matrix as

follows:

Dci~ci Q{
X

kƒi

(ci Q ck
T) ck ð2Þ

where ci represents the ith row of the weight matrix, and ck

represents the kth row of the weight matrix, which spans from 1 to

i. The reader will note that ci
T represents a row in Sanger’s

notation and ci represents a column; these notations are reversed

here for ease of reading so that row elements are assumed and

transpositions denote columns. Expanding Equation 2 into a

separate equation for each row of the weight matrix yields

Equations 3.1 (principal component) and 3.2 (second component):

Dc1~c1 Q{(c1 Q c1
T) c1 ð3:1Þ

Dc2~c2 Q{(c2 Q c1
T) c1{(c2 Q c2

T) c2 ð3:2Þ

Equations use multiplicative normalization (subtraction of (c1 Q

c1
T)c1 in Equation 3.1 and (c2 Q c2

T)c2 in Equation 3.2) so the sum

of squared weights remains constant; otherwise weights grow

without bound. Subtraction of the term (c2 Q c1
T)c1 in Equation 3.2

removes the principal component from calculations so that weight

changes are derived solely from unshared covariance. These

equations were revised by substituting the covariance matrix of the

inputs, represented by E, for the correlation matrix Q, as shown in

Equations 4.1 and 4.2:

Dc1~c1 E{(c1 E c1
T) c1 ð4:1Þ

Dc2~c2 E{(c2 E c1
T) c1{(c2 E c2

T) c2 ð4:2Þ

Weight changes are scaled by a small learning rate (g = 0.01).

To compare simulations of a given experiment using covariance

and correlation versions of the PCA model, covariance-based

simulations continued until reaching a specified criterion:

matching the ratio between Orthogonal and Consistent Euclidean

distances at the 500th epoch of the simulation of Experiment 1

using the correlation-based model (ratio = 0.9848). This criterion

was selected to make depictions of correlation- and covariance-

based model simulations comparable, as all begin and end with the

same relationships (ratios) between Orthogonal and Consistent

Euclidean distances. This criterion was met at the 1015th epoch of

simulating Experiment 1 using the covariance-based model, thus

all covariance-based model simulations span 1015 epochs.

Simulation results are presented in the left column of Figure 4

(dashed lines) superimposed atop results for the correlation-matrix-

based model (solid lines) for comparison.

c. Comparison to listener performance. Neural network

model predictions were quantitatively tested using the general

metric learning procedure of Xu, Zhu, and Rogers [36], which

translates computed distances between stimuli into probability of a

correct response in a discrimination task. This ‘choice model’

assumes that stimulus confusions (errors in a two-alternative

forced-choice [AXB] task) decrease as a function of distance

between two stimuli, such that increasing distances result in

improved discriminability (Figure 5). This function is expressed in

Equation 5:

Y(z)~0:5 exp({z) ð5Þ

with z corresponding to distance between stimuli and Y the

probability of an incorrect response on a discrimination trial.

While error probability can decay in either exponential or

Gaussian manners with increasing distance, the former is

employed here (see [36] for discussion). Baseline performance, or

discriminability of experimental stimuli absent effects of

correlation, corresponds to an error rate of 0.31 (69% correct

discrimination [22]). Distances along the abscissa of Figure 5 were

scaled so that Euclidean distances at the beginning and

convergence of the PCA model simulation corresponded to this

baseline error rate.

The output of PCA model simulations (respective Euclidean

distances between Consistent and Orthogonal stimuli measured at

each epoch) served as inputs to the choice model. At each epoch, for

Consistent and Orthogonal conditions, Euclidean distance between

stimuli was converted into the corresponding error rate (Y). A

random number uniformly distributed between 0 and 1 was then

generated (n). Each ‘trial’ was scored as correct if n.Y and incorrect

if n#Y. Similar to human data, ‘trials’ were divided into three

blocks of equal size, and error rates were averaged across all ‘trials’

within a block. This process was repeated 40 times with different

random seeds to simulate data from 40 human participants. Results

were averaged across these 40 runs of the choice model, and means

and standard errors for proportion of trials correctly discriminated

(calculated as 1 minus error rate, matching portrayal of listener data)

are presented in Figure 4. Simulation results are assessed using

paired-sample t-tests, following analysis of listener performance.

Choice model simulations were conducted separately for distances

calculated by the correlation-matrix-based and covariance-matrix-

based versions of the PCA model.

Results

1. Listener performance
Behavioral results from all experiments are presented in the

right column of Figure 2, with discrimination accuracy (proportion

Figure 5. The choice model of Xu et al. [36], where the
probability of error in a two-alternative forced-choice (AXB)
task decreases exponentially with increasing distance between
stimuli (solid line). Dashed lines correspond to error probability of
0.31, or baseline discriminability between experimental stimuli absent
effects of correlation among attributes [22], and the corresponding
inter-stimulus distance.
doi:10.1371/journal.pone.0030845.g005
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correct) on the ordinate and testing block number on the abscissa.

Given that Orthogonal discriminability is predicted to recover by

the end of the experiment, omnibus analysis of variance (ANOVA)

tests are likely to result in Type II error. Consequently, to retain

sensitivity to differences in discriminability across conditions at

different phases of the experiment, results are analyzed using

planned-comparison paired-sample t-tests.

a. Experiment 1. Discrimination of Consistent pairs in the

first block of testing (mean = 0.67, s.e. = .01) was significantly

better than discrimination of Orthogonal pairs (mean = 0.60,

s.e. = .03) (t39 = 2.36, p,.025, Cohen’s d = 0.44; Figure 2B). While

discrimination accuracy of Consistent pairs was numerically

greater than that of Orthogonal pairs in the second (mean of

0.68 versus 0.63) and third testing blocks (0.69 versus 0.65), t-tests

did not reach statistical significance (second block: t39 = 1.58,

p = .12; third block: t39 = 1.27, p = .21). This pattern of results

replicates Experiment 2 of Stilp et al. [22]; discrimination of

Orthogonal test pairs is initially inferior to that of Consistent test

pairs supporting a robust correlation, and performance recovers

through further testing so that discrimination across conditions is

comparable by the final testing block. It bears mention that in their

Expt. 2 (r = 0.97), Stilp et al. [22] report superior discrimination of

Consistent sound pairs relative to Orthogonal sound pairs in the

first as well as second testing block. Relative to that experimental

design, Expt. 1 in the present report removes Single-cue stimuli

while maintaining 18 Consistent sounds and 2 Orthogonal sounds

yielding nearly the same correlation (r = 0.98). In the present

experiment, Consistent discrimination was significantly more

accurate than Orthogonal discrimination in the first testing

block (p,.025) with only a trend toward significance in the

second testing block (p = 0.12). It is unclear why the full pattern of

significance was not fully replicated despite highly similar stimuli

and correlation coefficients. Independent-samples t-test indicates

that the difference in Consistent and Orthogonal discrimination in

the second testing block did not significantly differ across

experiments (t78 = 0.73, p = 0.47), suggesting patterns of results

are not fundamentally different from one another. Results indicate

that both the correlated and orthogonal dimensions appear to

become weighted proportional to the amount of variance

accounted for by each dimension.

b. Experiment 2. Discrimination of Consistent pairs in the

first block of testing (mean = 0.66, s.e. = .02) was again significantly

better than discrimination of Orthogonal pairs (mean = 0.60,

s.e. = .03) (t39 = 2.71, p,.01, Cohen’s d = 0.43; Figure 2D). Despite

restricting the range of acoustic evidence supporting the

correlation, this early difference in discrimination persisted.

Experiment 2 also reveals that correlation among stimulus

attributes need not be nearly perfect (r$0.97) for efficient coding

to occur. Discrimination did not significantly differ in either the

second (Consistent mean = 0.71, s.e. = .02, Orthogonal

mean = 0.69, s.e. = .03; t39 = 0.67, n.s.) or third block (Consistent

mean = 0.74, s.e. = .02, Orthogonal mean = 0.77, s.e. = .02;

t39 = 1.27, n.s.).

Unlike previous experiments, discrimination in both conditions

improved markedly across testing blocks. Owing to the inability to

separate learning (improvement throughout the experiment) from

effects of the correlation between AD and SS on Orthogonal

discriminability (initially inferior but later comparable to that of

Consistent sound pairs), performance was assessed through paired-

sample t-tests contrasting early versus late (i.e., first versus third

testing block) discrimination of Consistent pairs, which are

predicted to remain equally discriminable throughout the

experiment. Consistent discrimination significantly improved from

the first to third block of Experiment 2 (t39 = 4.39, p,.0001,

Cohen’s d = 0.60), but this learning effect was not consistent across

experiments. Participants in Experiment 3 exhibited a significant

but more modest learning effect for Consistent trials (t39 = 3.23,

p,.01, Cohen’s d = 0.35), but no significant differences were

observed in Experiments 1, 4, or 5 (all t#1.21, n.s., Cohen’s

d,0.18). The magnitude of the learning effect in Experiment 2

may be due to one or both of the following factors. First, reducing

variability in AD and SS cues by truncating the correlation may

facilitate discrimination over time. Second, listeners in Experiment

2 were presented more repetitions of stimulus pairs in a given

block (12) than in other experiments (8) in the effort to make

overall number of trials comparable. Nevertheless, the principal

finding is superior discrimination of Consistent pairs relative to

Orthogonal pairs early in testing.

c. Experiment 3. Unlike previous experiments,

discrimination was comparable across Consistent (mean = 0.63,

s.e. = .01) and Orthogonal conditions (mean = 0.61, s.e. = .02) in

the first testing block (t39 = 0.75, n.s., Cohen’s d = 0.12; Figure 2F).

By testing more extreme Orthogonal test pairs (i.e., less similar to

Consistent pairs), differences in discrimination observed in

previous experiments were extinguished. Roughly equivalent

discrimination persisted throughout the experiment (Block 2:

Consistent mean = 0.66, s.e. = .02, Orthogonal mean = 0.64,

s.e. = .02 [t39 = 0.86, n.s.]; Block 3: Consistent mean = 0.66,

s.e. = .02, Orthogonal mean = 0.64, s.e. = .02 [t39 = 1.54, n.s.]).

This demonstrates that efficient coding of correlated acoustic

attributes is sensitive to the range of physical acoustic/

psychoacoustic evidence inconsistent with the primary

correlation and consistent with a second orthogonal dimension.

Results also demonstrate that simple strength of the primary

correlation is insufficient to attenuate discriminability of

orthogonal stimulus differences, as all stimulus pairs presented in

Experiment 3 (r = 60.83) were relatively equally discriminable, but

pairs presented in Experiment 2 (r = 60.81) produced significant

differences in early performance. The explanatory power of simple

strength of correlation between acoustic attributes, absent

consideration of both the quantity and quality (range) of

evidence that is inconsistent with the correlation, is challenged

by these results.

d. Experiment 4. Despite a three-fold increase in

presentations, discrimination of the Orthogonal pair

(mean = 0.59, s.e. = .02) was still significantly worse than that of

Consistent pairs (mean = 0.63, s.e. = .01) in the first testing block

(t39 = 2.06, p,.05, Cohen’s d = 0.37; Figure 2H). This negligible

effect of probability sheds light on the results of Experiment 3, that

efficient coding was likely extinguished due to increased range of

acoustic evidence supporting orthogonal variability and not the

concurrent increase in Orthogonal test trials. Similar to previous

experiments, performance across conditions was equivalent in the

second (Consistent mean = 0.64, s.e. = .02, Orthogonal

mean = 0.64, s.e. = .02 [t39 = 0.36, n.s.]) and third testing blocks

(Consistent mean = 0.64, s.e. = .01, Orthogonal mean = 0.61,

s.e. = .02 [t39 = 1.58, n.s.]).

e. Experiment 5. Even with ten-fold oversampling,

discrimination of the Orthogonal pair (mean = 0.60, s.e. = .02)

was modestly worse than that of Consistent pairs (mean = 0.63,

s.e. = .01) in the first testing block (t39 = 1.87, p = .07, Cohen’s

d = 0.36; Figure 2J). It bears note that paired-sample t-tests used in

all analyses are two-tailed. One could use a one-tailed t-test based

on the prediction that discrimination of Consistent pairs will be

greater than that of Orthogonal pairs, in which case the difference

would be statistically significant (one-tailed p,.05). However,

performance in the first block does not significantly differ in

Experiment 5 versus Experiment 3 as indicated by independent
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samples t-tests on orthogonal discrimination performance

(t78 = 0.63, n.s.) and differences between Consistent and

Orthogonal discrimination (t78 = 0.71, n.s.). Perhaps surprisingly,

testing the Orthogonal sound pair ten times as often as any

Consistent sound pair failed to produce practice effects sufficient to

promote Orthogonal discrimination exceeding Consistent

discrimination (second block: Consistent mean = 0.64, s.e. = .02,

Orthogonal mean = 0.62, s.e. = .02 [t39 = 0.69, n.s.]; third block:

Consistent mean = 0.64, s.e. = .01, Orthogonal mean = 0.62,

s.e. = .02 [t39 = 0.54, n.s.]). Thus, the conservative conclusion one

can draw from this marginal effect is that manipulation of

Orthogonal stimulus probability has little effect on listener

discrimination.

2. Model predictions
a. Experiment 1. Predictions from the PCA models are

presented in the first column of Figure 4, with Euclidean distance

between Consistent (black) versus Orthogonal (grey) stimulus pairs

on the ordinate and training epoch on the abscissa. Simulation

timecourses for correlation-matrix-based (solid lines) and

covariance-matrix-based (dashed lines) models are scaled to

share comparable abscissas. Similar to [22], the PCA model

quickly discovered the principal component (the Consistent

dimension) and distances between Orthogonal pairs initially

decreased considerably (Figure 4A). With further exposure to the

stimulus set, the PCA model gradually captured the modest

variance not explained by the first component, progressively

increasing distances between Orthogonal pairs until reaching

original relative values by the end of the simulation. Thus, the

PCA model initially captures only variability along the principal

component in the two-dimensional stimulus space at the expense

of the orthogonal component, incrementally coming to capture

remaining variance, matching the pattern observed in listener

performance. Predictions from the correlation-based (solid lines)

and covariance-based (dashed lines) versions of the PCA model

were nearly identical, with a slightly larger initial decrease in

Orthogonal distances predicted by the covariance model.

Simulation results using the choice model are depicted in the

middle (correlation) and right (covariance) columns of Figure 4,

with percent correct discrimination along the ordinate and testing

block number along the abscissa. Predictions across 40 simulations

exhibited markedly less variability than listener data, but patterns

of results remain excellent fits to human performance. Both

correlation and covariance models predicted significantly poorer

discrimination of Orthogonal stimuli in the first block of testing

(correlation model [Figure 4B]: Consistent: mean = 0.69,

s.e. = .006; Orthogonal: mean = 0.58, s.e. = .006, t39 = 14.92,

p,1e-17, Cohen’s d = 3.15; covariance model [Figure 4C]:

Consistent: mean = 0.69, s.e. = .004; Orthogonal: mean = 0.57,

s.e. = .004, t39 = 21.50, p,4e-23, Cohen’s d = 5.09). Marked

improvement in Orthogonal discrimination was evident in the

second block, but this was still inferior to Consistent discrimination

(correlation model: Consistent: mean = 0.69, s.e. = .007; Orthog-

onal: mean = 0.65, s.e. = .005, t39 = 5.23, p,6e-6, Cohen’s

d = 1.19; covariance model: Consistent: mean = 0.69, s.e. = .004;

Orthogonal: mean = 0.63, s.e. = .004, t39 = 10.12, p,2e-12, Co-

hen’s d = 2.38). Finally, Consistent and Orthogonal stimuli were

relatively equally discriminable in the third block (correlation

model: Consistent: mean = 0.69, s.e. = .005; Orthogonal:

mean = 0.68, s.e. = .006, t39 = 0.62, n.s.; covariance model: Con-

sistent: mean = 0.69, s.e. = .004; Orthogonal: mean = 0.68,

s.e. = .004, t39 = 0.39, n.s.).

b. Experiment 2. The initial decrease in distance between

Orthogonal stimuli is smaller and recovery to baseline distances

sooner than that observed for Experiment 1 (Figure 4D). These

outcomes are anticipated given simulation of a more weakly

correlated stimulus set (r = 60.81). Simulations by Stilp et al. [22]

and Experiment 1 suggest that principal and second components

become weighted in proportion to the amount of covariance

captured by each dimension, and model predictions for

Experiment 2 reveal more weight being attributed to the second

(Orthogonal) dimension as it captures relatively more unshared

covariance here than in other, more highly-correlated stimulus

sets. Both correlation-based and covariance-based models predict

significantly poorer Orthogonal discrimination in the first testing

block, but models make different predictions regarding the rate of

recovery to baseline distances between stimuli. The correlation-

based model predicts a more extended recovery, which contributes

to a larger predicted effect size in the first block (Consistent:

mean = 0.69, s.e. = .006; Orthogonal: mean = 0.64, s.e. = .006,

t39 = 5.65, p,2e-6, Cohen’s d = 1.40; Figure 4E) than that

predicted by the covariance-based model (Consistent:

mean = 0.69, s.e. = .004; Orthogonal: mean = 0.65, s.e. = .005,

t39 = 4.95, p,2e-5, Cohen’s d = 1.12; Figure 4F), which predicts

more rapid recovery to baseline distances. Nevertheless, both

models correctly predict significantly poorer Orthogonal

discrimination in the first testing block, and comparable

discrimination in the second (correlation model: Consistent:

mean = 0.69, s.e. = .004; Orthogonal: mean = 0.68, s.e. = .007,

t39 = 1.12, n.s.; covariance model: Consistent: mean = 0.69,

s.e. = .004; Orthogonal: mean = 0.69, s.e. = .004, t39 = 0.62, n.s.)

and third testing blocks (correlation model: Consistent:

mean = 0.69, s.e. = .006; Orthogonal: mean = 0.69, s.e. = .005,

t39 = 0.38, n.s.; covariance model: Consistent: mean = 0.69,

s.e. = .004; Orthogonal: mean = 0.69, s.e. = .004, t39 = 0.48, n.s.),

matching listener performance. Finally, neither version of the PCA

model predicts overall improved performance later in the

simulation (i.e., Euclidean distances in both conditions increasing

over time) as observed in listener performance, suggesting

insensitivity to some practice effects.

c. Experiment 3. Both versions of the PCA model predict a

shallow and very short-lived decrease in Orthogonal distances,

with the vast majority of the simulation predicting equal

discriminability across conditions (Figure 4G). Virtually identical

simulation results both predict comparable performance across

conditions in the first (correlation model [Figure 4H]: Consistent:

mean = 0.68, s.e. = .006; Orthogonal: mean = 0.68, s.e. = .005,

t39 = 0.26, n.s.; covariance model [Figure 4I]: Consistent:

mean = 0.68, s.e. = .004; Orthogonal: mean = 0.68, s.e. = .004,

t39 = 0.75, n.s.), second (correlation model: Consistent:

mean = 0.69, s.e. = .005; Orthogonal: mean = 0.69, s.e. = .006,

t39 = 0.08, n.s.; covariance model: Consistent: mean = 0.69,

s.e. = .003; Orthogonal: mean = 0.69, s.e. = .004, t39 = 0.60, n.s.),

and third testing blocks (correlation model: Consistent:

mean = 0.69, s.e. = .005; Orthogonal: mean = 0.69, s.e. = .006,

t39 = 0.25, n.s.; covariance model: Consistent: mean = 0.69,

s.e. = .004; Orthogonal: mean = 0.69, s.e. = .004, t39 = 0.26, n.s.).

These predictions mirror listener performance, and support the

idea that both listeners and the model quickly exploited covariance

in more extreme Orthogonal stimuli to discover the second

component and facilitate Orthogonal discrimination.

d. Experiment 4. Both versions of the PCA model predict a

sizable initial decrease in Orthogonal distances before later

recovery to original relative distances (Figure 4J). These

predictions resemble those of Experiment 1, where the early

difference in discrimination was both predicted and behaviorally

observed, in contrast to those of Experiment 3, where largely equal

discrimination throughout was both predicted and observed.
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Recovery to original relative distances for Orthogonal stimuli

occurred much more quickly in Experiment 4 than Experiment 1,

revealing some sensitivity to the fact that Orthogonal stimuli were

sampled more frequently. Further, the covariance model

predictions displayed a slightly larger magnitude of initial

decrease in Orthogonal distances and slightly longer recovery to

baseline distances than that observed for the correlation model,

resulting in a slightly larger effect size in the first testing block

(correlation model (Figure 4K): Consistent: mean = 0.70,

s.e. = .005; Orthogonal: mean = 0.64, s.e. = .005, t39 = 6.94,

p,3e-8, Cohen’s d = 1.65; covariance model (Figure 4L):

Consistent: mean = 0.69, s.e. = .004; Orthogonal: mean = 0.63,

s.e. = .005, t39 = 7.85, p,2e-9, Cohen’s d = 1.89). Both versions of

the model predicted equal discriminability in the second

(correlation model: Consistent: mean = 0.69, s.e. = .006;

Orthogonal: mean = 0.69, s.e. = .005, t39 = 0.14, n.s.; covariance

model: Consistent: mean = 0.69, s.e. = .004; Orthogonal:

mean = 0.68, s.e. = .005, t39 = 1.20, n.s.) and third testing blocks

(correlation model: Consistent: mean = 0.69, s.e. = .006;

Orthogonal: mean = 0.69, s.e. = .005, t39 = 0.12, n.s.; covariance

model: Consistent: mean = 0.70, s.e. = .005; Orthogonal:

mean = 0.69, s.e. = .004, t39 = 0.62, n.s.).

e. Experiment 5. The correlation-based PCA model predicts

a shallow and very short-lived decrease in Orthogonal distances,

with all but the first few epochs of the simulation predicting equal

discriminability across conditions (Figure 4M). These predictions

are identical to those made for Experiment 3, such that equal

discriminability of Consistent and Orthogonal stimuli is predicted

in all blocks of testing (Block 1: Consistent: mean = 0.69,

s.e. = .005; Orthogonal: mean = 0.69, s.e. = .006, t39 = 0.13, n.s.;

Block 2: Consistent: mean = 0.69, s.e. = .005; Orthogonal:

mean = 0.69, s.e. = .007, t39 = 0.06, n.s.; Block 3: Consistent:

mean = 0.69, s.e. = .006; Orthogonal: mean = 0.69, s.e. = .006,

t39 = 0.09, n.s.; Figure 4N).

Similar to Experiment 4, the covariance-based PCA model

predicts a slightly larger magnitude of initial decrease in

Orthogonal distances and slightly longer recovery to baseline

distances than that observed for the correlation model (Figure 4M).

These differ from other model predictions in two significant ways.

First, similar to listeners and unlike the correlation model, the

covariance model predicts inferior discrimination of Orthogonal

stimuli in the first testing block of Experiment 5 (Consistent:

mean = 0.69, s.e. = .004; Orthogonal: mean = 0.67, s.e. = .004,

t39 = 4.02, p,.0005, Cohen’s d = 0.87; Figure 4O). Second, the

covariance model displays sensitivity to (and thus makes different

predictions for) stimuli with the same correlation matrix but

different covariance matrices (i.e., stimuli presented in Experiments

3 and 5). An independent-samples t-test confirms that the

predicted difference in Consistent and Orthogonal discrimination

in the first testing block of Experiment 5 (mean difference = .023) is

significantly larger than the difference observed in the first block of

Experiment 3 (mean difference = .005; t78 = 2.11, p,.05). Predic-

tions made by the correlation model for the first block of

Experiment 3 versus Experiment 5 did not differ (independent-

samples t-test on mean differences: t78 = 0.28, n.s.). These results

demonstrate that while the PCA model based on the correlation

matrix of the inputs [26] is useful for predicting discriminability of

some stimulus sets, the covariance-based PCA model is a better

predictor of listener performance overall. Finally, the covariance

model predicted comparable performance across conditions for

remaining test blocks (Block 2: Consistent: mean = 0.69,

s.e. = .004; Orthogonal: mean = 0.69, s.e. = .004, t39 = 0.08, n.s.;

Block 3: Consistent: mean = 0.69, s.e. = .004; Orthogonal:

mean = 0.69, s.e. = .004, t39 = 0.42, n.s.).

f. Across all experiments. The predictive power of

covariance-based PCA is further demonstrated through closed-

form linear algebraic solutions in Table 1. Table 1 orders stimulus

sets from Experiments 1–5 to reflect performance differences in

discriminability of Consistent versus Orthogonal sound pairs in the

first testing block as measured by effect size (rightmost column).

Eigenvalues calculated from the correlation matrix versus

covariance matrix of stimulus set before the simulation are also

provided. The success with which listeners discriminate

Orthogonal pairs is well predicted by the second Eigenvalue

calculated from the covariance matrix reflecting true

psychoacoustic distances: as the second Eigenvalue increases,

greater perceptual weighting is reflected in improved listener

performance on Orthogonal trials and subsequently decreased

effect sizes early in the experiment (r = 20.95, p,.025). This

relationship with performance is not observed for the second

Eigenvalue of correlation matrices, the first Eigenvalue of

correlation or covariance matrices, or simple strength of the

principal correlation. The relationship between the second

Eigenvalue of the covariance matrix and effect size is similarly

robust if calculated on model representations of the inputs after the

first one-third of the simulation (akin to the first testing block for

listeners; r = 20.94, p,.025). No other metric calculated after one-

third of the simulation reliably predicts effect sizes for the first

block of testing. While some caution is warranted in generalizing

this relationship given that the second Eigenvalue can be increased

by multiple manipulations (removal of Consistent sounds, addition

of more extreme Orthogonal sounds, oversampling of Orthogonal

sounds), it does provide promising extensions of the present work

in optimal weighting of statistically derived dimensions in complex

sounds.

Discussion

The present results replicate and extend reports by Stilp et al.

[22] of rapid efficient coding of redundancy among acoustic

dimensions in novel complex sounds. Three manipulations, each

of which attenuates correlation among attributes, were tested

separately to examine the perceptual significance of each. Overall,

simple strength of the primary correlation (principal component) is

Table 1. Correlation coefficients (r), first and second
Eigenvalues (l1, l2), covariance between AD and SS (sAD,SS),
and effect sizes (Consistent versus Orthogonal discrimination
in the first testing block, as measured by Cohen’s d) for each
experiment.

Correlation Model
Covariance
Model Effect

r l1 l2 sAD,SS l1 l2 Size

Exp. 1 0.98 1.98 0.02 25.26 51.00 0.47 0.44

Exp. 2 0.81 1.81 0.19 4.17 9.33 1.00 0.43

Exp. 4 0.95 1.95 0.05 20.48 42.13 1.17 0.37

Exp. 5 0.83 1.83 0.17 11.88 26.19 2.43 0.36

Exp. 3 0.83 1.83 0.17 20.93 46.14 4.29 0.12

Correlation Model indicates Eigenvalues calculated from the correlation matrix
of the stimulus sets before the simulation, while Covariance Model indicates
Eigenvalues calculated from the input covariance matrix before simulations.
The order of experiments is intentionally transposed to highlight the robust
negative correlation between the second Eigenvalue of the covariance matrix of
the experimental stimuli with listener performance.
doi:10.1371/journal.pone.0030845.t001
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inadequate to predict listener performance. Initial superiority of

discrimination for statistically consistent sound pairs was relatively

insensitive to truncation of evidence supporting the correlation

(Experiment 2) and to increases in the frequency of Orthogonal

test trials (Experiments 4, 5). However, increased evidence of an

orthogonal dimension provided by greater acoustic/psychoacous-

tic range (Experiment 3) proved highly salient, resulting in

equivalent discrimination performance throughout the experi-

ment.

Patterns of performance cannot be explained by independent

weighting of acoustic dimensions (AD, SS), as changes in

discriminability can only be attributed to the correlation or

covariance orthogonal to it. This perceptual adherence to derived

statistical structure, and not physical acoustic dimensions per se, is

not without precedent. There is good evidence that auditory

cortical representations decreasingly correspond to physical

stimulus dimensions [37–39]. Wang [39] refers to this as ‘‘non-

isomorphic’’ transformations of the input. Examples of non-

isomorphic stimulus representations in auditory cortex include

encoding spectral shape across varying absolute frequencies [38],

gross representation of rapid change in click trains with short inter-

click intervals versus phase-locking to trains with slower inter-click

intervals [40,41], and encoding pitch versus individual frequency

components [42,43]. Such non-isomorphic transformations may

be similar to the loss of acoustic dimensions (AD, SS) seen here, as

more efficient dimensions better capture perceptual performance.

Results are in agreement with Stilp and Kluender [44], who report

efficient coding of redundant acoustic dimensions in the face of

unrelated variability in a third acoustic feature.

Optimal combination and weighting of individual stimulus

dimensions has received considerable attention in vision research.

Models of Bayesian inference and ideal perceptual performance

have been shown to effectively capture aspects of perception of

objects [45,46], edges [47], movement [48], and slant or

orientation [49–52]. These ideal observer models have been

extended to perceptual combination of sensory cues from different

modalities, such as integrating visual and auditory cues to location

[53], visual and motor cues to performing certain actions [54–57],

and visual and haptic cues to height [58], shape [59], and even

thoroughly trained arbitrary associations such as one between

luminance and stiffness [19].

Three important points distinguish these earlier studies from the

present findings in auditory perception. First, such studies often

must address inherent weights or biases ascribed to each cue. For

example, visual information is habitually weighted more heavily

than auditory or haptic information. Here, acoustic dimensions

AD and SS were adjusted through extensive control studies to be

equally available perceptually, so a priori perceptual weights are

equated. Second, many cue weighting studies examine perfor-

mance as a function of relative noisiness (relative s) of respective

cues. Sensibly, when multiple cues are available but one is or

becomes more noisy (larger s), perceptual weights are greater for

less noisy cues that better inform behavior. Optimal cue

combination occurs when one cue (typically the one weighted

more heavily absent experimental manipulation) is made noisier

and perceptual weights shift toward a less noisy source of

information (e.g., making the visual signal noisier and observing

increased weight attributed to haptic information [58]). Cues AD

and SS share equal psychoacoustic variability as measured by

JNDs. Third and most importantly, these examples from vision or

multimodal research demonstrate optimal weighting of individual

physical stimulus dimensions. The present findings indicate

optimal weighting of derived dimensions that capture statistical

relationships between attributes. This likely suggests a more

sophisticated level of processing than that observed for reports of

combination or integration of individual physical stimulus cues.

Behavioral results were consistently predicted by the PCA

network model [26]. Perceptual processes first capture the

principal component of variation in the two-dimensional stimulus

space at the expense of the orthogonal component [22]. From

listener performance and models, it appears that both principal

and second components become weighted proportional to the

amount of variance accounted for by each. In the stimulus sets

tested here, this entailed relatively modest weights on the second

component, corresponding to initially reduced discriminability.

Following further exposure to the stimulus set, variance not

explained by the principal correlation is detected and exploited,

improving discrimination of Orthogonal sound pairs back to

baseline levels. Only when evidence for the orthogonal dimension

was increased through greater covariance not shared with the

principal component (Experiment 3) was sufficient weight

attributed to the second component, extinguishing early differ-

ences in discriminability. Otherwise, given that correlations tested

here were attenuated in different manners, simulations primarily

varied in how the initial decrease in Euclidean distance between

Orthogonal stimuli gets smaller and/or recovery to baseline

distances occurs sooner.

One shortcoming of Sanger’s [26] network model is that it

assumes the correlation matrix of the inputs. PCA can operate

over either a correlation or covariance matrix, and there are

reasons to prefer a covariance matrix for psychoacoustically-

normed experimental materials employed here. The predictive

power of the PCA model [26] was improved when modified to

operate on the covariance matrix of the input rather than the

correlation matrix. The modified model provided predictions that

better fit listener performance. Further, Eigenvalues from

covariance- but not correlation-based PCA analyses closely reflect

listener performance (Table 1). Greater Eigenvalues on the second

component (orthogonal to the main correlation) predicted better

discrimination of orthogonal variation. At least for these stimuli,

covariance among acoustic attributes appears to be a better

estimate of perceptual performance than correlation, but given

markedly different ways to manipulate covariance captured by a

particular component in PCA (stimulus addition/deletion, over/

undersampling, etc.), further studies are required to better

understand this relationship.

The particular PCA model investigated here [26] is certainly

oversimplified and is unlikely to precisely reflect neural learning

mechanisms. Dimensions of AD and SS are almost certainly

encoded across a large number of neurons and not the localist

representation tested here. A more serious challenge is to identify

neurally plausible mechanisms for instantiating PCA-like perfor-

mance. Conceivably, circuitry of auditory cortical and association

areas may provide the required connectivities. Precortical

processes might also be implicated, given that PCA has proven

practical for depicting correlations across neurons in the vibrissal

sensory area of rat thalamus [60]. Lower subcortical auditory

nuclei are also candidates given that, relative to the visual system,

much more processing (more synapses and hence greater neural

recoding) occurs within the brainstem before cortex [37].

Identification of neural substrates supporting perceptual changes

demonstrated here and by Stilp and colleagues [22] would

facilitate development of more authentic computational models.

The present experiments have investigated how listeners adapt

to strong covariance structure coupled with varying types of

orthogonal variation. This form of structure is particularly

amenable to decomposition via PCA, but other models are better

suited for a broader array of cases such as those presented by
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statistical distributions for some speech sounds (e.g. distributions of

vowels in formant (F1-F2-F3) space are not orthogonal). For

extraction of independent dimensions that are not necessarily

orthogonal, techniques such as linear independent component

analysis (ICA), which efficiently encodes structure into latent

components that minimize mutual information (redundancy)

between outputs (e.g., [61]), may provide a better statistical analog

to perceptual organization.

The present results could provide insights into models of

perceptual organization for complex sounds such as speech. While

the novel sounds tested here only varied along two complex

dimensions, patterns of covariance naturally scale to high-

dimensional feature spaces. In complex natural stimuli such as

speech, multiple forms of stimulus attribute redundancy exist

concurrently and successively [20,21,62–65]. To the extent that

patterns of covariance among acoustic attributes in natural sounds

are efficiently coded, the present results may inform how the

auditory system exploits different patterns of redundancy to learn

and distinguish different speech sounds.

While some have suggested the importance of correlations

among stimulus attributes are central to perceptual organization

for speech [22,63,66–68], it has been more common to emphasize

1st-order statistics (e.g., probability density) as a means to

characterize distributions of speech sounds [69–73] or cues [74–

77]. In experiments that oversampled the Orthogonal sound pair

(Experiments 4 and 5), manipulations of probability density had

little to no effect on patterns of performance. At least in this

particular paradigm, higher-order redundancy (covariance) was

more perceptually salient than lower-order redundancy (probabil-

ity density). Future research that explores relative influences of

these different types of statistical structure will inform models of

perceptual organization and categorization of speech.

Covariance among complex acoustic attributes in novel stimuli

is exploited quickly and automatically in the present experiments.

Perception only later comes to encode residual variability in ways

that reflect optimal statistical weighting of covariance not

accounted for by the principal component of the stimuli. Results

illuminate stimulus characteristics that support coding of stimulus

redundancy that is rapid, unsupervised, efficient, and statistically

optimal.
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