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Abstract

Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in
the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for
tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and
identify factors associated with tractor overturns.

Methods: A spatial statistical analysis using Kulldorff’s spatial scan statistic was performed to identify county clusters at
greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor
overturns.

Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern
Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with
steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40
horsepower by county (p,0.0001).

Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors
associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over
protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties
in Kentucky.
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Introduction

The earliest accounts of overturns of gasoline-powered tractors

occurred when 1914 vintage Little Bull tractors overturned as they

were turned uphill and to the right [1,2]. This tricycle tractor had

a large, heavy rear drive wheel on the right side that resulted in an

offset center-of-gravity, giving it this propensity. Terrain was also a

principle factor in these overturns. Overturns have long been

associated with slopes, ditches, or bad ground conditions that

precipitate tractor instability [3]. Indeed, when a tractor moves

from a level position onto slopes, instability becomes a hazard [4],

but more broadly, topography is a recognized risk factor associated

with tractor overturns including obstacles, obstructions, slippery

surfaces, hills and slopes, ditches, and embankments [5].

Agricultural tractor overturns without rollover protective

structures (ROPS) are the leading cause of farm fatalities in the

United States [6]. While tractor overturn fatalities have been

associated with the decedent’s age, type of farm, region of the

country, the victim’s relationship to the farm, and the gender of

the tractor operator [7,8], rarely have investigations addressed the

physical features of the tracts of land, i.e., terrain. The imperative

for this study originated when an analysis of Census of Fatal

Occupational Injuries (CFOI) data identified six states (Illinois,

Kentucky, Ohio, Pennsylvania, Tennessee, and West Virginia)

within or near the Appalachian mountain range that had the

highest rates of agricultural tractor overturn deaths within the

United States [9]. This suggested that topographic features, along

with smaller farms, were associated with tractor overturns [10].

Terrain and tractor characteristics as risk factors associated with

tractor overturns have been anecdotally studied, but in contrast,

our current study examines the issue using novel spatial statistical

techniques incorporating geographic information systems (GIS),

Kulldorff’s spatial scan statistic [11], and traditional regression

modeling. As an extension of the Cole et al (2009) paper that

provided descriptive statistics on the six states with the highest

rates of overturn deaths, this study examines whether overturns
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are randomly distributed or are clustered in certain regions of

Kentucky [10]. It is hypothesized that tractor overturns are not

spatially randomly distributed in Kentucky, and are associated

with physiographic terrain characteristics such as steeper slopes.

Though Kulldorff’s spatial scan statistic has only recently been

adopted by public health researchers across several fields [12–15],

to our knowledge, no studies have incorporated the spatial scan

statistic in identifying high-risk areas for tractor overturns. Thus,

the purpose of this ecological study was to identify geographic

areas at the highest risk for tractor overturns and to identify

factors, including physiographic and tractor characteristics,

associated with overturns at the county level. This study provides

an analytical framework using spatial statistics and regression

modeling to identify and target areas with the highest risk for

overturns. Moreover, knowing the counties at greatest risk for

overturns can guide resources and interventions to those counties.

Other high-risk states might also apply these same cluster analysis

techniques for future state-to-state comparison.

Methods

Data sources
This research was approved by the University of Kentucky

Institutional Review Board (IRB #: 01-0710-P2B).

Three sources of data were used for this study. The first source

is the Kentucky Farm Tractor Overturn Telephone Survey (KY

T/O Survey). This survey provided estimates of total farm tractor

overturns and the frequency of six classes of overturn injury

outcomes for tractors with and without rollover protective

structures (ROPS). The sample was an 8% population-based

random sample, with sampling frame, design, and telephone

survey completed by the Kentucky Agricultural Statistics Service

(KASS). KASS constructed the sampling frame using its 2001

updated 1997 Census of Agriculture full list of farms in Kentucky.

Kentucky farms were randomly sampled proportional to their

number in each of the six agricultural districts. The KY T/O

Survey was administered during October 2002. The KASS

statisticians randomly sampled farms across Kentucky’s six

agricultural districts stratified by farm size and annual value of

sales. Then, KASS enumerators began calling farms in random

order. The survey was stopped when 8% (6,063) of Kentucky

farmers completed the survey. The 6,063 completed surveys by

Kentucky farmers represent a 79% response rate. The 40-item

telephone survey collected information at the county level from

Kentucky farmers about each farm’s history of overturns. A total

of 551 (9.1%) farms reported overturns, whereas 5,512 (90.9%)

farms reported no overturn events in the history of their farm. The

period from 1925 to 1959 accounted for only 47 (7.8%) of the total

603 overturns, while 556 (92.2%) overturns occurred from 1960 to

2002. Thus, all analyses used data from the 1960 to 2002 period

[16]. Informed consent was obtained over the telephone and

documented on paper. The survey interview protocol included as

the first topic addressed an informed consent statement that

advised those who were contacted (a) the purpose of the survey (b)

a request to speak to the farm primary operator or other person

who was responsible for farm operation, (c) the sample

characteristics (KY farmer principal farm operators as listed in

the 2001–2002 USDA KY farm Census) (d) the number of farms

to be surveyed (6,000 or 8% of KY farms) and that (e) the farmers

called were randomly sampled, (f) that the survey items addressed

the number of tractors on their farms, (g) the number of tractor

overturns in the history of their farm, (h) questions about the type

of overturn, (i) description of the type and extent of any injuries to

the operator the approximate length of the survey and the time

required to complete it, (j) a statement that the person interviewed

was free to skip any questions he or she did not want to answer,

and (k) could end the interview at any point during the survey. The

University of Kentucky Institutional Review Board approved this

consent procedure.

The second data source is the 2007 Census of Agriculture. For

each Kentucky county, we abstracted the total number of tractors,

the number of tractors with less than 40 horsepower, the number

of tractors with 100 horsepower or more [17], and the median size

of farms in acres [18]. The total number of tractors by county was

used in the spatial cluster investigation to provide denominator

data, and in the regression model to provide rates by county. The

number of tractors with less than 40 horsepower, 100 horsepower

or more, and median size of farms were used in the regression

model.

Finally, to account for Kentucky’s diverse physiographic

characteristics, the Kentucky Geological Survey provided coun-

ty-level data on average percent slope of pasture land, percent

crop and pasture land, and stream miles per square mile of crop

and pasture land. Data for these three physiographic variables

were derived from the National Hydrography Dataset, NHD24

[19], 10-meter digital elevation data [20], and Kentucky 2005

Land Cover – Anderson Level II data [21]. We used county data

from the KYGEONET GIS database [22], extracted cultivated

crops and pasture/hay data from the land cover data and

calculated by county crop and pasture land percentages. To get a

measure of ‘‘dissected drainage’’, we intersected the NHD24

stream data with the crop and pasture land to get miles of streams

per square mile of crop and pasture land. We calculated the

percent land slope on a 10-meter grid using the Digital Elevation

Model data, intersected this with counties, calculated average

county slope, and then intersected pasture and slope data and

calculated average pasture slope by county. We used ArcGIS v10

(ESRI, Inc, Redlands, CA.) to derive these three physiographic

county-level variables [23].

Geographic analysis
Smoothed cumulative incidence tractor overturn rates were

mapped by county aggregations (n = 120). The heterogeneity of

variances of overturn rates were adjusted using Spatial Empirical

Bayesian (SEB) rate smoothing [24]. Given that tractor population

sizes vary considerably by county, overturn rates from counties of

low population have greater variance than counties with higher

populations [25]. SEB smoothing adjusts for the high variances of

areas with low population [26] by adjusting the rates from low

population areas toward a local mean based on a spatial weights

matrix [25–27]. This technique was implemented in GeoDa v0.95i

[28] using a first-order queen contiguity spatial weights matrix

[29].

The geographic boundary files used in this study were

downloaded from the United States Census, TIGER, Geodata-

base [30]. ArcGIS v10 [23] was used to create the cartographic

displays, with single hue color schemes generated by Color-

Brewer.org [31], and with grouping of data into classes/categories

based on natural breaks in the data using the Jenks natural breaks

optimization algorithm [32].

Spatial scan statistic cluster detection
The detection of high-risk local spatial clusters of tractor

overturns was performed using Kulldorff’s 2-dimensional spatial

scan statistic [11], and implemented in SaTScan v9.1 [33]. The

advantages of using the scan statistic over simple comparisons of

standardized incidence rates within clusters versus outside clusters

include controlling for covariates, adjusting for multiple compar-
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isons and various population sizes, and limiting preselection bias

by not specifying a priori the observed set of cases within a cluster

[34,35]. The spatial scan statistic detects clusters by using circular

windows with continuously varying radii from zero to a user-

specified maximum that move across the geographic centroids

(grid reference) of counties in the study area comparing the

number of cases within each circular window to the number of

expected cases assuming that cases were completely spatially

randomly distributed across the study area [35,36]. Significance

testing is performed using Monte Carlo simulation where the null

hypothesis of no cluster is rejected at a level of 0.05 if the

simulated p-value is less than or equal to 0.05 [35]. A significant

high-risk cluster is interpreted as having an increased risk of tractor

overturns within the circular window relative to outside [37].

For the purely spatial cluster analysis, a discrete Poisson

probability model was used to scan for non-overlapping geo-

graphical areas (counties) with statistically significant high rates of

overturns. Given that the results of this analysis are sensitive to

model parameters, and the goal was to identify small county

clusters of greatest risk, similar to another study [38], a maximum

spatial cluster size of 10% of the total population at risk was used.

A maximum spatial cluster size of 10% indicates that the circular

window will expand from zero up to a maximum of 10% of the

total population at risk across the study period scanning for

clusters, of which the most likely is that cluster that maximizes the

log likelihood ratio. Cartographic displays of spatial clusters were

made using ArcGIS v10 [23].

Multiple linear regression modeling of tractor overturn
rates

This is an ecological study with the unit of analysis being

Kentucky counties; thus, the results can be interpreted only at the

county level and not at the individual farm level. The outcome of

interest in this modeling was continuous, reflecting tractor

overturns per 100,000 tractors by county. Univariate associations

of continuous variables with the outcome were assessed using

Pearson’s correlation coefficients and regression modeling of each

variable one at a time against the outcome. Only variables with

significant associations based on a moderate p-value (p,0.20)

were considered in the multivariable modeling process. The

assumptions of linearity of continuous variables with the outcome,

constant variance of the errors, normality of the errors, and a

mean of zero of the errors were checked using graphical methods.

All the variables met the assumptions. In the final model, we used

a Moran’s I test utilizing a first-order queen contiguity spatial

weights matrix in GeoDa v0.95i to test whether the outcome was

spatially independent (i.e., observations are no longer spatially

correlated after controlling for variables). A non-significant

Moran’s I value meant that the assumption of spatially

independent observations of the outcome was met.

The modeling process started with a full model including all six

variables as they were all independently associated with the

outcome at the significance level of p,0.20. Next, we removed the

variable with the highest non-significant p-value (significance set at

p,0.05). This was continued until the final model contained only

significant variables. Also, variables were assessed for confounding

if their removal resulted in a greater than 20% change in the

remaining variables in the model. Two-way interactions were not

tested during the model building process. However, two-way

interaction terms were assessed for significance in the final main-

effects model. We assessed goodness of fit of the model using R-

square and adjusted R-square. Finally, though Kentucky has 120

counties, the model includes only 119 counties as one county,

Martin, was considered an extreme outlier. However, all counties

were included in the cluster analysis as the results are not as

sensitive to outliers as linear regression. Regression analyses were

performed in SAS v9.3 (SAS Institute Inc, Cary, NC) [39].

Results

Description of tractor overturns
Based on the 8% sample of Kentucky farms taken from the KY

T/O Survey, there were 556 tractor overturns from 1960 to 2002.

The annual tractor overturn rate was 8.0 per 100,000 tractors.

Figure 1 shows the distribution of overturns by year, with several

peaks in 1970 (27 overturns, 16.7 per 100,000 tractors), 1980

(31overturns, 19.1 per 100,000 tractors), and 1999 (23 overturns,

14.2 per 100,000 tractors).

Spatial distribution of tractor overturns
The median SEB smoothed rate was 8.3 overturns per 100,000

tractors (range: 3–20). The counties with the highest SEB tractor

overturn rates (greater than 16.3 overturns per 100,000 tractors)

included Elliott (16.4/100,000), Fulton (16.4/100,000), Grant

(16.6/100,000), Martin (17.6/100,000), Boone (19.1/100,000),

and Pike (19.9/100,000) (Figure 2).

Spatial clusters of high risk tractor overturns
Table 1 displays results of the spatial cluster analysis. Two

significant (p,0.01) high-risk spatial clusters were identified. The

most likely high-risk spatial cluster was comprised of four counties

(Boone, Carroll, Gallatin, and Grant) in northern Kentucky

(Figure 3). There were 38 overturns that occurred in this spatial

cluster, while there were an expected 15.53 overturns. The tractor

population within the most likely cluster is at a 2.55 times greater

risk (relative risk, RR = 2.55; p = 0.00033) of overturns relative to

the tractor population outside the cluster. Additionally, the

counties within the most likely high-risk spatial cluster had an

estimated 19.8 overturns per 100,000 tractors annually (Table 1).

A secondary high-risk spatial cluster was found among ten counties

(Boyd, Carter, Elliott, Greenup, Johnson, Lawrence, Lewis,

Martin, Morgan, Rowan) in eastern Kentucky (Figure 3). This

cluster had 49 overturns with 25.95 expected overturns, and a

97% increased risk (RR = 1.97, p = 0.00890) of overturns than

outside the cluster. This secondary high-risk cluster had an

estimated 15.1 overturns per 100,000 tractors annually (Table 1).

Table 2 compares the most likely and secondary spatial clusters

to the rest of Kentucky. No statistically significant differences in

year of overturns were observed for inside versus outside the

clusters. The cumulative incidence rate inside the most likely high-

risk spatial cluster was 17.4 overturns per 100,000 tractors (range

11.3–24.1), while outside the cluster the rate was 9.1 overturns per

100,000 tractors (range 0–101.1). The cumulative incidence rate

inside the secondary high-risk spatial cluster was 22.5 overturns

per 100,000 tractors (range 0–101.1), while outside the cluster the

rate was 8.1 overturns per 100,000 tractors (range 0–31.9).

Predictors of tractor overturns
Table 3 presents descriptive statistics of both the dependent and

independent variables. Six county-level physiographic and tractor

characteristic variables were assessed in the model. Figure 4 shows

the spatial distribution of the independent variables in Table 3,

with apparent trends of higher values of average slope of pasture

land, percent of total tractors with less than 40 horsepower, and

miles of streams per square mile of crop and pasture land in

eastern Kentucky. Conversely, percent crop and pasture land and

the percent of total tractors with 100 horsepower or more have

noticeably higher values in western than eastern Kentucky.

Spatial Epidemiology of Tractor Overturns
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Figure 1. Tractor overturns by year in Kentucky, 1960–2002. Source: Kentucky Tractor Overturn Survey (KY T/O) (15).
doi:10.1371/journal.pone.0030532.g001

Figure 2. Spatial Empirical Bayes’ (SEB) smoothed tractor overturn rates in Kentucky, 1960–2002.
doi:10.1371/journal.pone.0030532.g002

Spatial Epidemiology of Tractor Overturns

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30532



Univariate associations of the variables of interest with the

outcome are presented in Table 4. Table 4 shows that all variables

met the p-value cut-off of 0.20, and thus were all further assessed

in the multiple regression model. The average slope of pasture

land (r = 0.30) and the percent of total tractors with less than 40

horsepower (r = 0.34) by county had the highest significant

correlation with the outcome.

After including all six variables in the linear regression model

and then removing those non-significant variables one at a time,

the final model included two significant variables (at p,0.001).

The final multiple linear regression model (Table 5) shows that

average slope of pasture land (b-estimate = 0.85, 95% CI 0.41, 1.3)

and the percent of total tractors with less than 40 horsepower (b-

estimate = 0.23, 95% CI 0.12, 0.34) were statistically significantly

associated with the outcome of tractor overturns per 100,000

tractors across Kentucky counties. That is, for every 1% increase

in average percent slope of pasture land by county, the tractor

overturn rate increases by an average of 0.85 per 100,000 tractors

(or by 4.25 per 100,000 for every 5% increase in slope). Similarly,

for every 1% increase in the percent of total tractors with less than

40 horsepower by county, the tractor overturn rate increases by

0.23 per 100,000 tractors (or by 2.3 per 100,000 for every 10%

increase in the total tractors with less than 40 horsepower). No

confounding was detected, as removal of variables one at a time

did not affect the final two variables in the model.

The final model was highly significant (p,0.0001), with

goodness of fit test R-square of 0.22 and adjusted R-square of

0.20. The model included two un-highly correlated (r = 20.02)

variables that did not significantly interact. The global Moran’s I

value for the outcome alone was significant (Moran’s I = 0.26,

p,0.01), indicating spatial autocorrelation and a rejection of the

null hypothesis of complete spatial randomness of the outcome

(Figure 3). However, the residuals of the final model were tested

for spatial autocorrelation (i.e., spatial independence of observa-

tions), and revealed a non-significant Moran’s I value (Moran’s

I = 20.08, p-value = 0.22), meaning that there was no residual

spatial autocorrelation. Thus, the final model can be interpreted as

explaining 20% of the spatial patterns observed in the outcome.

Discussion

As expected, the spatial cluster analysis revealed hotspots (i.e.,

nonrandom spatial distribution) of tractor overturns, with the

greatest risk for overturns in four northern and ten eastern,

specifically Appalachian, Kentucky, counties. The regression

analysis found that the variation in the distribution of tractor

overturns by county can be explained by average slope of pasture

land and the percent of total tractors with less than 40 horsepower.

These two key ecological findings are consistent with the

individual-level observations that lower horsepower tractors have

a record of a higher frequency of overturning as do areas with

Table 1. Purely spatial high-risk clusters of tractor overturns in Kentucky, 1960–2002.

Type of
cluster Counties

Observed
cases

Expected
cases

Tractor
Population

Annual cases/
100,000 Tractors

Relative
risk (RR) p-Value

Log likelihood
ratio

Most likely Boone, Carroll, Gallatin, Grant 38 15.53 4531 19.5 2.55 0.00033 12.00

Secondary Boyd, Carter, Elliott, Greenup,
Johnson, Lawrence, Lewis,
Martin, Morgan, Rowan

49 25.95 7569 15.1 1.97 0.00890 8.61

Note: The purely spatial analysis used a 10% spatial window and 19,999 Monte Carlo replications.
All 120 counties are included in the analysis.
The scan statistic scanned only for high-risk areas, and only significant clusters were reported.
doi:10.1371/journal.pone.0030532.t001

Figure 3. Significant spatial high-risk tractor overturn clusters in Kentucky, 1960–2002. Note: RR = relative risk; Interpreted as increased
risk inside relative to outside the cluster.
doi:10.1371/journal.pone.0030532.g003
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higher slopes [4,5]. When the results of the different methodol-

ogies (SEB smoothing [Figure 2], cluster detection analysis

[Figure 3], cartographic visualization of independent variables

[Figure 4], and regression modeling [Table 5]) are concomitantly

examined, they bolster the evidence of the existence of a high-risk

cluster in northern and eastern Kentucky explained by a greater

average slope of pasture land and a greater proportion of smaller

tractors in those areas.

The aim of this ecological study was to test for high-risk clusters

and assess the impact of physiographic and tractor characteristics

on overturns, while excluding other individual-level risk factors.

We did not aim to test the full range of overturn risk factors that

are potentially associated with tractor overturns in the epidemi-

ologic triad (i.e., agent, host, and environment). For instance, we

did not test whether factors such as fatigue or age of operator, or

environmental factors, such as average rainfall, increased the risk

of overturns. While our study focused only on a few risk factors,

thus a narrow dimension of the epidemiologic triad, we still found

two variables significantly associated with overturns at the county

level, explaining 20% of the variation in overturns rates.

To our knowledge this is the first study to investigate high-risk

clusters of tractor overturns in conjunction with linear regression

modeling at the county level. This study allows for a better

understanding of where to target resources and prevention efforts

at the county level to reduce tractor overturns in high-risk areas

[40,41]. Targeted interventions in high-risk regions are most

appropriate in this context because overturns have been shown to

be non-randomly distributed with greatest risk in two key areas,

and also because overturns are relatively rare events across many

Kentucky counties. Conversely, targeting whole populations across

all of Kentucky would mean that resources would be directed at

large low-risk populations.

Table 2. Descriptive characteristics of tractor overturns inside and outside purely spatial high-risk clusters.

Within Most Likely
High-Risk Spatial Cluster
(column % of tractor
overturns within cluster)

Excluding counties
in cluster (column
% of tractor overturns
outside cluster)

Pearson
x2 (df)

Within Secondary
High-Risk Spatial Cluster
(column % of tractor
overturns within cluster)

Excluding counties
in cluster (column
% of tractor overturns
outside cluster)

Pearson
x2 (df)

Counties Boone, Carroll,
Gallatin, Grant

- Boyd, Carter, Elliott, Greenup,
Johnson, Lawrence, Lewis,
Martin, Morgan, Rowan

-

Year

1960–1969 8 (21) 82 (16) 6.504, p = 0.165 (4) 7 (14) 83 (16) 2.751, p = 0.600 (4)

1970–1979 12 (32) 110 (21) 15 (31) 107 (21)

1980–1989 3 (8) 126 (24) 10 (20) 119 (23)

1990–1999 11 (29) 152 (29) 14 (29) 149 (29)

2000–2002 4 (10) 48 (9) 3 (6) 49 (10)

Total Tractor
Overturns

38 (100) 518 (100) 49 (100) 507 (100)

Cumulative
incidence rates
per 100,000 persons

Average (SD) 17.4 (5.6) 9.1 (10.6) 22.5 (28.1) 8.1 (6.2)

Median 18.2 7.4 16.2 7.2

Range 11.3–24.1 0–101.1 0–101.1 0–31.9

doi:10.1371/journal.pone.0030532.t002

Table 3. Descriptive statistics of county level estimates of tractor overturn rates, tractor characteristics, and physiographic
characteristics in Kentucky.

n = 119 counties

Mean (SD) Median Q1 - 25% Q3 - 75%

Dependent variable

Tractor overturns per 100,000 tractors 8.5 (6.4) 7.4 4.1 11.7

Independent variables

Average percent slope of pasture land by county 5.3 (2.3) 5.0 4.0 6.0

Percent of total tractors with ,40 horsepower by county 32.9 (9.7) 34.3 30.0 37.8

Percent of total tractors with $100 horsepower by county 10.1 (8.5) 7.8 5.1 11.0

Percent crop and pasture land by county 33.6 (20.3) 33.7 14.3 51.1

Stream miles per square mile of crop and pasture land by county 2.2 (1.9) 1.5 1.0 2.3

Median size of farms in acres by county 81.1 (21.7) 80.0 63.0 99.0

doi:10.1371/journal.pone.0030532.t003

Spatial Epidemiology of Tractor Overturns
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ROPS are a proven intervention in reducing the injury severity

of tractor overturns [42,43]. Though fitting every tractor in

Kentucky with ROPS would be ideal, it is not possible given

economical constraints. Alternatively, focusing on those areas at

greatest risk for overturns may be a more achievable intervention,

and also prove more cost effective as the greatest burden of

overturns is only spread across 14 counties. This targeted

approach may also be more attractive than a population-based

approach because both the average slope of pasture land and the

proportion of tractors with less than 40 horsepower are relatively

immutable. Given these non-modifiable ecological risk factors, it is

logical to conclude that the greatest overturn risk will likely persist

in time within the same regions, assuming all other factors remain

constant. This is further evidence that targeted interventions may

be more appropriate than population-based ones.

The next step should be a more targeted ROPS intervention in

the areas of greatest risk. This formulation closely follows the

National Institute for Occupational Safety and Health’s (NIOSH)

perspective on tractor related hazards as elucidated by Myers

(1998) [44]. Further, as Cole (2007) describes, the steps for a

successful ROPS campaign includes ‘‘…(1) identifying and

targeting farmers most at risk of overturn death and injury, (2)

providing these farmers with information about ROPS, and (3)

assisting them in acquiring ROPS-protected tractors’’ [45]. Cole

(2007) also suggested that tractors within the six states at most risk

for overturn fatalities may be older and without ROPS due to

Table 4. Pearson’s correlation coefficients between tractor overturns and independent variables.

n = 119 counties

Dependent Variable Independent Variables Correlation Coefficient p-Value

Tractor overturns per 100,000 tractors Average percent slope of pasture land by county 0.30 0.0008

Percent of total tractors with ,40 horsepower by county 0.34 0.0001

Percent of total tractors with $100 horsepower by county 20.18 0.0553

Percent crop and pasture land by county 20.22 0.0164

Stream miles per square mile of crop and pasture land by county 0.19 0.0427

Median size of farms in acres by county 0.13 0.1663

doi:10.1371/journal.pone.0030532.t004

Figure 4. County level tractor characteristics and physiographic characteristics in Kentucky.
doi:10.1371/journal.pone.0030532.g004
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financial constraints. Though our dataset did not contain

information on tractor age, it is reasonable to assume that farms

within the eastern Kentucky cluster have limited resources given

the economic conditions of the region [46], and thus more likely to

have older tractors without ROPS. In advancing the National

Agricultural Tractor Safety Initiative, we recommend targeted

ROPS interventions in the two clusters of greatest risk.

Strengths, limitations, and future research
Strengths include the diversity of methods incorporated in the

study that all coalesce to offer supportive evidence of the presence

of high-risk clusters in northern and eastern Kentucky; the use of

the spatial scan statistic which eliminates preselection bias and tests

for complete spatial randomness, rather than assuming indepen-

dence of observations as other epidemiological methods; and the

first county-level assessment of overturn risk in one of the six states

with the highest overturn fatality rates in the nation [9].

This study incorporated SEB smoothing to reduce the problem

of instability of variances and population size heterogeneity across

counties by adjusting rates based on spatial contiguous neighbors,

thereby creating a smoothed visualization of rates. Although SEB

smoothing allows for a clearer visualization of spatial patterns, it

can also introduce spatial artifacts [47,48] and thus, is recom-

mended strictly for visualization rather than statistical analyses

[49]. This technique is also limited by an edge effect in that

counties with fewer contiguous neighbors (i.e., on the edge of the

study area) are essentially smoothed less than interior counties that

are influenced by all surrounding counties [50]. This study’s wide

time frame (1960–2002) also makes it vulnerable to recall bias, in

that farmers are more likely to recall latter than earlier overturns.

Moreover, the KY T/O survey was telephone-based, increasing

the risk of selection bias [51]. Also, the denominator (tractor

population) used to calculate the overturn rate per county was

abstracted from the 2007 Census of Ag, which better reflects

tractor population figures in the latter part of the study period than

the earlier part. Finally, the regression analysis did not account for

all possible confounders associated with tractor overturns.

In guiding future tractor overturn research, it is recommended

that individual-level data be collected to improve the understand-

ing of the characteristics of tractor operators within clusters. As

risk may not be uniformly distributed within counties, surveillance

efforts should seek to collect point data (i.e., latitude, longitude) of

the exact location of overturns, so similar analysis can be

performed at the census-tract level within the two identified

clusters in Kentucky. This type of small-area spatial cluster

analysis would allow a finer visualization of those census-tracts

with the greatest overturn risk.

Conclusions
This study found high-risk clusters of tractor overturns in

northern and eastern Kentucky and demonstrated the usefulness

of the combination and complementary nature of spatial statistics

and traditional regression in identifying areas at highest risk for

overturns. Our results can guide intervention efforts at the county

level in Kentucky to reduce overturns and overturn injury severity

in those areas at greatest risk.
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