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Agricultura Sostenible, Consejo Superior de Investigaciones Cientı́ficas (CSIC), Córdoba, Spain, 4 Laboratorio Internacional de Cambio Global, LINCG (CSIC-PUC), Santiago,

Chile

Abstract

Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical
problems. However, the links between population dynamic theory and model construction have been less emphasized in
the management and control of weed populations. Most management models of weed population dynamics have
emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in
the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species
from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale
climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed
species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica
hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our
results strongly suggest the importance of theoretical population dynamics in understanding plant population systems.
Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be
fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species.
This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

Citation: Lima M, Navarrete L, González-Andujar JL (2012) Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term
Experiment. PLoS ONE 7(1): e30569. doi:10.1371/journal.pone.0030569

Editor: Gil Bohrer, Ohio State University, United States of America

Received December 3, 2010; Accepted December 21, 2011; Published January 17, 2012

Copyright: � 2012 Lima et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the FEDER funds and Spanish Ministry of Innovation and Science Grant AGL 2009-7883 (to JLG-A). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andujar@cica.es

Introduction

Population dynamics theory has been maturing during the last

decades and nowadays we can explain the apparently complex

numerical fluctuations exhibited by natural populations by means

of a few general principles or laws [1–4]. One of the most

important consequences of the existence of laws in population

ecology is that models used to explain and predict ecological

populations are based on these general principles [4,5]. Indeed,

population dynamics models constructed under that theory can be

very useful for solving applied issues because of the fundamental

role of models for predicting and explaining ecological systems [6].

Given the increasing need for conservation of endangered species,

the management of exploited populations or the control of pests

and invasive species, population ecology will have a great deal of

social and political significance in facing the future challenges of

global change. Therefore, it is likely that societal demands for

practical applications of ecological theory will increase in the near

future. To be successful, such applications will need to be based

upon models that have proven their worth through empirical

verification of their predictions [7].

Understanding the population dynamics of plants is fundamen-

tal to our ability to manage and predict ecosystem response,

especially in the light of human alteration of climate. Although

pest control is one of the areas in which population dynamics

theory has been applied to solve practical problems [6], the links

between population dynamics theory and model construction have

been less emphasized in the management and control of weed

populations and invasive weedy species [8].

Most management models on weed populations dynamics have

emphasized the role of endogenous process, i.e., those capable of

causing changes in a dynamical variable and are also affected in

return by these changes, such as intra-specific competition, as

being the most important factors driving the population dynamics

[9–11]. These models produce stable dynamics and form the basis

for weed management recommendations, yet exclude the role of

the exogenous variables, i.e., those influencing the response of a

determined variable but without being affected back by those

changes, such as climate. To our knowledge, there are no other

studies attempting to understand how both feedback structure and

exogenous factors interact in shaping the dynamics of weed

populations and their management.

Here, we use one of the longest data set (22 years) in plant

populations on two annual weed species from a locality in Central

Spain to determine the importance of endogenous (inter-specific

interactions) and exogenous processes (climate). We focus on

diagnosis and modeling tools from population-dynamics theory to

analyze these long-term data and to determine the role of the

North Atlantic Oscillation (NAO) and local weather as exogenous

factors influencing weed dynamics. In particular, we use the
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Royama [1] classification of exogenous effects as an organized

approach to evaluating the effect of climate on population

dynamics. In this way, we can include logical explanations of the

possible effects of climate on demographic rates in the population

dynamics models and also use independent data for testing model

predictions.

Materials and Methods

Site and sampling
A 22 year study (1985–2007) was conducted at El Encin

Experimental Station (Alcala de Henares), Madrid, Spain (latitude:

40u 299 N, Longitude: 3u 229 W; Altitude: 610 m) using a cropping

system based on a 2-year cereal-legume rotation. The experimen-

tal site has a north-Mediterranean climate, with mild and humid

winters and dry-hot summers Average annual rainfall during the

22-year study period was 480 mm, with a maximum precipitation

of 670 mm and a minimum of 230 mm. The average temperature

was 13.1uC. All crops were grown under no-tillage and minimum

tillage practices, maintaining plant residues close to the soil

surface. During the wheat rotation phase, fertilizers were applied

at relatively high rates (76 kg N, 120 kg P, 40 kg K ha 21).

Herbicides were sprayed for control of dicotyledonous weeds. No

fertilizers or herbicides were applied in the legume rotation phase.

Detailed information about the experiment is given in [12].

Weed population densities were sampled annually except in

1990 and 1997. The sampling times and procedures used to

quantify weed population density varied slightly depending on the

type of crop (cereal or legume) and the weed population density. In

the wheat rotation phase, sampling took place from February to

March. In the legume rotation phase sampling was slightly later

(March to April). In the first three years of the experiment 5

destructive samples (30633 cm) were taken along an M shape

itinerary in each plot (20640 m in size). Thereafter, 10 samples

were taken in each plot except in 1995 when 20 samples were

taken (10 along each of two transects). The collected material was

kept in plastic bags and transported to the laboratory, where

individual species were identified and counted. The different

sampling intensities among years were due to the different weed

densities present.

In this paper we consider two important species in cereal agro-

ecosystems: Descurainia sophia L. (flixweed) and Veronica hederifolia L.

(ivy-leaf speedwell). Both species have winter annual life histories

with persistent seed banks and are relatively common in winter

cereal crops grown in semi-arid areas [13,14].

Diagnosis and statistical models of population

dynamics. Population dynamics of weeds are the result of the

combined effects of feedback structure (ecological interactions

within and between plant populations), limiting factors (nutrient

and water limitation), climatic influences (rainfall, temperature)

and stochastic forces [15]. To understand how these factors may

determine weed fluctuations, we model both system-intrinsic

processes and exogenous influences as a general model based on

the R-function [2]. The R-function represents the realized per

capita population growth rates that synthesize the processes of

individual survival and reproduction [2]. Defining Rt = log (Nt) – log

(Nt-1), we can express the R-function as

Rt~ ln
Nt

Nt{1

� �
~f Nt{1,Nt{2,:::,Nt{p,Ct{1,et

� �
ð1Þ

where Nt represents the weed abundance at time t. This model

represents the basic feedback structure and integrates the

stochastic and climate forces that drive population dynamics in

nature. Our first step was to estimate the order of the dynamical

processes in eqn. 1, that is, how many time lags, Nt-i, should be

included in the model for representing the feedback structure.

First-order negative feedback processes are the results of intra-

population interactions which involves a single variable (the

density of population itself) due to the intra-specific competition

for limiting resources [1–3]. Second-order feedback processes are

produced by mutual causal process between two populations

(consumer-resource; predator-prey; host-parasitoid), because two

variables are now involved in the negative loop, it is known as a

second-order dynamic process [1–3] and it had been

demonstrated that this system can be reduced to a second-order

or lagged equation for one of the two species involved [1–4]. To

estimate the order of the process we used the partial rate

correlation function, PRCF(i) [2], between Rt and ln(Nt-i) = Xt-i after

the effects of shorter lags have been removed. We write eqn. 1 in

logarithmic form to calculate the partial correlations.

Rt~ ln
Nt

Nt{1

� �
~AzB1Xt{1zB2Xt{2zet ð2Þ

Where R, the realized per-capita rate of change, is calculated

from the data,. We used a script written in the program R (R

Development Core Team 2007) to calculate PRCF t-d. For

statistical convenience we assumed a log-linear relationship

between R and lagged population density [1]. Moreover, to

perform the time series analysis, data were detrended by adjusting

a linear model of the form Xt = b + ft, where b and f are the

estimated parameters of the model. We used the residuals of this

model plus the mean logarithm of density as the detrended time

series. In order to test model predictions we make the time series of

no-tillage and minimum tillage treatments comparable by

subtracting or adding the differences between the means of the

detrended time series.

Theoretical models of weed population dynamics.

Population dynamics of weeds have been suggested to be the result

of intra-population processes which cause a first-order feedback

structure in plant populations [15]. To understand how these

processes determine weed dynamics, we used a simple model of

intra-specific competition, the exponential form of the discrete

logistic model [2,16], and we employed its generalized version;

Nt~Nt{1:rm: exp ({cNa
t{1) ð3Þ

In this model rm is a positive constant representing the

maximum finite reproduction rate, c is a constant representing

competition and resource depletion, and a indicates the effect of

interference on each individual as density increases [2]; a.1

indicates that interference intensifies with density and a,1

indicates habituation to interference. We can defining the above

equation in terms of the R-function, i.e. Rt~ ln Nt=Nt{1ð Þ, by log

transforming equation 3 and defining the population density in

logarithm Xt = ln(Nt), we obtain;

Rt~Rm{ exp (aXt{1zC) ð4Þ

where Rm = ln(rm), a is the same parameter as in equation 3,

C = ln(c), and X = ln(N). This model represents the basic feedback

structure determined by intra-population processes.

Because in this model the three parameters Rm, a and C have an

explicit biological interpretation we can include climate perturba-

Factors Determining Weed Population Dynamics
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tions in each parameter using the framework of Royama [1]. In

this manner, we can build mechanistic hypotheses about the effects

of climate on weed populations.

For example, simple additive rainfall perturbation effects can be

represented as ‘‘vertical’’ effects, which shift the relative position of

the R-function by changing Rm on the y axis [1]. This can be

expressed as:

R
0
m~Rmzg(Zt{d ) ð5Þ

Where g is a simple linear function (+ or -) of some climate factor

(Z) with different lags. Another kind of climate perturbation is

when the equilibrium point of the population is influenced by the

climate. This is the case when climate influences a limiting factor

or resource (water, light or nutrients). The correct model structure

in this scenario is that the carrying capacity (equilibrium point) is

affected by the rainfall. In this case, the climate factor shifts the R-

function curve along the x-axis without changing the slope at the

equilibrium, which represents a ‘‘lateral’’ perturbation in the

Royama [1] framework;

C
0
~Czg(Zt{d ) ð6Þ

A previous study determined that the species D. sophia showed

second-order oscillations [17], therefore our starting model was a

second-order logistic model instead of the model from equation 3.

A second-order logistic model can be represented as:

Nt~Nt{1rm exp {cNa
t{1{c1N1a1

t{2

� �
ð7Þ

As in the equation 3, Nt-d represents the lagged weed densities, rm
is a positive constant representing the maximum finite reproduction

rate, c is a constant representing competition and resource

depletion, a indicates the effect of interference on each individual

as density increase [1]. Similar to eqn. 4, we defined eqn. 8 in terms

of the R-function resulting in the following equation:

Rt~Rm{ exp aXt{1za1Xt{2zCð Þ ð8Þ

where a and a1 are the same parameters as in equation 7, and

C = ln(c + c1).

We fitted equations 4 and 8 using the nls library in the program

R by means of nonlinear regression analyses [18]. In addition, we

included the climate variables in the parameters Rm, C and a as

linear functions (eqs. 5 and 6). All the models were fitted by

minimizing the AICc = 22log(likelihood) + 2p + 2p(p+1)/(n-p-1),

where p is the number of model parameters and n is the sample

size. Models with lowest AICc values were selected. We fitted

models to the time series of no-tillage data and tested model

predictions in the minimum tillage data time series, in addition we

repeated this procedure in the opposite manner, fitting models in

minimum tillage time series data and comparing the predictions in

the no-tillage time series data. Observed and predicted dynamics

was compared using a bias parameter, calculated as g(Oi – Pi)/n

where Oi is observed data and Pi is predicted data and the

Pearson’s correlation coefficient between observed and predicted

data. Because the models of Veronica hederifolia showed no

convergence, we use biological criteria for fixing the Rm parameter

(maximum per capita growth rates) [1]. The maximum value

observed of the per capita growth rate was 2.5; we fixed this value

in 3 for estimating the other model parameters.

Results

The numerical fluctuation of D. sophia was characterized by

regular periodic oscillations and a positive trend (Figure 1a). V.

hederifolia was characterized by irregular oscillations and a clear

negative trend (Figure 1b). The differences between species in the

dynamic pattern were associated with the relative importance of

first- and second-order feedbacks: while the per capita growth rate

of D. sophia showed a second-order effect, V. hederifolia was

characterized by a first-order feedback (Figure 2a and b).

Results from the model fitting showed that the maximum per

capita population growth rates, Rm, varied between 3 and 4 in

the two species indicating the high potential for population

growth of both weeds (Table S1). In V. hederifolia the pure

endogenous model explained 30% and 49% of the variability in

per capita growth rates in the no-tillage and minimum tillage

systems (Table S1). Exogenous effects improved the explained

variance of the pure endogenous models by an average of 22% in

no-tillage, ranging from 1 to 46%, and 12% in minimum tillage,

ranging from 0 to 20%. Model 7, which included rainfall and

Figure 1. Observed numerical fluctuations (ln of number of individuals/m2) of the two weed species; a) Descurainia Sophia; and b)
Veronica hederifolia for the no-tillage (blue dots and line) and minimum tillage (red dots and line) systems.
doi:10.1371/journal.pone.0030569.g001

Factors Determining Weed Population Dynamics
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Figure 2. Partial rate correlation functions for transformed data. The major influence of first-order feedback structure is clear in the species
Veronica hederifolia (b) while a second-order structure is diagnosed for the species Descurainia Sophia (a). The dotted line in the figure show the
interval of 6 2 SD calculated with Bartletts formula.
doi:10.1371/journal.pone.0030569.g002

Figure 3. Upper row: comparison of observed Veronica hederifolia population densities in the minimum-tillage system versus
predicted densities from models fitted to the data from the no-tillage system; lower row: comparison of observed Veronica
hederifolia densities in the no-tillage system versus predicted densities to the data from the minimum tillage system. a) Model 6, b)
model 7, c) model 13, d) model 15. All models are from Table S1.
doi:10.1371/journal.pone.0030569.g003

Factors Determining Weed Population Dynamics
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summer temperature, performed best among our candidate

models in no-tillage system with a AICc of 48.91 (Table S1).

Rainfall and summer temperature positively influenced popula-

tion growth rate of V. hederifolia. In the minimum tillage system,

model 9 including the NAO effects was the best with

AICc = 57.65 (Table S1). NAO negatively influenced the

population growth rate (Table S1).

From a predictive point of view, V. hederifolia models that include

rainfall and winter temperature were better than models including

rainfall and summer temperature (Fig. 3). In addition, models

fitted to minimum-tillage data sets were better predictors of

observed data in no-tillage systems than vice versa (Fig. 3; Table S1).

The second-order logistic model for D. sophia explained 80% and

65% of the observed variation in per capita growth rates in the no-

tillage and minimum tillage systems, respectively (Table S1).

Exogenous effects improved the explained variance of the pure

endogenous models by an average of 1% in no-tillage, ranging

from 0 to 2%, and 5.5% in minimum tillage, ranging from 0 to

14%. In the no-tillage data set, the pure endogenous second-order

model showed the best fit with AICc = 37.90 (Table S1). In the

minimum-tillage data set, the model including the NAO effects

was the best one with AICc = 47.88 (Table S1). However, in both

data sets the model predictions using the pure endogenous second-

order models were very similar to those using an exogenous model

including NAO (Fig. 4; Table S1).

Discussion

Our modeling study determined two different feedback

structures in the two weed species analyzed. While D. sophia

exhibited a second-order feedback and low climate influence, V.

hederifolia was characterized by a first-order feedback structure and

important effects of climate variables. The endogenous structure

therefore appears to be stronger in D. sophia than in V. hederifolia.

The dynamics of D. sophia were mainly explained by

endogenous factors. A second order feedback structure – delayed

density dependence – captured the essential elements of the

population dynamics of this species in both minimum and no-

tillage (Table S1). It has been suggested that the accumulation of

plant litter as a consequence of high nutrient levels might be a

plausible explanation for the second-order feedback structure

found in D. sophia under no-tillage practice [17]. Growth of D.

sophia in that study took place in a cropping system with high

nutrient levels. High nutrient supply could lead to high crop and

weed biomass production and high rates of crop litter deposition

[19]. The accumulation of plant litter in the topsoil resulting from

Figure 4. Superior row; comparison of observed Descurainia sophia’s densities in the minimum-tillage system versus predicted
densities from models fitted to the data from the no-tillage system; inferior row; comparison of observed Descurainia sophia’s
densities in the no-tillage system versus predictions from models fitted to the data from the minimum tillage system. a) Model 17, b)
model 18, c) model 22 and d) model 23. All models are from Table S1.
doi:10.1371/journal.pone.0030569.g004
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PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30569



no-tillage and reduced tillage systems may potentially cause

important changes to the physical and chemical environment of

the soil surface and may act as a time-delayed inhibitor on the

germination of D. sophia populations [20,21].

Exogenous factors contributed little to the dynamics of D. sophia.

Local climate factors did not have any significant influence on D.

sophia population dynamics, whereas NAO was more determinant.

In the minimum tillage system, models including NAO and

delayed density dependence (model 23, Table S1) produced the

more plausible model and explained the higher variability (79%).

However, the importance of NAO was different in no-tillage and

minimum tillage systems (Table S1). NAO had a clearer influence

in minimum tillage. It was probably due to the NAO negative

effect (Table S1) increasing precipitations in the Mediterranean

area. Minimum tillage produces a small soil disturbance, affecting

soil microenvironments due to differences in soil porosity, bulk

density and soil surface conditions. Thus, minimum tillage

provides less moisture conservation than no tillage and plants

under this tillage system would need additional moisture provided

by climate factors, especially in a semi-arid climate. It is interesting

to note that the predictive capacity of model 23 was similar

whether or not it included NAO (Table S1). Our results indicated

that D. sophia presented low sensitivity to local climate effects, such

as precipitation and temperature. These results are surprising

because local climate factors are considered to be determinant in

weed emergence [22]. This is especially true in Mediterranean

climates, where water availability is the most important environ-

mental constraint, due to the combination of high summer

temperatures and low rainfall [23].

In contrast to the environmental independence of models of D.

sophia population dynamics, the pure endogenous model for V.

hederifolia per capita growth rates explained less than 49% of the

variability in both the no-tillage and minimum tillage systems (Table

S1). Population dynamics of V. hederifolia seemed to be driven mainly

by climate factors. Large-scale and local scale exogenous factors had

a different role in the growth rates of this species. Under no tillage

the main driving force was the local weather (rainfall and

temperature) (Table S1). Regarding the minimum tillage system,

NAO seemed to have the main role (Table S1). It was noticeable

that the importance of NAO was higher in the minimum tillage

system for both species. However, the best predictions are from the

model including winter temperature and rainfall fitted to the

minimum tillage system and used to predict no-tillage data (Table

S1). In contrast, models fitted to the no-tillage system did not predict

the data from minimum tillage system very well. One potential

explanation for this pattern is that no-tillage system appears to be

more influenced by exogenous variables (see Table S1). Therefore

the parameter values from models fitted on data from this system

can have more source of unknown variation.

Two different patterns emerge from our results. On the one hand,

exogenous factors seem to mainly influence the population dynamics

of V. hederifolia, in agreement with the general view in weed science

[24]. On the other hand, endogenous factors seem to be the main

driver of the population dynamics of D. sophia. The use of this

approach, discerning between the role of exogenous and endogenous

factors, can be fundamental to applying weed management practices

in agricultural systems and controlling invasive weedy species. This

approach signifies a radical change relative to most approaches

currently used to guide weed management [8].

Conclusions
The use of the population dynamics theory for modeling weed

populations represents an important new approach to controlling

weed populations, and therefore has a better chance of guiding

suitable management recommendations. In this paper we used

proper diagnosis analysis [2] and a posteriori modeling to deduce the

potential causes of weed population fluctuations. Our results

strongly suggest the importance of theoretical population dynam-

ics to understand this system. Moreover, the use of this approach

can be fundamental to applying weed management practices in

agricultural systems. Understanding the interactions between

endogenous and exogenous factors in shaping the dynamics of

weed populations may have important implications for manage-

ment of weed and invasive plants, climate change mitigation and

biodiversity conservation in agro-ecosystems.

Supporting Information

Table S1 b maximum finite reproductive rate, a non-linearity

coefficient, C equilibrium point, d, e and f coefficients for different

effects, r2 coefficient of determination, AICc Akaike information

criterion corrected for small sample bias, DAICc differences in AICc,

likelihood exp(-DAICc/2), k number of estimated parameters,
Rt = ln(Nt)-ln(Nt-1) realized logarithmic per-capita population

growth rate, Xt-1 logarithmic density, NAO = North Atlantic Oscillation

Index, TW winter temperature, P precipitation. Models 1, 8, 17 and

22 represent endogenous effects only, the other models concider

climate variables as exogenous effects. The most likely model

(defined by the lowest AICc) is highlighted in bold.

(DOC)
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