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Abstract

DNA-binding proteins such as transcription factors use DNA-binding domains (DBDs) to bind to specific sequences in the
genome to initiate many important biological functions. Accurate prediction of such target sequences, often represented by
position weight matrices (PWMs), is an important step to understand many biological processes. Recent studies have shown
that knowledge-based potential functions can be applied on protein-DNA co-crystallized structures to generate PWMs that
are considerably consistent with experimental data. However, this success has not been extended to DNA-binding proteins
lacking co-crystallized structures. This study aims at investigating the possibility of predicting the DNA sequences bound by
DNA-binding proteins from the proteins’ unbound structures (structures of the unbound state). Given an unbound query
protein and a template complex, the proposed method first employs structure alignment to generate synthetic protein-
DNA complexes for the query protein. Once a complex is available, an atomic-level knowledge-based potential function is
employed to predict PWMs characterizing the sequences to which the query protein can bind. The evaluation of the
proposed method is based on seven DNA-binding proteins, which have structures of both DNA-bound and unbound forms
for prediction as well as annotated PWMs for validation. Since this work is the first attempt to predict target sequences of
DNA-binding proteins from their unbound structures, three types of structural variations that presumably influence the
prediction accuracy were examined and discussed. Based on the analyses conducted in this study, the conformational
change of proteins upon binding DNA was shown to be the key factor. This study sheds light on the challenge of predicting
the target DNA sequences of a protein lacking co-crystallized structures, which encourages more efforts on the structure
alignment-based approaches in addition to docking- and homology modeling-based approaches for generating synthetic
complexes.
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Introduction

DNA-binding proteins are important to many biological

processes in organisms. For example, transcription factors (TFs)

activate or repress gene expression by using their DNA-binding

domains (DBDs) to recognize specific nucleotide sequences in the

genome. DNA sequences that can be recognized by the same

DBD are usually characterized by a probabilistic model, called

position weight matrix (PWM), to accommodate variability in

sequences of TF-binding sites. Specifically, with the profile

representation of TF binding sites (TFBSs), researchers can

discover novel target genes regulated by known TFs. Therefore,

accurate prediction of such target DNA sequences for DNA-

binding proteins is an important step to understand many

biological processes [1,2,3].

The most widely used technique of PWM inference for a TF is

to collect a set of promoter sequences of genes known to be

regulated by the TF and then detect frequently observed (over-

represented) subsequences from the collection [4,5,6,7,8]. Such

methods require sufficient sequences for pattern discovery, which

are currently only available for a small amount of DNA-binding

proteins. Similarly, the most promising technique to discover TF

binding motifs, ChIP-seq [9], also has the limitation of requiring

an antibody available for the TF. An alternative approach to

predict PWMs is based on analyses of protein-DNA complex

structures, which has been shown to perform well in telling which

positions in a PWM should be more conserved and do not allow

degeneration [10,11,12]. In this study we focused on the structure-

based approaches to complement the predictions from sequence-

based approaches. The later ones provide relatively limited

information about how a DNA-binding protein binds to its target

DNA. For example, when the interaction involves multiple

proteins, sequence-based approaches cannot tell how many DBDs

are required to interact with DNA.

Given a protein-DNA complex, the binding specificities of any

DNA sequences to the proteins of the complex are first estimated

by threading DNA sequences with a potential function. DNA

sequences with high binding specificities are then summarized as a
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PWM. Existing potential functions of protein-DNA interactions

are roughly categorized as physics-based [13,14] and knowledge-

based [12,15,16]. Physics-based potential functions focus on

empirical energy components from physics, including electrostat-

ics, hydrogen-bond, and van der Waals force [17,18,19,20]. These

potential functions have been applied to many important problems

such as protein-DNA threading, docking decoy discrimination,

and PWM prediction. Knowledge-based potential functions, on

the other hand, adopt statistical components, such as the number

of contacts and the distance distribution between the contacts,

derived from known protein-DNA complexes. For PWM infer-

ence, knowledge-based potential functions have been shown to

achieve similar prediction accuracy while saving much computa-

tion cost when compared to physics-based ones [12]. The contacts

can be defined in residue level [15,21] or atomic level [12,16].

Residue-level knowledge-based potential functions have the

advantages of requiring fewer protein-DNA structures to build

the knowledgebase and processing less data when making

predictions. However, they lose certain prediction accuracy due

to ignoring the atomic-level structural variations. As the number of

protein-DNA complexes has increased quickly in recent years, it is

possible to construct atomic-level knowledge-based potential

functions with sufficient sampling records. In 2005, Chang et al.

proposed a potential function using 19 atom types [16], and in

2009, Xu et al. extended the set of atom types to 167 atom types for

amino acids and 82 atom types for nucleotides [12].

Though these knowledge-based potential functions perform well

on native complexes in predicting target DNA sequences, this

success has not been extended to DNA-binding proteins lacking

co-crystallized structures. In the 30 July 2011 release of Protein

Data Bank (PDB) [22], only 403 out of about 1300 DNA-binding

proteins have protein-DNA co-crystallized structures. This reveals

an immediate need to develop PWM predictors for unbound

protein structures. Such a predictor requires constructing a

putative protein-DNA complex for the given unbound protein

structure before PWM prediction. For this purpose, protein-DNA

docking is one of the feasible ways to generate protein-DNA

complexes but suffers high computational cost [23,24]. To

overcome this disadvantage, Gao and Skolnick recently employed

an efficient way of generating protein-DNA complexes by

structure alignment [21]. This structure alignment-based tech-

nique is adopted in this study to generate protein-DNA complexes

to predict PWMs. Another technique that can be considered to

generate putative protein-DNA complexes is homology modeling,

which requires only the sequence of the query protein [11].

However, inferring target DNA sequences directly from protein

sequence is beyond the scope of this study.

This study proposes a framework of PWM prediction based on

unbound protein structures and investigates its feasibility and

challenges. Given a query protein structure and a template

complex, the proposed method conducts structure alignment to

generate superimposed protein-DNA complexes. Based on the

protein-DNA complex, an atomic-level knowledge-based potential

function is employed to predict PWMs to which the query protein

can bind. To the best of our knowledge, this study is the first work

of inferring target DNA sequences from unbound protein

structures based on structure alignment technique. We compiled

a benchmark of seven DNA-binding proteins which have

annotated PWMs and structures of both DNA-bound and

unbound forms. Requesting both forms is for comparing the

performance of the potential function applied on the native and

synthetic complexes. The experimental results show that though

the performance based on the synthetic complexes generated by

the proposed framework is worse than that based on the native

complexes, it is better than that simply based on the homologous

complexes. Potential reasons behind the performance difference

between our synthetic complexes and the native ones were further

investigated by progressively adjusting the quality of the synthetic

complexes towards the condition mimicking the native complexes.

Finally, the synthetic complexes based on structure alignment were

compared with those based on protein-DNA docking. The results

show that the proposed framework was comparable to that based

on docking and is much more efficient. The kernel of the proposed

method, which makes prediction based on a given pair of an

unbound structure (query) and a user-specified complex (template),

is released along with this study as a Linux executable (http://mbi.

ee.ncku.edu.tw/res/Chen_2011/).

Results/Discussion

Figure 1 shows the workflow of the proposed method. Given an

unbound query protein and a template complex, the proposed

method generates synthetic protein-DNA complex structures for

PWM prediction using structure alignment, where the query

protein is superimposed onto the template structure (‘Superim-

posed Complex’ in Figure 1). This is achieved by applying the

Figure 1. The workflow of the proposed method. The query
protein is superimposed onto the specified template structure and then
the PWM prediction is performed on the superimposed protein-DNA
complex based on a knowledge-based potential function considering
atomic contacts.
doi:10.1371/journal.pone.0030446.g001

Target DNA Sequences via Protein Unbound Structure
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rotation matrix reported by the structure alignment program.

PWM prediction is then performed on the superimposed protein-

DNA complex based on an all-atom model, which is a knowledge-

based potential function considering atomic contacts. See the

‘Methods’ section for the details of a) constructing the superim-

posed complex based on the given query and template structures

and b) the employed all-atom model.

Validation set
To evaluate the performance of the proposed framework, we first

considered the 20 annotated PWMs and the corresponding native

protein-DNA complexes from the study of Morozov et al. [10]. The

structure with discontinuous dsDNA (1IHF) was excluded as in the

study of Xu et al. [12]. Since the proposed method requires an

unbound structure of the query protein and a native complex from

any of its homologues as the template, we must require each of the

19 potential test cases to further pass the following criterion: to have

an unbound structure in PDB which yields at least one qualified

alignment to a DNA-bound structure of another protein.

For each of the 19 proteins, we first checked if it has an

unbound structure that can be used as a query in the proposed

method. Only 12 of them have unbound structures in the 30 July

2011 release of PDB. Each unbound structure was then compared

to the protein chains of all the protein-DNA complexes in PDB by

using PSI-BLAST [25] for measuring the sequence similarity and

by TM-align [26] for the structure similarity. If the significance of

sequence similarity passes the condition of e-value,0.001 and the

structure alignment score, TM-score [27], is greater than 0.5, the

qualified complex was collected in the set of potential template

complexes. Here, we required that a template structure must

satisfy the following criteria: a) it is an X-ray structure with

resolution better than 3.0 Å, b) the DNA molecule has $6 paired

bases and has less than 30% non-paired bases, c) the protein chain

has $5 contact residues (residues within 4.5 Å to the DNA

molecule) and d) the protein chain has $40 residues. In this study,

the query-template pair with the highest TM-score for each of the

potential test cases was chosen for PWM prediction. In the end, six

proteins were used as test cases and the other 13 proteins that do

not satisfy the above criterion were used for tuning the parameters

of the all-atom model (Table 1).

In addition to the test cases collected from the study of Morozov

et al., this study attempted to enlarge the test data by collecting

more annotated PWMs from the TRANSFAC database [28]. The

public version of TRANSFAC contains 398 annotated PWMs for

133 UniProt [29] entry names. However, due to the limited

overlap between the list of proteins with annotated PWMs and the

list of proteins with both unbound and available templates, only

one more test case (NFKB1_HUMAN) was added, as shown in

Table 1.

Evaluating PWM prediction using unbound protein
structures

The detailed predictions on the seven test proteins using their

unbound structures are provided in Figure 2 (denoted as

Table 1. The validation set used in this study.

PDB Entry namea Protein

Seven proteins used as the queries

6CRO RCRO_LAMBD Regulatory protein cro

1MSE MYB_MOUSE Transcriptional activator Myb

1MNN NDT80_YEAST Meiosis-specific transcription factor NDT80

1YRN MATA1_YEAST Mating-type protein A1

1TRO TRPR_ECOLI Trp operon repressor

1RUN CRP_ECOLI Catabolite gene activator

2O61b NFKB1_HUMAN Nuclear factor NF-kappa-B p105 subunit

13 complexes used for tuning the parameters of the all-atom model

1AAY EGR1_MOUSE Early growth response protein 1

1B8Ic UBX_DROME Homeotic protein ultrabithorax

EXD_DROME Homeobox protein extradenticle

2DRP TTKB_DROME Protein tramtrack, beta isoform

1FJL PRD_DROME Segmentation protein paired

1GCC ERF1A_ARATH Ethylene-responsive transcription factor 1A

1GXP PHOB_ECOLI Phosphate regulon transcriptional regulatory protein phoB

1J1V DNAA_ECOLI Chromosomal replication initiator protein dnaA

1LMB RPC1_LAMBD Repressor protein CI

1MJ2 METJ_ECOLI Met repressor

2PUC PURR_ECOLI HTH-type transcriptional repressor purR

1R0O USP_DROME Protein ultraspiracle

1YSA GCN4_YEAST General control protein GCN4

1YUI GAGA_DROME Transcription factor GAGA

aUniProt entry name.
bnot used in the study of Morozov et al. [10].
ccontaining two chains of different proteins.
doi:10.1371/journal.pone.0030446.t001
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‘Unbound’), in comparison with the annotated PWMs provided by

[10] (denoted as ‘Annotated’) and the predicted PWMs based on

their native complexes (denoted as ‘Native’). The involved PDB

entries are listed in Table 2. In this study, the Y-score used in [10]

was employed to evaluate the performance of the proposed

method. Y-score is the average of the Kullback-Leibler diver-

gences across all positions, and was adopted to evaluate the

consistency between the predicted and annotated weight scores for

all base types. The definition of the Y-score is provided as follows:

y(p,q)~
1

L

XL

j~1

X
i~fA,C,G,Tg

q
j
i ln

q
j
i

p
j
i

2
4

3
5,

where p
j
i and q

j
i are predicted and annotated weight scores,

respectively, for base type i at position j, and L is the length of the

binding site in base pairs. A smaller number on the Y-score

implies a higher degree of consistency between two PWMs. To

measure the significance of a Y-score, 100,000 dummy PWMs

with the same length as the predicted PWM were randomly

generated to estimate the null distribution of Y-scores to the

annotated PWM and the p-value of the Y-score of the predicted

PWM.

The proposed framework achieved 0.38 Y-score in average,

which was worse than that (0.26 Y-score) based on the native

complexes. Even though the average Y-score of using unbound

structures is worse than that of using native complexes, the

difference is not significant (the p-value of paired Wilcoxon signed-

rank test [30] is 0.078). We also compared the proposed method

with a naı̈ve approach that predicts PWMs directly based on the

homologues’ native complexes of the query structures using the all-

atom model. Namely the naı̈ve method uses the query unbound

structure to search the homologous bound structures but not

replace the protein in the homologous structure with the query

structure. This approach is denoted as ‘Naı̈ve’ in Figure 2, where

the homologous bound structure of each case used for prediction

was the corresponding template structure in Table 2. The average

Y-score of the naı̈ve approach is 0.54, and the p-value of paired

Wilcoxon signed-rank test between the proposed method and the

naı̈ve approach is 0.016.

It is observed in Figure 2 that the widths of the predicted PWMs

are usually shorter than the annotated ones. This is because that

the proposed method can only infer the target DNA sequences

physically contactable by the query protein in the superimposed

complexes. Protein-DNA interactions sometimes require multiple

protein chains to participate in. Since the query unbound structure

is simply one of them, the predicted PWM might be shorter than i)

that based on native complexes which contain the complete set of

protein chains and ii) the annotated PWMs derived from

experiments or conserved promoter sequences.

We also compared the predictions on the six test cases from [10]

to those of applying different potential functions [10,12] on native

complexes (Table 3). Table 3 shows that the predictions of using

Figure 2. Predictions by the proposed method on the seven test cases. The predictions of the proposed method are denoted as ‘Unbound’,
in comparison with the annotated PWMs (‘Annotated’), the predicted PWMs based on native complexes (‘Native’) and the complexes of homologues
(‘Naı̈ve’). (A) PWMs. (B) A position is marked as ‘N’ if its most favorable base type was correctly predicted, or marked as ‘–’ otherwise. (C) Y-scores and
the corresponding p-values. The value within the parentheses of the first column indicates the average Y-score.
doi:10.1371/journal.pone.0030446.g002

Table 2. The PDB entries used in this study.

Entry name Nativea Queryb Templatec

CRP_ECOLI 1RUN 2GZW:A 3E6C:C

MATA1_YEAST 1YRN 1MH3:A 2HOS:A

MYB_MOUSE 1MSE 1GV2:A 1W0T:A

NDT80_YEAST 1MNN 1M6U:A 1HJC:A

RCRO_LAMBD 6CRO 2A63:A 3CRO:R

TRPR_ECOLI 1TRO 1MI7:R 1YSA:D

NFKB1_HUMAN 2O61 1NFI:D 1HJC:A

anative complexes of the corresponding proteins.
bunbound structures of the corresponding proteins.
cnative complexes of different proteins used as the templates.
doi:10.1371/journal.pone.0030446.t002
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native complexes generally outperforms that of using synthetic

complexes constructed based on the unbound structures and the

selected templates. The results shown in Table 3 and Figure 2 both

reveal the potential of conducting PWM prediction for DNA-

binding proteins based on unbound structures, though the

accuracy degrades when synthetic complexes were used instead

of native complexes. It is reasonably speculated that the

performance difference was due to structural variations between

the native complexes and the synthetic complexes generated by

structure alignment followed by superposition. The next subsec-

tion lists three types of structural variations that presumably

influence the prediction accuracy and provides further analyses to

investigate these structural variations. The first considers the

variation on the binding position or orientation caused by

structure alignment. In other words, the complexes generated by

structure alignment might have structural variations deviated from

crystallized complexes. The second one is the structural variation

due to sequence difference. That is, the binding position or

orientation might have variations on two different protein

sequences, even though their structures are similar. The third

structural variation we considered is the conformational change of

proteins from the unbound to bound form.

Evaluating robustness of the proposed method against
structural variations

For the first structural variation from the alignment, we want to

know if the proposed method yields stable predictions when the

protein structure in a native complex is replaced by a protein

structure from another native complex of the same protein using

structure alignment. Namely, the query protein, which is also a

bound structure, is superimposed to another complex of the same

protein. This design aims to eliminate the influence of the other

two structural variations. For this purpose, we grouped protein-

DNA complexes in PDB by the UniProt entry names of the

protein chains. Protein chains in complexes with multiple protein

chains were excluded. In the end, we have 38 PDB chains and 74

query-template pairs over eight entry names, where each entry

name has 4–6 PDB chains. Table 4 shows the results of the

analysis regarding the first structural variation. All the values of Y-

score are quite small. These results reveal an important

observation that the proposed method is robust to the structural

variations among native complexes of the same protein deter-

mined from different experiments as well as the variations due to

structure alignment.

To investigate the second structural variation due to sequence

difference, we prepared the second synthetic complex (U) where the

template is a complex of the query protein itself—instead of a

complex of a different protein—for each query in the validation set

(Table 5). Figure 3 shows that using this set achieved an average Y-

score of 0.40, which is close to that of using a different protein (0.38).

The p-value of the paired Wilcoxon signed-rank test on the Y-scores

of these two sets (m and U) is 1. Namely, there was no apparent

improvement observed when we eliminated this type of structural

variation in the prediction framework. This suggests that the all-

atom model with the proposed framework can tolerate the structural

differences between different proteins that share similar structures.

To investigate the third structural variation of the conforma-

tional change between unbound and bound forms, we prepared

the third synthetic complex (B) by replacing the query of the

second synthetic complex with a bound structure for each query in

the validation set (Table 5). Using this set achieved Y-score of 0.33

(Figure 3). This performance was better than those using unbound

queries and close to those using native complexes. The

performance gap after eliminating this type of structural variation

indicates that the structural variation of the conformational change

Table 3. Predictions using unbound structures compared with those using native complexes.

Native Unboundd

PDB Randoma Contactb Staticb Dynamicsb DDNAa FIREa vFIREa cFIREa vcFIREa All-atomc All-atomc

6CRO 0.47 0.07 0.10 0.21 0.26 0.10 0.10 0.09 0.10 0.29 0.20

1MSE 0.55 0.26 0.24 - 0.66 0.21 0.21 0.10 0.09 0.22 0.48

1MNN 0.68 0.14 0.12 0.20 0.46 0.25 0.25 0.22 0.22 0.20 0.40

1YRN 0.73 0.20 0.26 0.36 0.20 0.33 0.33 0.28 0.30 0.26 0.25

1TRO 0.71 0.30 0.31 0.39 0.42 0.42 0.42 0.42 0.43 0.34 0.46

1RUN 0.51 0.10 0.17 0.38 0.55 0.23 0.24 0.23 0.19 0.10 0.39

Average 0.61 0.18 0.20 0.31 0.43 0.26 0.26 0.22 0.22 0.24 0.36

Sd 0.11 0.09 0.08 0.09 0.17 0.11 0.11 0.12 0.13 0.08 0.11

adata from Xu et al. [12].
bdata from Morozov et al. [10].
cour implementation, which is a variation of FIRE.
dthe unbound structures and the corresponding templates used were listed in Table 2.
doi:10.1371/journal.pone.0030446.t003

Table 4. Performance on identical protein using different
native complexes.

Entry Name Number of chains Number of pairs Y-scorea

DN71_SULAC 4 6 0.0260.01

EGR1_MOUSE 4 6 0.0560.03

P84131_BACST 4 6 0.0860.05

POL_MLVMO 4 6 0.0160.01

DPO1_BACST 5 10 0.0060.00

UNG_HUMAN 5 10 0.1160.12

FPG_LACLC 6 15 0.0060.00

MTH1_HAEHA 6 15 0.0460.03

Overall 38 74 0.0460.06

aMean 6 standard variation.
doi:10.1371/journal.pone.0030446.t004
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is the most critical structural variation to the prediction accuracy.

These results reveal that the proposed framework is more sensitive

to the structural changes between unbound and bound confor-

mations than those between two homologous structures. Hence, if

we want to construct PWMs directly from an unbound structure

with higher accuracy, the first priority of the next step is to

overcome the unbound-to-bound conformational change.

In Table 6, we provided with more details about the structural

changes upon DNA-binding of the seven test cases based on the

same query (unbound) and template (bound) structures as the

second synthetic complex (U). Two special structural transitions,

transitions of secondary structures (SSE) and disorder-to-order

(D2O) transitions discussed in a recent study [31], were in particular

examined here in addition to the root-mean-square deviations

(RMSDs) between a pair of structures. In this table, we observed

that structural variations are not necessarily accompanied with

structural transitions. For example, the used structures for

MYB_MOUSE have the largest RMSD (2.88) but have neither

SSE nor D2O transitions. The structures used for NDT80_YEAST

have 25 D2O transitions but a small RMSD (0.72).

Comparison with predictions based on complexes
generated by docking

The above experiments were designed to evaluate the quality of

the synthetic complexes under the proposed framework. This

section, on the contrary, compares the prediction performance of

using the synthetic complexes obtained by the proposed

framework to that obtained by protein-DNA docking. Here we

adopted the ZDOCK package (version 2.3.1) to perform protein-

DNA docking. The protein structure was prepared using the query

structures and the DNA was prepared using the bound DNA

structures of the templates listed in Table 2. In the proposed

framework, a template of protein-DNA complex is employed to

facilitate the generation of synthetic complexes. In other words,

the DNA-binding residues of the protein were learned from an

existing protein-DNA complex. For a fair comparison, the same

information was exploited here to rank models generated by

ZDOCK. We assigned the highest score to the synthetic complex

that reserves the largest set of the expected contact residues.

Complexes reserving the same number of contact residues kept the

same order suggested by ZDOCK. Based on the new scoring

strategy, the top 20 complexes of the 2000 ZDOCK predictions

(here 2000 was set according to the ZDOCK manuscript) were

used to perform PWM prediction. Finally, the predicted PWM

with the best Y-score to the annotated PWM was reported here.

The process of using the Y-score to select PWM, note that it favors

ZDOCK, was adopted because we observed that the highest

scored complexes resulted in extremely bad PWMs, which were

difficult to be aligned to the annotated ones in all tests (data not

shown).

Figure 3. Predictions using different complexes. m: the proposed method. U: the second synthetic complex that eliminates the second type of
structural variation. B: the third synthetic complex that eliminates the second and third types of structural variation. N: native complexes. (A) PWMs.
(B) A position is marked as ‘N’ if its most favorable base type was correctly predicted, or marked as ‘–’ otherwise. (C) Y-scores and the corresponding
p-values. The value within the parentheses of the first column indicates the average Y-score.
doi:10.1371/journal.pone.0030446.g003

Table 5. The three synthetic complexes employed in the analysis of structural variations.

Synthetic complex Query protein Template protein Denoted as

The first synthetic complex (the proposed synthetic complex) Unbound Different to the query m

The second synthetic complex Unbound Identical to the query U

The third synthetic complex Bound Identical to the query B

doi:10.1371/journal.pone.0030446.t005

Target DNA Sequences via Protein Unbound Structure
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Figure 4 shows the comparison of using the proposed

framework (denoted as ‘Alignment’ in Figure 4) and using the

protein-DNA docking to generate the protein-DNA complex for

PWM prediction. Using the docked complexes achieved an

average Y-score of 0.40, worse than the proposed method. We

observed that the PWMs generated by the proposed method and

docking have their own advantages in different positions even

though the same queries and templates were used. For example,

for the center five positions (‘TGTGA’), which are more conserved

than the flanking positions in the annotated PWM of CRP_

ECOLI, the docking’s PWM only missed the fourth position. On

the other hand, our PWM correctly predicted the fourth position

but missed the first two positions. On the test case

NDT80_YEAST, the docking’s PWM correctly predicted the six

positions (2–3 and 5–8) on the left part while our PWM correctly

predicted the six positions (6–10 and 12) on the right part of the

annotated PWM. For TRPR_ECOLI, the docking’s PWM has no

overlap with our PWM, but both of them are generally correct

since the interaction actually involve two identical protein chains.

In summary, the docking’s and our PWMs both made good

predictions on some test cases though on different positions.

Regarding the efficiency issue, ZDOCK takes more than an hour

for the seven test cases, which is much longer than that (less than

ten seconds) of the proposed method based on structure alignment.

The complementary phenomenon of the docking’s and our

predictions might be due to the structural variations—mainly from

unbound to bound—discussed in the previous subsection. The

query structures must undergo some conformational change so

that they can fit the DNA molecules well. However, both the

proposed framework and the adopted docking strategy regarded

the query structures as rigid bodies. It might happen that one end

of the binding site of the query structure perfectly fit the DNA but

the other end was ‘seesawed’ out its best position.

Discussion and concluding remarks
It was discussed in the study of Dan et al. [31] that

conformational changes were commonly observed in DNA-

binding proteins. To understand how common the conformational

changes are present in protein-DNA interactions and how large

the changes are usually observed, we further collected available

structure pairs of unbound and bound states for DNA-binding

proteins from the PDB database. Since a protein may have

multiple unbound-bound structure pairs, we adopted a strict

criterion that a protein has transitions if at least one of the

associated unbound-bound structure pair has transitions. The

definition of transitions between a structure pair is identical to that

of Dan et al.’s work (the DSSP program was used to assign

secondary structures and only segments in which the same

transition was consistent for at least five consecutive residues were

considered). The results show 40.2% of the 132 proteins

underwent SSE transitions (changes on secondary structure) and

53.8% underwent D2O (disorder-to-order) transitions. The high

ratios concur with the points of Dan et al.

On the other hand, it is observed that the RMSD values were

not that large, i.e., all structure pairs were less than 4 Å (data not

shown). If the criterion ‘RMSD#2 Å’, a rigorous threshold in

general, is considered to indicate small structural variation, 93.2%

proteins have at least one structure pair with small structural

variation. In Table 6, we found that the ratio of proteins

underwent SSE (0.0%) and D2O (14.3%, one among the seven

test cases) transitions were much lower than those of the overall

distribution (40.2% SSE and 53.8% D2O transitions). The major

difference between Table 6 and the analysis in this section is that

in Table 6 the structure pair was selected by the structure

alignment score. This suggests that in practice using the best

structure alignment score helps to find structure pairs with few

Table 6. Structural transitions upon DNA-binding.

Entry name Unbound Bound SSEa D2Ob RMSDc Y-score

CRP_ECOLI 2GZW:C 2CGP:A 0 0 0.73 0.30

MATA1_YEAST 1MH3:A 1YRN:A 0 0 0.90 0.33

MYB_MOUSE 1GV2:A 1H89:C 0 0 2.88 0.37

NDT80_YEAST 1MN4:A 2EUX:A 0 25 0.72 0.44

RCRO_LAMBD 2OVG:A 6CRO:A 0 0 0.83 0.43

TRPR_ECOLI 1JHG:A 1TRO:C 0 0 1.02 0.21

NFKB1_HUMAN 1NFI:D 2O6I:B 0 0 0.50 0.69

aSSE: transition of secondary structure.
bD2O: disorder-to-order transition.
cRMSD: root mean square deviation.
doi:10.1371/journal.pone.0030446.t006

Figure 4. Comparison with predictions of using docking to construct synthetic complexes. The predictions based on the proposed
alignment-based approach to construct synthetic complexes are denoted as ‘Alignment’, while those of ZDOCK are denoted as ‘Docking’. (A) PWMs.
(B) A position is marked as ‘N’ if its most favorable base type was correctly predicted, or marked as ‘–’ otherwise. (C) Y-scores and the corresponding
p-values. The value within the parentheses of the first column indicates the average Y-score.
doi:10.1371/journal.pone.0030446.g004
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transitions for PWM prediction. If the structure pair with the best

RMSD is chosen to investigate the conformational changes of a

protein upon binding DNA, we found that ratios of proteins which

underwent SSE and D2O transitions dropped to 13.8% and

39.4%, respectively. These results suggest that the proposed

method will benefit the study of a large quantity of DNA-binding

proteins with only unbound structures in the PDB database.

To shift the problem of structure-based PWM prediction from

native complexes to unbound protein structures, the most

challenging issue might be constructing a reliable synthetic

protein-DNA complex on which physics- or knowledge-based

scoring functions can be applied to perform prediction. Regarding

this issue, this study concludes that structure alignment can serve

as an option when complexes containing bound structures similar

to the query protein exist. Though currently we used the template

with the highest structure similarity to generate the synthetic

complex, it is observed in many cases that templates with a low

structure similarity also have the potential to produce satisfied

results, as exemplified in Figure 5.

Two concluding remarks are provided here. The DNA

sequence in the selected template is probably not the native

DNA sequence to which the query protein can bind. Thus the

ability of the adopted potential function to handle the mutations of

DNA sequences embedded in the synthetic complex is critical to

the success of the proposed framework. Regarding this issue, we

concluded that the selected atomic knowledge-based potential

function is generally able to predict the most favorable base type

without being affected by the original sequence present in the

synthetic complex. Three examples are shown in Figure 6 to

illustrate this observation. Another important issue related to the

development of structure-based methods is their applicability. In

the PDB release of July 30, 2011, there are 114 DNA-binding

proteins that do not have native complexes but have unbound

structures with potential templates from homologues available.

The definition of a pair of unbound structure and the potential

template is e-value,0.001 for the sequence alignment and TM-

score .0.5 for the structure alignment. Currently the public

version of TRANSFAC database contains 398 annotated PWMs

for 133 proteins, most of which were determined via sequence-

based methods. However, the overlap between the 114 DNA-

binding proteins, which are the targets of this study, and the 133

proteins with known PWMs is only 16. This small overlap concurs

with the fact that the currently curated PWMs were majorly

contributed by sequence-based methods. This also reveals the

distinctness and potential of structure-based methods, since up to

now an abundance of structure information has not been widely

exploited to enhance our understandings about the interactions

between DNA-binding proteins and their binding sites.

Conclusion
Accurate construction of binding sequences for DNA-binding

proteins is an important step for studying protein-DNA interac-

tions. This study proposes a novel prediction framework and

shows the possibility of predicting target DNA sequences of DNA-

binding proteins directly from their unbound forms. Several

factors that might affect the prediction power of the proposed

method are examined and discussed. The experiments conducted

in this study encourage more efforts on the structure alignment-

based approaches as well as raise the challenges of PWM

prediction using unbound protein structures for future studies.

Methods

In this section, we first describe how structure alignment is

performed to generate appropriate superimposed complexes for

the query protein. Next, we introduce the potential function used

for PWM prediction.

Constructing superimposed complexes
As shown by the ‘Superimposed Structure’ in Figure 1, the

query protein is superimposed onto the template structure. This is

achieved by applying the rotation matrix reported by the structure

alignment tool, TM-align [26]. We removed the original protein

chains in the template and appended the transformed coordinates

of the query structure into the template structure to generate a

superimposed complex for PWM prediction.

The potential function for PWM prediction
The objective of this study is to replace the protein structure in

native complex structures with the query protein structure. A

scoring function that takes the amino acid types into consideration

is desired. We implemented a variation of the FIRE potential

function, named as ‘all-atom model’ in the context, described by

[12] for this purpose. FIRE is a succinct knowledge-based

potential function that considers interactions between all atom

types. Different knowledge-based potential functions adopted

different reference states. The reference state used in FIRE and

in this study is an averaged reference state based on a collection of

protein-DNA complexes, namely knowledgebase. Among the series

of all-atom scoring functions presented in [12], FIRE has the

advantage of easy implementation and is shown to be generally as

good as two of its extended functions, cFIRE and vcFIRE, in

predicting PWMs.

To construct the knowledgebase, we first denote the number of

pairs of atom types i and j with the distance falling within a

specified range (r2Dr, r] as Nobs(i, j, r), where r = 3, 4, 5, 6, 7, 8, 9,

and 10 (Angstrom), and Dr is set as 3 for r = 3 and 1 for the rest of

the values of r. In this study, the number of pairs of atom types i

Figure 5. An example where the template has a low structure
similarity to the query. This case demonstrates that using less similar
templates still has the potential to produce satisfied results. This figure
contains two proteins that share similar DNA-binding interface but have
low global structure similarity (TM-score = 0.38). The Y-score of the
predicted PWM to the annotated PWM using the orange protein
(1MH3:A, MATA1_YEAST) as the query and the green protein (1SKN:P,
SKN1_CAEEL) as the template is 0.18. Contact residues on both protein
structures are plotted in sticks presentation.
doi:10.1371/journal.pone.0030446.g005
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and j with the distance falling within a specified range, Nobs(i, j, r),

are calculated based on the protein-DNA complex structures

collected from PDB. A complex is selected if a) it is an X-ray

structure with resolution better than 3.0 Å, b) it contains exactly

one double-strand DNA (dsDNA), c) the DNA molecule has $6

paired bases and has less than 30% non-paired bases, d) one of the

protein chains has $5 contact residues (residues within 4.5 Å to

the DNA molecule), and e) at least one of the protein chains has a

length $40. Based on the PDB release of 25 October 2009, 549

protein-DNA complexes, containing 791 protein chains, satisfy all

the criteria listed above. With Nobs(i, j, r) of all the combinations,

the potential between atom types i and j is represented as follows:

uFIRE(i,j,r)~
{RT ln

P(i,j,r)

Pref (r)
, rvrcut

0, r§rcut

8<
: ,

where P(i, j, r) = Nobs(i, j, r)/SrNobs(i, j, r), Pref(r) = raDr/Srr
aDr,

rcut = 10 Å, and a is set as 1.61 as suggested in [12]. In the

proposed method, we further improve the performance of the

FIRE function by employing a distance-dependent weighting

scheme to emphasize the influence from long-distance contacts.

That is, P(i,j,r) = w(r)6Nobs(i, j, r)/SrNobs(i, j, r). For a given

complex, the binding free energy, DG, is defined as the sum of all

the potentials of the observed atom pairs [10]:

DG~
X

i,j

uFIRE(i,j,r): ð1Þ

Assume that influences on binding free energy from different

positions are independent, and thus DG can be represented as

follows:

DG~
X

i

DGi
a, ð2Þ

where DGi
a is the binding free energy of a base a (A, T, C, or G) at

position i. By combining Eq. (1) and (2), we can estimate the

probabilities in each column of PWMs as follows:

pi
a~

exp {bDGi
a

� �
P

b~A,T,C, or G

exp {bDGi
b

� � ,

where b is a free parameter. The value of b was set as 15 in this

study. It was chosen according to the performance of the proposed

method on the 13 cases in Table 1 that were not included in the

validation set.
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