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1 Institut National de la Santé et de la Recherche Médicale, Unit 991, Liver Metabolisms and Cancer, Rennes, France, 2 Université de Rennes 1, Rennes, France, 3 INSERM,

Unit 618, Proteases and Pulmonary Vectorization, Tours, France, 4 Gyeonggi Institute of Science and Technology Promotion, Gyeonggi Bio-Center, Suwon-city, South

Korea

Abstract

The Wnt/b-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins
can antagonize Wnt/b-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs),
which have a cysteine-rich domain (CRD) structurally similar to the extracellular Wnt-binding domain of the frizzled
receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the
frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is
proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain
(FZC18) inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells
deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/b-catenin
signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a
cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors’ CRDs, reducing cell sensitivity to Wnt3a.
Conversely, inhibition of Wnt/b-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8
receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially
purified recombinant FZC18_CRD inhibited Wnt3a-induced b-catenin activation. Taken together, the data indicate that
collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.
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Introduction

The Wnt/b-catenin pathway controls cell fate through

regulation of cell proliferation and death, migration, differentia-

tion and metabolism [1]. Pathway activation involves interaction

of Wnt ligands with cell surface Frizzled receptors and LRP5/6

co-receptors. This disrupts the Adenomatous polyposis coli (APC)-axin

complex, thus halting proteasomal degradation of b-catenin,

which is stabilized and interacts with T-cell factor (TCF)

transcription factors, displacing repressors and recruiting activa-

tors of target gene expression.

The bioavailability of Wnts at the cell surface is regulated by

several families of extracellular proteins. Heparan sulfate glycos-

aminoglycans control Wnt diffusion, thus enhancing interaction of

Wnt ligands with Frizzled receptors [2]. Antagonists include

members of the Dickkopf (DKK) family that block canonical

signaling by binding to LRP5/6, thereby disrupting the Wnt-

induced Frizzled-LRP5/6 complex [3]. Wnt inhibitory factor-1

(WIF-1) binds directly to Wnts, altering their ability to interact

with the receptors. The extracellular decoy receptors known as

secreted frizzled-related proteins (SFRPs) have a frizzled cysteine-rich

domain (CRD) structurally similar to the extracellular Wnt-binding

domain of the frizzled receptors. Frizzled CRDs contain 10

cysteines at conserved positions, which form a highly conserved

3D structure, bind Wnts and form homodimers or heterodimers

[4]. Thus, SFRPs can modulate Wnt signaling by sequestering

Wnts through the CRD or by acting as dominant-negative

inhibitors, forming inactive complexes with the frizzled receptors

[5]. In addition, engineered SFRP-like proteins such as the soluble

CRD of the receptor Frizzled 8 bind Wnt3a and inhibit autocrine

Wnt signaling and tumor growth in mice carrying teratomas [6].

In addition to SFRPs, other endogenous molecules carrying

frizzled CRDs inhibit Wnt signaling. Among them, V3Nter is a

cell surface polypeptide that inhibits tumor growth and switches off

the b-catenin target gene expression signature in vivo [7,8]. V3Nter

is proteolytically derived from the cell surface extracellular matrix

component collagen XVIII [7,9,10] and contains a biologically

active frizzled domain (FZC18) (Figure 1A) [7]. The CRD in the
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FZC18 domain is highly conserved in frog, mouse and man, all 10

cysteines and the number and type of intervening amino-acids

being fully conserved [9]. Indeed, we previously showed a 100%

probability that the predicted 3D model of FZC18_CRD matches

the 3D structure of mouse SFRP3 and FZD8 CRDs [7]. In human

liver cancer, endogenous collagen XVIII is proteolyzed, releasing

the FZC18 precursor V3Nter. We have shown that low FZC18

protein expression in liver cancer correlated with markers of high

Wnt/b-catenin activity and vice versa [7].

In this work, we show that low concentration soluble FZC18

interacts with Wnt3a and with the receptors FZD1 and FZD8 in a

cell-free system. Consequently, FZC18 reduces cell sensitivity to

Wnt3a and inhibits Wnt/b-catenin signaling. In line with these

findings, FZC18 inhibitory effects were partially rescued by the

expression of FZD1 and FZD8 receptors, but enhanced by

expression of FZD8_CRD-GPI, a cell-membrane-tethered chime-

ric FZD8_CRD. Finally, we produced high-yield soluble recom-

binant human FZC18_CRD-Fc fusion protein, which inhibited

Wnt3a-induced b-catenin activation in vitro.

Materials and Methods

cDNA Clones
Human Igk-FZC18-myc/pSecTag2 (carrying an Igk signal

peptide) and mouse Wnt3a-V5/pCDNA3.1 mammalian expres-

sion vectors, Super8NTopflash and Super8NFopflash CRT report-

ers, Cyclin D1 promoter reporter D1D-944pXP2 and the

normalization Renilla luciferase vector pGL4.70[hRluc] were

previously described [7]. The episomal expression vector pCEP-

PU was from T. Sasaki [11]. Igk-FZC18-myc was transferred from

pSecTag2 to pCEP-PU by PCR synthesis of an 875-bp fragment

carrying 59-NheI and 39-BamHI restriction sites in the forward

and reverse primers, respectively. The PCR fragment was ligated

into pCRII-Topo-TA (Invitrogen), excised and subcloned into

pCEP-PU. Mouse FZD8_CRD-myc/pcDNA3, mFZD8_CRD-

Fc/pRK5 [12] (Addgene plasmid 16689) and empty pRK5

plasmid were from X. He, mFZD8_CRD-myc-GPI was from J.

Nathans [13], mFZD8-myc receptor/pEF1A [14] was from R.

Nusse, pEF1/myc-his was from Invitrogen and rat FZD1-myc

(Addgene plasmid 16798) was from R. Moon. Human

FZC18_CRD was PCR cloned into BamHI and KpnI in pIDZ-

Fc in frame with an Igk signal sequence and a C-terminal human

IgG Fc tag for affinity purification. A thrombin cleavage site was

included to allow removal of the Fc tag. The sequences of primers

were: forward, 59-GGG GGA TCC GCC CTG CTC GGG GCT

GAC-39; reverse #1, 59-GGG CTC GAG AGA TCC ACG CGG

TAC CAG TGC AGC CGG CCC AAT GAG-39; reverse #2, 59-

GGG CTC GAG TGC AGC CGG CCC AAT GAG-39.

Constructs were stably transfected in DHFR-deficient CHO cells

with Effectene transfection reagent (Qiagen), and clones selected in

media containing G418 (500 mg/ml, Sigma) and lacking hypo-

xanthine and thymidine. All cDNAs were checked by automatic

sequencing (Sequencing Facility, Rennes University Hospital,

France).

Biological Activity of Soluble FZC18
Collection of conditioned media (CM) from parental L cells

(control CM) and Wnt3a CM was performed as recommended by

ATCC and by R. Nusse lab website. For other CM, HEK293

EBNA cells were seeded at 2.26106 cells/10 mm dishes and

transfected with either FZC18-myc/pCEP-PU, mFZD8_CRD-

myc/pcDNA3, mFZD8_CRD-Fc/pRK5 or with the respective

empty vectors and, 24 hr later, fresh media were replaced by

DMEM (4.5 g/l glucose) without phenol red or FCS (Invitrogen).

Conditioned media were collected 48 hr later, centrifuged at 450 g

and filtered (0.2 mm). To obtain recombinant FZC18_CRD,

conditioned media from hFZC18_CRD-Fc clones were screened

for protein expression by ELISA and positive clones were

confirmed by Western blot analysis using anti-human IgG-Fc

antibody. The positive clones were further adapted to CD

OptiCHO medium supplemented with 8 mM L-Glutamine.

hFZC18_CRD-Fc producing cells were seeded into spinner flasks

at 26105 cells/ml and incubated at 37uC and 5% CO2 with

Figure 1. Stable expression of FZC18 in HEK293T cells. (A)
Schematic structure showing the variant 3 of collagen XVIII containing
DUF-959, FZC18, Tsp-1 (thrombospondin-1) and ES (endostatin)
domains and the FZC18 expression vector. Interrupted collagenous
indicates multiple triple helices (collagenous sequences) interrupted by
globular domains. Thick horizontal lines indicate the antibodies used.
SP, signal peptide; CRD, Cysteine-Rich Domain; myc, myc epitope tag.
(B) HEK293T cells stably expressing FZC18 (batches 1; 4; 5) or empty
vector (V) were fixed, permeabilized and immunostained with anti-myc,
followed by peroxidase-conjugated antibodies (brown). Cells were
counterstained with hematoxylin (blue). Original magnification: 6100.
Images were acquired on an Olympus BX60 microscope. (C) Immuno-
blot with anti-FZC18 (red) and anti-myc (yellow) antibodies in HEK293T
cell batches (1; 4; 5) stably expressing FZC18 or empty vector (V). a-
tubulin is a loading standard.
doi:10.1371/journal.pone.0030601.g001
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agitation at 80 rpm in humidified air for 10 days. The medium

was collected, cleared by centrifugation, filtered (0.45 mm) and

stored at 4uC until purification. The samples were loaded on a

protein A column following equilibration with 20 mM sodium

phosphate, 20 mM sodium citrate, pH 7.5. The column was

washed with the same buffer until effluent absorbance returned to

baseline. The bound proteins were eluted with 20 mM sodium

phosphate, 100 mM sodium citrate, pH 2.5 followed by rapid

neutralization by adding 0.1 volume of 1 M Tris-hydrochloride,

pH 9.0. The yield of the purified proteins was approximately

1,5 mg/l and purity was over 40%, as estimated by sandwich

ELISA using anti-Fc antibody (Abcam AB1927) for capture and

peroxidase-conjugated secondary antibody (Sigma A0170) for

detection. Purified proteins were stored at 280uC until use.

Immunological Methods
Coimmunoprecipitations were done by incubating either

FZC18-myc or FZD8_CRD-myc pre-cleared CM with recombi-

nant mWnt3a (100 ng/ml; 2.7 nM) and either mouse anti-myc or

mouse IgG1 (Dako) on a rotary wheel at 4uC overnight. Then,

protein G magnetic beads (New England Biolabs), saturated

overnight in protein extracts from 293EBNA cells in RIPA buffer

(TrisHCl 50 mM, pH 7.4; 1% Triton-X-100; 25 mM Hepes;

150 mM NaCl; 0.2% Sodium deoxycholate, 5 mM MgCl2), were

added to immunocomplexes and incubated at 4uC, for 3 hr. After

washing in RIPA buffer, complexes were eluted in denaturing

sample buffer, resolved by 10% PAGE-SDS and immunoblotted.

For reverse coimmunoprecipitation experiments, either rabbit

anti-mWnt3a (C64F2, Cell Signaling) or rabbit IgG (Dako) was

incubated either with recombinant mWnt3a plus FZC18-myc CM

or with recombinant mWnt3a plus FZD8_CRD-myc CM.

Coimmunoprecipitation of FZC18-myc with either recombinant

mFZD1_CRD-Fc (100 ng/ml) or mFZD8_CRD-Fc CM was

done as described above, using protein G magnetic beads binding

the Fc tags. Immunoblots were performed with mouse anti-myc

(Invitrogen) and with monoclonal rat anti-FZD1_CRD or anti-

FZD8_CRD antibodies (R&D). Signal from immunoblots was

detected by enhanced chemiluminiscence, as described [7].

Results

The frizzled domain of collagen XVIII inhibits cell
proliferation and DNA synthesis

We produced zeocin-resistant mass cultures of 293T cells stably

expressing FZC18 or empty vector. To avoid clonal variability, we

expanded colonies showing different densities of FZC18 (+) cells

(Figure 1B). As FZC18 locates preferentially at the cell surface [7],

cell permeabilization followed by immunocytochemistry allowed

identification of all cells expressing the protein of interest, regardless

of protein maturation. Thus, batch #1 showed a lower density of

FZC18 (+) cells (Figure 1B) and lower FZC18 expression by

immunoblot than batch #4 and #5 cells (Figure 1C). When

passaged routinely, FZC18 (+) cells grew more slowly, formed

smaller cell plates than vector cells and secreted soluble FZC18

(Figure S1, B and C). Simultaneous detection of N- and C-terminal

epitopes in this fusion protein indicated preservation of FZC18

integrity in cells (Figure 1C) and in the medium (Figure S1C). An 8-

day time course cell proliferation assay showed that FZC18-

expressing cells grew more slowly than vector cells (Figure 2A).
3HThymidine incorporation rates into DNA showed that FZC18

reduces cell proliferation and DNA synthesis (Figure 2B). Through-

out the 8-day cell proliferation assay, mitochondrial succinate

dehydrogenase activity in living cells (MTT assay) confirmed the

decrease in cell growth in FZC18-expressing cells (Figure S2). The

decrease in proliferation rates was correlated with the expression

levels of FZC18 in the stable cell cultures (Figure 1B). No significant

difference in spontaneous cell death was observed in these cells

compared to vector-expressing cells by flow cytometry search for

subG1, hypo-diploid cells (not shown).

FZC18 reduces cell sensitivity to soluble Wnt3a
Incubation of vector and FZC18-expressing 293T cells with

conditioned medium (CM) from L cells secreting soluble Wnt3a

(Wnt3a CM) confirmed that FZC18 reduces Wnt3a-induced Wnt

signaling (Figure 3), b-catenin stabilization, cyclin D1 promoter

activity and protein expression (Figure S3). FZC18-expressing cells

showed lower amounts of steady-state b-catenin protein (Figure

S3A) and cyclin D1 promoter activity than control cells (Figure

S3B). In particular, cyclin D1 protein expression in response to

soluble Wnt3a was considerably stronger in vector cells than in

FZC18 cells (Figure S3C), indicating that FZC18 abrogates the

response to Wnt3a. The dose-response curve to different dilutions

of Wnt3a CM showed that FZC18-expressing cells could

efficiently build up a CRT response to Wnt3a, in such a way

that the higher the concentration of Wnt3a CM, the higher the

fold-change in CRT. However, the absolute CRT levels in

FZC18-expressing cells were 5 to 8 folds lower than those in vector

cells (Figure S3D).

Figure 2. FZC18 inhibits cell proliferation and DNA synthesis.
(A) HEK293T cells stably expressing FZC18 (batches 1; 4; 5) or empty
vector (vector) were seeded at low density and cell number was
determined on an 8-day time course by cell counting. (B) Cells were
serum-starved for 48 hr and stimulated with 10% FBS twice, as shown
(arrows). At each time point, cells were pulsed with 1 mCi/ml 3H
thymidine for 2 hr before lysis. Incorporated radioactivity is expressed
as cpm/mg protein.
doi:10.1371/journal.pone.0030601.g002

A Soluble Frizzled Domain Blocks Wnt Signaling

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30601



Despite lower pre-Wnt3a and post-Wnt3a b-catenin stabiliza-

tion and downstream signaling events in FZC18 cells (Figures 3

and S3), a given strength of Wnt3a stimulus induced the same fold-

change in CRT both in vector and FZC18 cells (Figure S4).

Likewise, it has been recently shown that in a normal cell context,

different cell systems respond to Wnt stimulation with similar fold-

change despite their different starting and output levels in Wnt/b-

catenin signaling [15]. Thus, FZC18 may not impair downstream

processing of Wnt stimuli, but it seems to decrease cell sensitivity to

Wnt3a, probably by blocking Wnt access to frizzled receptors.

Soluble FZC18 binds Wnt3a
Co-expression of FZC18 and Wnt3a in non permeabilized

AT3F1S315 mouse hepatoma cells [16] followed by confocal

microscopy analysis revealed that both proteins colocalized at the

cell surface, highlighting cell contacts (Figure 4A). We further

confirmed that HEK293T cell clones stably expressed FZC18 at

the cell surface by immunostaining with antibodies detecting the

N- and C-termini of the FZC18-myc fusion protein (Figure S5A).

Moreover, subcellular fractionation confirmed that FZC18 was

exclusively detected in the crude membrane fraction (Figure S5B),

indicating that the protein is indeed addressed to the secretory

pathway.

Using protein extracts from cells cotransfected with both FZC18

and Wnt3a, we previously showed that these ectopically expressed

molecules interact [7]. However, cysteine-rich proteins like Wnts

and the Frizzled CRDs may get clogged within the secretory

pathway [2], leading to high intracellular concentration and

spurious interactions. Here, we wished to study these interactions

in a cell-free system, using soluble FZC18 and Wnt3a, at low

concentrations. Despite easy detection of FZC18-myc by immu-

nocytochemistry, immunoblot detection showed no signal in non-

concentrated CM, in contrast to FZD8_CRD-myc, which was

detected at high levels (Figure S5C). Concentration of FZC18 CM

by 13 folds was required to observe a detectable signal by

immunoblot (Figure S5C). For coimmunoprecipitation, we added

purified recombinant Wnt3a to non-concentrated FZC18-myc or

FZD8_CRD-myc CM. Wnt3a concentration (2.7 nM) was within

the physiological range [13,17,18,19,20]. Under these conditions,

both FZC18-myc and FZD8_CRD-myc pulled down Wnt3a

(Figure 4B). Accordingly, reverse co-immunoprecipitation revealed

that Wnt3a pulled down both FZC18-myc and FZD8_CRD-myc

(Figure S5D). Additionally, both precipitation and immunoblot

with anti-myc antibody confirmed the presence of soluble FZC18

and FZD8_CRD at the expected amounts in these CM (Figure

S5E).

Extracellular FZC18 inhibits Wnt3a-induced Wnt/b-
catenin signaling

We tested whether the CRD of FZC18 (FZC18_CRD) could

effectively inhibit Wnt signaling. FZC18_CRD was cloned in

frame with a human Igk signal sequence and a human Fc tag from

IgG. Human FZC18_CRD-Fc preparations with 40% purity were

tested for biological activity. As expected, hFZC18_CRD-Fc dose-

dependently inhibited Wnt3a-induced CRT (Figure 5). Inclusion

of a thrombin cleavage site did not significantly affect Wnt

inhibitory activity of hFZC18_CRD-Fc (Figure S6). Taken

together, these findings support the concept that FZC18 exerts

its biological effects in the extracellular compartment and that the

CRD of FZC18 has Wnt inhibitory activity.

FZC18 seems to provide short-range signals, thus working as an

SFRP-like molecule [8]. We thus confirmed whether FZC18-

expressing cells impact on the microenvironment of adjacent cells

and modulate their response to Wnt stimuli. FZC18-expressing

Figure 3. FZC18 reduces cell sensitivity to soluble Wnt3a.
HEK293T cell batches stably expressing FZC18 (1; 4; 5) or empty vector
(V) were incubated with either 50% control or Wnt3a conditioned
medium (CM) for 16 hr before lysis. CRT (b-catenin-T-Cell factor
Regulated Transcription) assays using Super8NTopflash or the negative
control Super8NFopflash reporters are representative of three indepen-
dent experiments performed in triplicate and normalized to Renilla
luciferase activity (mean6SD).
doi:10.1371/journal.pone.0030601.g003 Figure 4. Soluble FZC18 binds Wnt3a. (A) FZC18 colocalizes with

Wnt3a at the cell surface (arrows). AT3F1S315 hepatoma cells were co-
transfected with FZC18 and Wnt3a vectors. FZC18 (green) was detected
by anti-myc+FITC-labeled IgG. Wnt3a (red) was detected by anti-
Wnt3a+biotinylated IgG+streptavidine-Texas red. Cells were not per-
meabilized. Nuclei were labelled blue with DAPI. Images were acquired
using a Leica TCS NT system on a Leica DMB confocal microscope at
original magnification 6630. (B) Soluble FZC18 binds Wnt3a. Condi-
tioned medium from HEK293-EBNA cells transiently expressing FZC18
was incubated with recombinant Wnt3a overnight at +4uC. FZC18 was
immunoprecipitated with anti-myc and immunoblotted with anti-
Wnt3a. Conditioned medium from HEK293-EBNA cells transiently
expressing FZD8_CRD-myc was used as a positive control of
coimmunoprecipitation. Ig, immunoglobulins. Asterisks denote inputs.
For 106, FZC18-myc CM was incubated with Wnt3a and then
concentrated 10 folds by TCA precipitation.
doi:10.1371/journal.pone.0030601.g004
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cells were co-cultured with parental 293 cells expressing the CRT

reporter. Co-cultures were established at different ratios of FZC18

(+) cells to a constant number of reporter cells in the presence of

50% Wnt3a CM (Figure S7). Under these conditions, the response

of the reporter cells to soluble Wnt3a was inversely proportional to

the number of FZC18 (+) cells in the co-culture system.

Frizzled 1 and 8 receptors partially rescue the inhibition
of Wnt3a-induced b-catenin signaling by FZC18

We tested whether increasing the availability of cell surface

frizzled receptors in FZC18-expressing cells could compete with

FZC18, thereby enhancing Wnt signaling. To this end, FZC18-

expressing and vector cells were transfected with increasing

amounts of full-length FZD1 or FZD8 receptor cDNAs and

incubated in the presence of Wnt3a CM (Figure 6, A and B).

FZD1 and FZD8 receptor expression led to up-regulation of CRT

in both vector and FZC18-expressing cells. Vector and FZC18

cells expressing FZD1 exhibited similar CRT (Figure 6A). By

contrast, 100 ng of FZD8 cDNA was required to reach 50% of

vector cells’ maximal CRT in FZC18-expressing cells, whereas

vector cells’ maximal activity was obtained with 5 ng of FZD8

cDNA. Interestingly, although lower amounts of FZD1 (0.5 and

0.75 ng) or FZD8 (0.5 to 10 ng) cDNAs activated CRT in a dose-

dependent manner, higher amounts of FZD1 (1 to 250 ng) or

FZD8 (50 to 250 ng) cDNAs gradually reduced CRT (Figure 6, A

and B). Although high doses of FZ receptor cDNA appeared non-

specifically inhibitory (Figures 6 and S8), mouse FZD1 and

Drosophila FZ3 may behave as antagonists of canonical Wnt/b-

catenin signaling [21,22]. Excessive ectopic stimulation of b-

catenin signaling via frizzled receptors may result in saturation of

the signal transduction capacity of pathway components down-

stream to the frizzled receptors. In keeping with this hypothesis,

mouse wild-type FZD1 inhibits Wnt signaling less efficiently than

does C-terminally deleted mouse FZD1 [21]. These data led us to

test a hypothetical synergy between FZC18 and FZ CRDs,

capable of binding Wnts but unable to transduce downstream

signal.

Using FZC18-expressing cells, we compared the effects of the

full-length FZD8 receptor, FZD8_CRD and a FZD8_CRD

carrying a C-terminal glycosylphosphatidylinositol (GPI) anchor

attaching the CRD at the cell surface (FZD8_CRD-GPI). Within

the 10 pg-100 ng range of transfected cDNA, FZD8_CRD-GPI

and FZD8_CRD further reduced Wnt signaling in FZC18-

expressing cells (Figure 6C). Under the same conditions, full-

length FZD8 antagonized the effects of FZC18, increasing CRT

(Figure 6C), supporting the data shown in Figure 6B. Effects of

full-length FZD8 receptor, FZD8_CRD and FZD8_CRD-GPI on

cells expressing the empty vector are provided on Figure S9.

These results show an additive effect of FZC18 and either

FZD8_CRD or FZD8_CRD-GPI, the dose-response curve

outlining a higher efficacy of FZD8_CRD-GPI. Thus, Wnt/b-

catenin signaling can be concomitantly downregulated by different

Wnt-binding proteins. As FZD8_CRD is soluble, its cell surface

bioavailability may thus be lower than that of FZD8_CRD-GPI,

probably resulting in lower Wnt inhibitory activity.

Taken together, these data underline the specificity of the Wnt

inhibitory activity of FZC18. As FZD receptors rescued Wnt/b-

catenin signaling, but FZD CRDs further enhanced the inhibitory

Figure 5. Partially purified FZC18 inhibits Wnt3a-induced Wnt/
b-catenin signaling. CRT assay using the b-catenin reporters Super8-
NTopflash and Super8NFopflash, as indicated. (A) HEK293-EBNA cells
incubated for 16 hr with either 50% control CM or 50% Wnt3a CM.
Wnt3a induces an 80-fold increase in CRT. (B and C) Partially purified, Fc
tagged human FZC18_CRD (hFZC18_CRD-Fc) dose-dependently inhib-
its Wnt3a-induced CRT in HEK293-EBNA cells, as shown with Super8-
NTopflash (B) and Super8NFopflash (C) CRT reporters. Cells were
incubated for 16 hr with 50% Wnt3a CM that had been pre-incubated
overnight on a rotary wheel at +4uC with the indicated concentrations
of hFc tag alone (recombinant human Fc from IgG, negative control) or
hFZC18_CRD-Fc. Results are shown as mean6SD of hFZC18_CRD-Fc/
hFc tag ratios. R2 indicates 2nd degree polynomial regression coefficient.

Curve fitting is shown by a red line. Super8NFopflash (C) negative
control CRT reporters (C) are shown for the highest concentrations of
hFZC18_CRD-Fc/hFc. (D) Immunoblots show hFc and hFZC18_CRD-Fc
from each sample using anti-Fc tag antibody.
doi:10.1371/journal.pone.0030601.g005
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effects of FZC18, these findings indicate that the effects of FZC18

may not result from endoplasmic reticulum toxicity through

clogging of the secretion pathway with cysteine-rich proteins.

FZC18 forms homodimers and binds the CRDs of FZD1
and FZD8 receptors

One of the well-known features of frizzled CRDs is their

capacity to form homo and heterodimers [4], conferring to SFRPs

the ability to bind to frizzled receptor CRDs [5]. To investigate

whether these features applied to FZC18, we cotransfected

HEK293T cells with both V3Nter-V5 and FZC18-myc or with

V2Nter-V5 and FZC18-myc (Figure 7, A and B). V3Nter is a

precursor of FZC18 originated by endogenous proteolysis in

human tissues [7]. V2Nter-V5 contains the same aminoterminal

sequences of C18 as V3Nter, but lacks the FZC18 domain

(Figure 7A). As both V2Nter and V3Nter share the DUF-959

domain, V2Nter was used as a negative control. Immunoprecip-

itation with anti-myc, followed by immunoblotting with anti-DUF-

959 or with anti-V5 tag antibodies showed that FZC18 bound

V3Nter but not V2Nter. This also excludes the possibility that

FZC18 could bind other portions of the V3Nter molecule, such as

the DUF-959 or the Tsp-1 domains (Figure 7A).

Next, we tested whether FZC18 could bind the CRDs of FZ

receptors. To this end, we used soluble FZD1 or FZD8 CRDs

fused to the Fc portion of human IgG (Figure 7C). Adding

recombinant FZD1_CRD-Fc or FZD8_CRD-Fc CM to non-

concentrated FZC18 CM and immunoprecipitating with protein

G coated beads, followed by immunobloting with anti-myc

antibody showed that FZC18 could bind FZD1 and FZD8 CRDs.

Taken together, the results suggest a model whereby FZC18 could

bind both Wnts and FZD CRDs, hampering access of Wnts to the

FZD receptors, thus blocking Wnt/b-catenin pathway activation

in an SFRP-like mode (Figure 8).

Discussion

The microenvironment impacts Wnt activity and regulates cell

behavior through extracellular molecules that fine tune the

response to Wnt stimuli [5,23]. Proteolysis in human tissues

releases active FZC18 and tumors containing high levels of FZC18

show low b-catenin activation levels [7]. FZC18 behaves as an

SFRP-like molecule inhibiting in vivo cell proliferation and tumor

growth [8]. Although Wnt3a and FZC18 were shown to interact in

a cell overexpression system [7], whether the interaction was still

active in a cell-free system at physiological concentrations

remained unknown. Here, we show that soluble FZC18 binds

Wnt3a and the receptors FZD1 and FZD8, and reduces cell

sensitivity to Wnt3a. FZC18 inhibitory effects are partially rescued

by FZD1 and FZD8 receptors, but enhanced by FZD8_CRD-

GPI, a cell-surface-tethered FZD8_CRD chimera. Altogether, the

results suggest that FZC18 shifts the sensitivity of cells to Wnt

stimuli to a lower pitch, slowing their growth rate.

Although the concentration of soluble FZC18 in the condi-

tioned medium was several fold lower than that of FZD8_CRD, a

well-known partner of Wnt3a [6], Wnt3a was efficiently pulled

down by FZC18. Accordingly, Wnts bind to FZD CRDs with

affinities lower than 90 nM [13,17,18,19,20]. In the present

report, the use of soluble FZC18 at very low concentrations and a

Wnt3a concentration within the physiological range (2.7 nM)

indicates that spurious interactions of highly concentrated

cysteine-rich proteins are unlikely. In addition, we show that

FZC18 binds FZD1 and FZD8 CRDs, implying that FZC18 could

form nonfunctional complexes with the frizzled receptors, thus

acting as a dominant negative inhibitor of Wnt signaling.

Figure 6. Frizzled 1 and 8 receptors partially rescue the
inhibition of Wnt3a-induced CRT by FZC18. CRT reporter gene
assays using the b-catenin-TCF responsive reporter Super8NTopflash in
HEK293T cells stably expressing FZC18 (A, B and C) and vector (A, B).
Twenty-four hours after transfection with the CRT reporter and
increasing amounts of either FZD1 receptor (A), FZD8 receptor (B),
FZD8 receptor, FZD8_CRD or FZC8_CRD-GPI (C) cDNAs, cells were
incubated either with 50% control CM (L) or with 50% Wnt3a CM for
16 hr. Results are representative of three independent experiments
performed in triplicate and normalized to Renilla luciferase activity.
Error bars represent standard deviations.
doi:10.1371/journal.pone.0030601.g006
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The major technical hardship of this work was the low yield of

soluble FZC18. Expression of FZC18 using different vectors and

mammalian host cell systems, allowing either genomic DNA

integration or high copy number episomal replication of target

sequences yielded low amounts of soluble FZC18 (not shown).

Similarly, generation of isogenic stable mammalian cell lines using

Flp recombinase and optimal site-specific genomic recombination

failed to increase the yield of soluble FZC18 (not shown). Since we

demonstrated that the CRD of FZC18 can form homodimers, we

hypothesized that homodimerization could increase yield of

soluble protein and expressed human FZC18_CRD sequences in

frame with the Fc fragment of IgG in CHO cells. This vector/host

combination dramatically increased yield of soluble FZC18_CRD

in the medium. Furthermore, partially purified recombinant

hFZC18_CRD-Fc inhibited Wnt/b-catenin signaling induced by

soluble Wnt3a, confirming that the Wnt inhibitory activity resides

within the frizzled CRD of FZC18.

Overexpression of either FZD1 or FZD8 receptors partially

rescued Wnt signaling in FZC18-expressing cells. On the other

hand, FZD8_CRD-GPI, which remains tethered to the cell

surface, enhanced the inhibitory effect of FZC18 more efficiently

than FZD8_CRD did, which freely diffuses into the medium.

Therefore, competing CRDs may diminish sensitivity to Wnt

ligands at the cell surface. Accordingly, recent evidence indicates

that FZD receptors may be limiting partners in Wnt signal

reception because decreased Wnt/Wg signaling resulting from

ubiquitylation of FZD receptors can be rescued by FZD receptor

overexpression [24].

Finally, Wnt signaling outputs rely not only on ligand and

receptor availability at the cell surface, but also on the

microenvironment that can either enhance (such as heparan

sulfate proteoglycans) [2] or blur (such as SFRPs, DKKs or

FZC18) ligand/receptor interactions. In normal adult human

tissues, FZC18 is released by stepwise proteolytic cleavage from a

cell surface variant of collagen XVIII [9] [7] which is expressed at

low levels. Its expression is up-regulated in liver fibrosis and in

small, well-differentiated tumors, but decreases in advanced

human liver cancers. Indeed, low FZC18 immunostaining in liver

cancers correlates with markers of high Wnt/b-catenin activity

[7]. Since the release of biologically active FZC18 is controlled by

so far unidentified proteases, it is possible that cell growth or tumor

invasion facilitate the local release of FZC18, conveying negative

feedback cues to control cell fate. Therefore, further work is

necessary to determine if FZC18 works as a cell surface sensor of

proteolysis.

Ectopically expressed FZC18 blocks Wnt signaling in an SFRP-

like fashion, inhibiting in vivo cell proliferation and tumor growth

through paracrine signals [8]. However, further work will be

necessary to know whether soluble FZC18 inhibits cell prolifer-

ation and tumor growth in vivo. The present work suggests that

soluble FZC18 decreases cell sensitivity to Wnt signals by binding

Wnt3a and the receptors Frizzled 1 and 8. Thus, the full repertoire

of Wnt ligands and frizzled receptors that interact with FZC18

should be defined, as well as its possible interaction with other

molecules of the extracellular matrix. In particular, FZC18 could

signal through the non-canonical Wnt pathway to decrease cell

Figure 7. The FZC18 domain homodimerizes and binds FZD1 and FZD8 CRDs. (A) Schematic structure of V3Nter, V2Nter and FZC18 cDNAs.
V3Nter and V2Nter correspond to the N-terminal noncollagenous domains of variants 3 and 2 of collagen XVIII, respectively. They share the DUF-959
domain, a portion of the tsp-1 (thrombospondin-1) domain and the V5 tag. Only V3Nter contains the FZC18 domain. The FZC18 vector has a myc tag.
Thick horizontal lines indicate the antibodies used. (B) FZC18 can homodimerize. FZC18-myc was cotransfected with V3Nter-V5 or V2Nter-V5 in
HEK293-EBNA cells. Cell lysates were immunoprecipitated with anti-myc and immunoblotted with anti-DUF-959 (top). The membrane was stripped
and re-probed with anti-V5 (bottom). Ig, immunoglobulins. (C) Soluble FZC18 binds FZD1_CRD and FZD8_CRD. CM from HEK293-EBNA cells secreting
FZC18-myc was incubated with recombinant 100 ng/ml FZD1_CRD-Fc (upper panel) or with CM from HEK293-EBNA cells secreting FZD8_CRD-Fc
(lower panel). FZD1_CRD-Fc and FZD8_CRD-Fc were immunoprecipitated with protein G magnetic beads, electrophoresed and immunoblotted with
anti-myc, anti-FZD1_CRD or anti-FZD8_CRD, as shown. Asterisks denote inputs or FZC18 cell lysate, as indicated.
doi:10.1371/journal.pone.0030601.g007
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proliferation. Comparison of binding affinities of FZC18 with

soluble and, as yet unknown, extracellular-matrix-tethered ligands

will help better understand the physiological role of this collagen-

embedded frizzled CRD.

Supporting Information

Figure S1 Secretion of FZC18 in the cell medium. (A)

Schematic structure showing the FZC18 expression vector. Thick

horizontal lines indicate the antibodies used. SP, signal peptide;

CRD, cysteine-rich domain; myc, myc epitope tag. (B) Phase

contrast images of HEK293T cell batches stably expressing

FZC18 (1; 4 and 5) or empty vector (V). Original magnification

6100. (C) Cells were cultured in suspension with neither FBS nor

phenol red during 3 days. Conditioned media were collected,

dialyzed against deionized water, lyophilized and 150 mg was

analyzed by immunoblot using anti-myc and anti-FZC18

antibodies, as indicated. As a positive control, 10 mg of lysate of

cells stably expressing FZC18 was used (cells). Arrows indicate

FZC18. The asterisk indicates a nonspecific band.

(EPS)

Figure S2 FZC18 inhibits cell proliferation. Proliferation of

HEK293T cells expressing FZC18 was assessed by the MTT

colorimetric assay measuring mitochondrial activity in living cells

on an 8-day time course and is shown as mean6SD of three

replications. Results are representative of three independent

experiments performed in triplicate.

(EPS)

Figure S3 FZC18 reduces basal level and Wnt3a-induced b-

catenin stabilization and cyclin D1 expression. (A) b-catenin assay

stabilization assay using anti-b-catenin, anti-non-phosphorylated

b-catenin and anti-GAPDH (loading standard) antibodies and (B)

cyclin D1 luciferase promoter reporter assay. Cells were incubated

with either 50% control or Wnt3a conditioned medium (CM) for

16 hr before lysis. Reporter assays are representative of three

independent experiments performed in triplicate and normalized

to Renilla luciferase activity (mean6SD). (C) Cells stably

expressing FZC18 (batch #5) or vector were incubated with

50% control (2) or Wnt3a (+) CM for 16 hr. Total protein

extracts from these cells were analyzed by immunoblot detecting

cyclin D1. GAPDH is a loading standard. (D) FZC18 reduces cell

sensitivity to soluble Wnt3a. Relative CRT in vector or FZC18

cells (batch #5) incubated with increasing concentrations of

control or Wnt3a CM for 16 hr (compare relative CRT values in

vector versus FZC18 cells). (E) Aliquots of control (0%) or

increasing concentrations of Wnt3a CM (3–100%) from B were

immunoblotted with anti-Wnt3a.

(EPS)

Figure S4 Wnt3a induces similar fold-change in Wnt signaling

in vector- and FZC18-expressing cells. CRT reporter gene assays

using the b-catenin-TCF reporter Super8NTopflash (A) and the

negative control reporter Super8NFopflash (B) in HEK293T cells

stably expressing vector or FZC18, as indicated. Twenty-four

hours after transfection with the CRT reporters, cells were

incubated with serial dilutions of either control CM (from parental

L cells) or Wnt3a CM (from L cells secreting Wnt3a) for 16 hr.

Results are representative of three independent experiments

performed in triplicate and normalized to Renilla luciferase

activity. For each dilution of control and Wnt3a CM, fold-changes

in CRT were calculated as: (Firefly/Renilla luciferase Wnt3a

CM)/(Firefly/Renilla luciferase control CM).

(EPS)

Figure S5 FZC18 is a cell membrane-associated protein which

binds Wnt3a in its soluble form. (A) Localization of FZC18 in cell

membranes. Immunofluorescent detection of FZC18 N-terminal

(red) and C-terminal (green) epitopes in non permeabilized

HEK293T cell batches stably expressing FZC18 (FZC18 #1;

#4 and #5) or empty vector (vector). Both epitopes colocalize,

outlining cell membranes (arrows). Images were acquired with an

Axio Imager M1 and Colibri LED system and AxioVision

software (Zeiss) at original magnification 6400 (Vector and cell

batches FZC18 #1 and #4) and 61000 (batch #5). (B) FZC18 is

exclusively detected in the crude cell membrane fraction. Cytosol

and crude cell membranes from HEK293T cell batches expressing

FZC18 (1; 4; 5) or vector (v) were immunobloted with anti-myc. a-

tubulin and caveolin-2 are loading standards of cytosol and crude

membrane fractions, respectively. (C) Lower yields of soluble

FZC18-myc than of FZ8_CRD-myc in transiently transfected

HEK293-EBNA cell CM. Both proteins were detected by

immunoblot with mouse anti-myc antibody followed by goat

anti-mouse peroxidase conjugate. Signal was revealed by en-

hanced chemiluminescence. Arrows indicate FZC18-myc

(,31 kD) and FZ8_CRD-myc (,45 kD). Brackets show serum

immunoglobulins. The FZC18 blot shows: 1x, whole CM from

cells expressing (+) or not (2) FZC18; 13x, trichloroacetic acid

(TCA) concentrated whole CM from cells expressing (+) or not (2)

Figure 8. Hypothetical model for the mode of action of FZC18.
High: in the absence of FZC18, Wnt3a increases b-catenin signaling.
Low: FZC18 binds Wnt3a and FZD receptors, blocking Wnt/b-catenin
pathway activation in an SFRP-like mode of action. Rescued: FZC18
inhibitory effects can be partially rescued by increasing the number of
FZD receptors at the cell surface.
doi:10.1371/journal.pone.0030601.g008
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FZC18; 60x, Amicon centrifugal concentration of whole CM from

cells expressing (+) or not (2) FZC18. The FZ8_CRD blot shows:

13x (2), TCA concentrated whole CM from untransfected

HEK293-EBNA cells; 1x (+)(+) whole CM from HEK293-EBNA

cells transiently expressing FZ8_CRD from batches #1 and #2;

13x (+)(+) TCA-concentrated CM from HEK293-EBNA cells

transiently expressing FZ8_CRD from batches #1 and #2; 60x

(+)(+) Amicon centrifugal concentration of whole CM from

HEK293-EBNA cells transiently expressing FZ8_CRD from

batches #1 and #2. (D) Soluble Wnt3a pulls down FZC18 from

the HEK293-EBNA CM. Conditioned medium containing soluble

FZC18-myc was incubated with recombinant Wnt3a overnight at

+4uC. Wnt3a was immunoprecipitated with monoclonal rabbit

anti-Wnt3a and immunoblotted with anti-myc. CM from

HEK293-EBNA cells transiently expressing FZ8_CRD-myc was

used as a positive control of coimmunoprecipitation. Ig, immuno-

globulins. (E) CM from HEK293-EBNA cells transiently express-

ing FZC18 was incubated with recombinant Wnt3a overnight at

+4uC. FZC18 was immunoprecipitated with anti-myc. In this

figure, the blot from Figure 4D was stripped and immunoblotted

with anti-myc. CM from HEK293-EBNA cells transiently

expressing FZ8_CRD-myc was used as a positive control of

coimmunoprecipitation. Ig, immunoglobulins.

(TIF)

Figure S6 Partially purified (40% purity) hFZC18_CRD-Fc

proteins containing (#1) or not (#2) a thrombin cleavage site are

equally efficient in inhibiting Wnt3a-induced CRT. (A) Schematic

representation of hFZC18_CRD-Fc constructs containing (#1) or

not (#2) a thrombin cleavage site. Empty Fc expression vector is

also shown. (B) Coomassie blue staining. Two mg of protein was

run in a reducing 7% PAGE-SDS gel. Theoretical molecular

weights of #1 and #2 are 42407 Da and 41792 Da, respectively

(8 additional aminoacids from the thrombin cleavage site in #1).

Migration of #1 appears lightly faster than that of #2 because pI

of #1 (6.35).pI of #2 (6.23). (C) Partially purified,

hFZC18_CRD-Fc proteins containing (#1) or not (#2) a

thrombin cleavage site are equally efficient in inhibiting Wnt3a-

induced CRT. Both proteins dose-dependently inhibit Wnt3a-

induced CRT in HEK293-EBNA cells. CRT assay using the b-

catenin reporter Super8NTopflash. Twenty-four hours after

transfection with the CRT reporter, cells were incubated during

16 hr with either 50% control CM or 50% Wnt3a CM that had

been pre-incubated overnight on a rotary wheel at +4uC with the

indicated concentrations of hFc tag alone (recombinant human Fc

from IgG, negative control) or hFZC18_CRD-Fc proteins.

(EPS)

Figure S7 Paracrine inhibition of Wnt3a-induced Wnt/b-

catenin signaling by FZC18. (A) Schematic representation of the

coculture experiment. (B) Relative CRT in reporter 293T cells

transfected with the Super8NTopflash reporter and co-cultured

with 293T cells stably expressing FZC18 or empty vector at

different ratios, as indicated, in the presence of 25% Wnt3a CM

for 16 hr. (C) Total protein extracts from these cells were

immunoblotted with anti-myc detecting FZC18. The same blot

was probed with anti-GAPDH as a loading standard.

(EPS)

Figure S8 Negative control CRT reporter gene assays using the

mutated b-catenin-TCF reporter Super8NFopflash in HEK293T

cells stably expressing FZC18 (A, B and C) or vector (A, B).

Twenty-four hours after transfection with the CRT reporter and

increasing amounts of either FZD1 receptor (A), FZD8 receptor

(B), FZD8 receptor, FZD8_CRD or FZC8_CRD-GPI (C) cDNAs,

cells were incubated either with 50% control CM or with 50%

Wnt3a CM for 16 hr. Results are representative of three

independent experiments performed in triplicate and normalized

to Renilla luciferase activity. Error bars represent standard

deviations.

(EPS)

Figure S9 Wnt3a-induced CRT in HEK293T cells is enhanced

by FZD8 receptor and inhibited by FZD8_CRD or FZD8_CRD-

GPI cDNA. CRT reporter gene assays using the b-catenin-TCF

responsive reporter Super8NTopflash in HEK293T cells stably

expressing empty vector. Twenty-four hours after transfection with

the CRT reporter and increasing amounts of FZD8 receptor,

FZD8_CRD or FZC8_CRD-GPI cDNAs, cells were incubated

with either 50% control CM or 50% Wnt3a CM for 16 hr. Results

are representative of three independent experiments performed in

triplicate and normalized to Renilla luciferase activity. Error bars

represent standard deviations.

(EPS)
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