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Abstract

Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by
basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the
mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in
isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 mM) stimulated basal
insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption.
Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-
OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did
not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of
secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly
increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating
that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of
MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is
stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the
established components of GSIS.
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Introduction

Obesity and diabetes have become increasing problems in the

world, a direction that began about 30 years ago and continues in

most countries. Diabetes develops in about 20% of obese

individuals, and it is not known what differentiates those who

develop diabetes from those who do not.

Obesity results from and sustains elevated circulating insulin.

Insulin hypersecretion mostly thought to result from insulin

resistance, has also been shown to cause insulin resistance as

demonstrated in rodents overexpressing the human insulin gene [1]

or treated with exogenous insulin [2], and by insulin infusion in

humans [3]. This suggests the possibility that insulin hypersecretion

may precede and drive the early stages of insulin resistance. The

timing of these two metabolic impairments may be so inextricably

linked that the order of events may never be elucidated, however,

this demonstrates the importance of understanding both processes.

Type 2 diabetes (T2D) occurs when hypersecretion fails to

compensate for insulin resistance. Hypersecretion at basal glucose

is an associated problem in that it reduces the effectiveness of

stimulatory glucose. The mechanism for basal hypersecretion of

insulin has received little attention.

High insulin secretion in the absence of stimulatory glucose can

be caused in vivo by high fat feeding and mimicked in vitro by

prolonged exposure to fatty acids (FA) [4,5]. Although FA acutely

enhance GSIS [6], chronic exposure of ß-cells to elevated levels of

FA and glucose, designated as glucolipoxicity (GL), is a condition

that mimics early type 2 diabetes in that it is characterized by

increased basal insulin release and impaired GSIS [4].

In ß-cells, the toxic effects of lipids and glucose, alone or together

have recently received abundant attention [7,8,9]. FA are non-toxic

essential nutrients that circulate in the blood at levels of 0.1 to

1.0 mM complexed to albumin. The terms glucotoxicity, lipotoxicity

and glucolipotoxicity have no generally accepted definition. In

different studies, they refer to different combinations and concen-

trations of glucose and FA, FA chain length, FA saturation, and FA

to albumin complexes [10,11,12,13]. Clearly, excessive and non-

physiological levels of glucose and FA, or saturated FA alone, induce

ß-cell damage ultimately leading to apoptosis and cell death.

Combinations that include physiological levels of mono-unsaturated

FA, alone or together with saturated FA, and bound to albumin in

appropriate ratio are not toxic to cells but do stimulate insulin

secretion. This also occurs in vivo with a nutrient rich diet or in

various models of obesity and diabetes. In this study we refer to

extended exposure to physiological concentrations of FA and glucose

as glucolipoxity as originally proposed by Prentki and Corkey [14].

Mono- and diglycerides are commonly added to commercial

food products in small quantities. They act as emulsifiers, helping

to mix ingredients such as oil and water that would not otherwise

blend well, and as preservatives. They are often found in bakery
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products, beverages, ice cream, chewing gum, shortening,

whipped toppings, margarine, and confections. One special

mono-acyl-glycerol, 2-arachidonoyl-glycerol, is a full agonist of

the cannabinoid receptors and thus classified as an endocannabi-

noid [15]. In this study, only MOG will be used, as it acutely

stimulates insulin secretion and can be compared to oleate that

does not stimulate basal insulin secretion. Mono-acyl-glycerides

may be ingested or formed biochemically in the gut by release of

FA from the 1 and 3 positions of triglyceride [16] and in cells via

release of FA from diacylglycerol (DG), by diacylglycerol lipase or

hormone sensitive lipase, and broken down by mono-acylglycerol

lipase (MGL). Zawalich and co-workers documented that low

concentrations (25–50 mM) of MOG enhance insulin secretion

stimulated by a variety of agonists [17,18] and 100 mM increased

secretion at substimulatory glucose [17], an effect they attributed

to inhibition of diacylglycerol kinase (DGK).

The insulin secretory process involves a combination of a Ca2+-

dependent triggering pathway and an amplification pathway that

requires a permissive level of Ca2+. Intracellular lipids have gained

attention as an important part of the amplification pathway and as

likely candidates to provide aberrant signals leading to impaired

insulin secretion [4,5,19,20]. The hypothesis being evaluated in this

study is that if glucose and FA lead to accumulation of intracellular

mediators resulting in time-dependent impaired insulin release,

MOG may acutely elevate a similar set of mediators at basal glucose.

The advantage of the rapid MOG effect, supported by our data,

is that GL-induced metabolic changes could be mimicked in a very

short time without altered gene expression that occurs with the

longer incubations (1–2 days) needed by elevated glucose and FA.

Our data suggest three MOG-induced mediators of insulin

secretion: cellular redox state reflected in the NAD(P)H:NAD(P)

ratio (redox), ROS and LC-CoA. Insight into these mediators

could provide new targets to ameliorate early insulin hypersecre-

tion and later impaired ß-cell function.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of

the Boston University Medical Center (Boston University Medical

Center Animal Welfare Assurance: A-3316-01).

Islets
Islets were isolated from male Sprague-Dawley rats (150–250 g)

[21]. Briefly, 15 ml of Hank’s balanced salt solution containing

10 mM Hepes (pH 7.4), 3 mM glucose (HBSS) and 0.2 mg/ml

collagenase P (2.3 units/mg) (Roche, Indianapolis, IN) was infused

into the pancreas through the bile duct. The inflated pancreas was

then excised and incubated for 20 min at 37uC. The digested

pancreas was then shaken to release the islets, which were washed

with HBSS supplemented with 0.1% BSA and further isolated by

centrifugation through a Histopaque gradient (Sigma, St. Louis,

MO) [21]. Human islets were obtained from the National Disease

Research Interchange (www. ndriresource.org). Isolated islets were

cultured overnight in RPMI 1640 containing 10% FBS, 50 IU/ml

penicillin and 50 mg/ml streptomycin. Islets were dissociated in

HBSS containing 20 mM Hepes, 3 mM EGTA, 3 mM glucose,

2.5% BSA and 0.001% trypsin at 37uC for 2.5 min [21,22] and

attached to cover slips with CELL-TAK or plated in multiwell

culture plates mixed with matrigel (1:1 ratio) as per product

instructions (BD Biosciences, Bedford, MA).

INS-1 832/13 cells
INS-1 832/13 cells [23] were cultured in RPMI media as above

with the addition of 10 mM Hepes, 1 mM pyruvate and 50 mM ß-

mercaptoethanol [4]. ß-Mercaptoethanol was routinely added to

the RPMI media just before use.

Lipid preparations
MOG was prepared as a DMSO stock, which was diluted into

modified Krebs-Ringer bicarbonate buffer (KRB) at 37uC while

vortexing. Oleate was dissolved in DMSO and complexed to either

FBS (Invitrogen, Carlsbad, CA) or fatty acid free BSA (4:1 molar ratio)

at 56uC while vortexing. Final concentration of DMSO was 0.1%.

Perifusion
Groups of 60 islets were placed in a column on top of a 1 cm

bed of cytodex 3 beads and perifused at 37uC at a rate of 0.3 ml/

min with KRB containing 3 mM glucose for 30 min [23]. After

30 min samples were collected at 15 sec intervals. Perifusate was

changed as indicated in figure legends. KRB contained (in mM)

119 NaCl, 4.6 KCl, 5 NaHCO3, 2 CaCl2, 1 MgSO4, 0.15

Na2HPO4, 0.4 KH2PO4, 20 HEPES, 0.05% BSA, pH 7.4.

Insulin secretion
Insulin secretion was measured in INS-1 cells grown for at least

3 days to approximately 0.25 million cells/well in 48-well plates.

INS-1 cells were preincubated with RPMI containing 2 mM

glucose without serum for 2 hrs prior to KRB incubation. INS-1

cells and dissociated islets in matrigel (4–5 thousand cells/well)

were preincubated in low glucose KRB at 37uC for 30–45 min.

They were then cooled on ice and cold KRB with test compounds

was added. Cells were incubated for 30–60 min at 37uC, cooled

and sampled for insulin release. Insulin was measured by

radioimmunoassay (Millipore, Billerica, MA).

Ca2+ determination
Intracellular Ca2+ was measured in cells using fura-2, AM

(Invitrogen, Carlsbad, CA). Single cells from dissociated rat

pancreatic islets were attached to glass bottom 35 mm dishes

(MatTek, Ashland, MA) with CELL-TAK. The glass bottom

dishes were mounted onto the stage of a Zeiss IM-35 fluorescence

microscope and Ca2+ was monitored continuously, using a time-

sharing fluorometer with output to a cooled CCD camera

(IONOPTIX Corp., Boston, MA) [24].

ROS determination
Cells were loaded for 45 min with 8 mM 5-(and-6)-chloro-

methyl-29,79-dichlorodihydrofluorescein diacetate, acetyl ester

(CM-H2DCFDA) suspended in KRB containing 0.1% pleuronic

acid, followed by two 15 min washes in KRB. DCF fluorescence

was then measured over time using a TECAN M 1000 plate

reader (Mannedorf, Switzerland) (excitation at 488 nm; emission

at 520 nm). For HyPer measurements, freshly isolated islets were

dissociated and transduced for 4 hrs with 200 hyper-encoding

adenoviral particles per cell as determined by AdEasy viral titer kit

(Stratagene, La Jolla, CA) [25]. Transduced Islet cells were mixed

with matrigel and plated in 4 quadrant CellView Dishes (Greinier

Bio-One, Monroe, NC) for 72 hrs and imaged using a Zeiss LSM

710 LIVE fluorescence microscope using excitation wavelengths of

488 and 405 while collecting emissions with a long pass 495 nm

filter with output to a linear CCD array. Images were acquired

using Zeiss ZEN and analyzed with the ‘‘ImageJ for Microscopy’’

Bundle [26]. Islets were maintained at 37uC during the

measurements using a Zeiss incubation chamber.

Monoglyceride Induces Basal Insulin Secretion
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Redox measurement
Islets were placed under matrigel on a 4 quadrant CellView

Dish and imaged using a Zeiss LSM 710 DUO fluorescence

microscope using two photon excitation wavelength 720 nm and

emission wavelengths of 371–580 nm [27]. Conditions and

analysis tools were similar to HyPer experiments above.

Oxygen Consumption
Oxygen consumption was measured at 37uC from INS-1 cells

grown in Seahorse V.7 multiwell culture plates with a companion

extracellular O2 flux sensor using the Seahorse XF24 analyzer

(Seahorse Bioscience, Billerica, MA). Cells were seeded at a

density of 50,000 cells/well and cultured for 2 days. Cells were

incubated as for insulin secretion and O2 consumption measure-

ments were performed in KRB.

LC-CoA and free CoA
INS-1 cells were grown to approximately 1 million cells/well in

12-well plates and incubated as for insulin release. Cells were

exposed to 0.2 mM MOG for up to 30 min and media sampled

for insulin release. Cells were then quick frozen in liquid nitrogen

and stored at 280uC until processed for LC-CoA analysis. Frozen

cells were thawed on ice in 1% trichloroacetic acid containing

3.75 mM DTT. Trichloroacetic acid extracted from the precip-

itated cells was centrifuged (12,0006 g, 3 min), washed 3 times

with equal volumes of ether and assayed for total free CoA. The

precipitated cells were washed with cold water and hydrolyzed in

3.75 mM K2HPO4 buffer pH 11.5 at 55uC for 10 min to produce

free CoA from membrane associated LC-CoA. Free CoA was then

measured enzymatically making use of the a-ketoglutarate

dehydrogenase reaction as described previously [28]. Standard

curves were produced from varying concentrations of both ether

washed free CoA and hydrolyzed LC-CoA in order to account for

recovery during sample processing. NADH produced in the assay

was then detected by luminescence using NADH-dependent

bacterial luciferase as detailed by Peyot et.al. [29].

Glycerol
Glycerol was measured enzymatically from the same final

incubation solutions removed from INS-1 cells to monitor MOG-

induced insulin release described above. NADH produced in the

assay was then detected by luminescence [29].

Statistical analysis
Statistical analysis was performed using Student’s t test where

indicated. Values are plotted as averages +/2 SEM.

Materials
Insulin radioimmunoassay kit was from Millipore (Billerica,

MA). Fura and DCFDA were from Invitrogen (Carlsbad, CA).

Triacsin C was from ENZO Life Sciences (Farmingdale, NY).

MOG, DG Kinase inhibitor and all other chemicals were from

Sigma (St. Louis, MO). Enzymes for glycerol and LC-CoA

analysis were from Sigma or Roche (Mannheim, Germany).

Hyper construct was from Axxora LLC. (San Diego, CA).

Results

The common technique to create insulin resistance in vivo is to

feed a high fat-high carbohydrate diet to model animals. The ß-

cell malfunction that is induced in this way can also be reproduced

in vitro by prolonged incubation in media containing high glucose

and added FA. Fig. 1A illustrates the consequences of treatment of

INS-1 832/13 cells for 18 hours in media containing 11 mM

glucose and either 0.16 mM or 0.3 mM oleate complexed to FBS.

As has been shown by others [4,30], this results in a 2-fold increase

in secretion at 2 mM glucose (basal) with responsiveness to

stimulatory 12 mM glucose diminished by 50 percent. The

increase in basal insulin secretion occurred at a lower FA

concentration than did the change in glucose-stimulated insulin

release. This robust stimulation of basal secretion does not occur

acutely but requires several hours of incubation and may involve

altered expression of numerous metabolically sensitive proteins

[31,32]. Thus, it is not clear whether this hypersecretion requires

altered gene expression or a time-dependent generation of an

Figure 1. MOG mimicked long-term exposure to glucose and
FA by stimulating basal insulin secretion from pancreatic islet
cells. A. Long-term exposure to 11 mM glucose and either 0.16 mM or
0.3 mM oleate complexed to FBS (FA) increased basal (2 mM glucose,
white bars) and decreased glucose-stimulated insulin release (12 mM
glucose, shaded bars) from INS-1 832/13 cells. MOG stimulated basal
insulin secretion from dissociated rat islets in a concentration-
dependent manner (25–400 mM) (B). C. Perifusion of rat islets
demonstrated the pattern of MOG-stimulated basal insulin secretion.
Arrow indicates addition of 200 mM MOG to 3 mM glucose. A and B.
n = 12 from 3 separate experiments. C. Representative of 3 separate
experiments. A and B, *p,0.005 compared to control.
doi:10.1371/journal.pone.0030200.g001
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intracellular product such as LC-CoA, that we have documented

previously [33].

To determine whether hypersecretion could be caused acutely,

we assessed the effect of several lipid molecules and metabolites on

basal secretion. We found a useful tool in MOG that had a

concentration dependent ability to increase insulin secretion by

isolated rat pancreatic islets (Fig. 1B) at non-stimulatory glucose.

Perifusion studies in isolated islets indicated that this effect

consisted of a rapid increase followed by a recovery to a new

sustained elevated basal level of secretion (Fig. 1C). Similar

responses were obtained in INS-1 cells (data not shown).

Fuel-induced insulin secretion involves an elevation in cytosolic

Ca2+, presumably due to closure of the KATP-channel, depolar-

ization and opening of voltage-gated Ca2+ channels. Diazoxide,

used to prevent closure of the KATP-channels, did not diminish

MOG-induced secretion while completely blocking GSIS in INS-1

cells (Fig. 2A) and dissociated rat islets (Fig. 2B). The combination

of MOG and stimulatory glucose increased insulin secretion more

than either alone. Diazoxide in this case reduced insulin secretion

stimulated by glucose in the prescence of MOG to the level of

MOG-stimulated basal release (Fig. 2), further indicating that

MOG-stimulated insulin secretion was independent of the KATP-

channel.

Consistent with a KATP-channel-independent mode of signal-

ing, there was no change in cytosolic free Ca2+ in response to the

acute addition of MOG to dissociated ß-cells incubated at basal

glucose conditions (Fig. 3A).

Another attribute of GSIS and secretion induced by other

stimulatory fuels is an increase in O2 consumption. Although we

confirmed that stimulatory glucose increased respiration as

expected, MOG did not increase O2 consumption at 2 mM

glucose (Fig. 3B) or increase the stimulated respiration that

accompanied GSIS (Fig. 3C). These data indicated that MOG-

induced insulin secretion was independent of the consensus

signaling pathway involving metabolite-induced stimulation of

respiration with increased production of ATP, closure of KATP-

channels and entry of Ca2+ [34].

Protein kinase C involvement in insulin secretion has been

documented previously [24]. An earlier study considered MOG an

inhibitor of DGK and concluded that its ability to increase insulin

secretion was due to this inhibition and the resulting signals

generated by accumulated diacylglycerol (DG) [17,18]. To

evaluate this possibility we used a specific inhibitor of DGK,

R59949, and found that although it stimulated GSIS at 0.25 mM,

it markedly inhibited GSIS at 10 mM, and had little effect on basal

secretion under conditions where MOG potently stimulated

insulin secretion (Fig. 4). This indicated that simply inhibiting

DGK is not sufficient to fully stimulate insulin secretion and

suggested that MOG must generate other signals.

The assessment of MOG as a potential lipid secretagogue was

based on abundant evidence that lipids can generate important

signals in ß-cells via their metabolism. To determine whether

MOG was metabolized we assessed the temporal relationship

between insulin secretion (Fig. 5A) and the products of MOG

metabolism, glycerol (Fig. 5B), long-chain acyl-CoA (LC-CoA)

(Fig. 5C) and the ratio of LC-CoA:CoASH (Fig. 5D) in INS-1 cells.

Oleate that does not stimulate insulin secretion acutely at basal

glucose had significantly less effect to elevate LC-CoA and the LC-

CoA:CoASH ratio than MOG (Fig. 5D). Triacsin C, an inhibitor

of ACS activity [35], decreased the stimulatory effect of MOG on

basal insulin secretion by 30% (Fig. 5E). The possibility that

MOG-induced insulin secretion was mediated by LC-CoA

(Fig. 5C) or the LC-CoA:CoASH ratio (Fig. 5D) is consistent

with these data. We have previously shown that LC-CoA or a

product formed from LC-CoA directly stimulates exocytosis [36].

Glycerol and FFA added in combination to cells does not induce

an increase in basal secretion [10,11], suggesting intracellular

metabolism of MOG is required. These data are consistent with

the concept that a metabolic product formed from MOG could

cause hypersecretion.

The ability of stimulatory glucose and other stimulatory fuels

such as ß-OHB to increase redox is well established [21]. ß-OHB

is readily transported into the mitochondria where ß-OHB

dehydrogenase converts it to acetoacetate using NAD and

producing NADH, as we have shown previously [37]. Fig. 6

shows that indeed MOG, like ß-OHB, increased the redox state

rapidly and significantly in islets (Fig. 6 A and B). It has been

established that ROS generation is dependent on both the

mitochondrial redox state and mitochondrial membrane potential

(D¥) [38].

We next evaluated the possibility that the increased mitochon-

drial redox state could increase insulin secretion via increased

ROS generation. Fig. 7 shows that ß-OHB (at high non-

physiological concentrations) stimulated insulin secretion at basal

glucose like 100 mM MOG or 8 mM glucose (Fig. 7A). Treatment

with the ROS scavenger N-acetyl L-cysteine (NAC) prevented the

elevation in basal secretion (Fig. 7A) in a concentration dependent

manner (Fig. 7B), implying a ROS-dependent mechanism.

Figure 2. MOG-stimulated basal insulin secretion was inde-
pendent of the KATP channel. MOG (0.2 mM) stimulated basal
(2 mM glucose) insulin release (white bars) was not prevented by
addition of 0.4 mM diazoxide (black bars) in both INS-1 (A) and
dissociated rat islet cells (B). MOG enhanced glucose-stimulated insulin
release in both INS-1 (12 mM glucose) and islet cells (15 mM glucose)
(white bars). Diazoxide blocked glucose-stimulated insulin release with
and without MOG (black bars), revealing a sustained increase of basal
secretion in the presence of MOG. A. n = 9 in 3 separate experiments. B.
n = 6 from duplicate experiments. * p,0.005.
doi:10.1371/journal.pone.0030200.g002

Monoglyceride Induces Basal Insulin Secretion
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Resveratrol, another antioxidant, also inhibited ß-OHB, MOG

and glucose induced secretion (Fig. 7C), presumably by scavenging

ROS. The increase in insulin secretion stimulated by the

combination of ß-OHB and MOG added together was not

significantly different to the sum of their individual effects (Fig. 7D).

This was also true for the combination of ß-OHB and 8 mM

glucose (data not shown). This is in contrast to the enhanced effects

of MOG in the presence of stimulatory glucose (Fig. 2).

We previously demonstrated that provision of either exogenous

H2O2 or diethyl maleate, which raises intracellular H2O2 levels,

stimulated insulin secretion [39]. In addition, exogenous antiox-

idants such as cell permeable catalase and NAC inhibited GSIS

and intracellular H2O2 accumulation [39]. More recently

inhibition of isoprenylcysteine carboxyl methyltransferase activity

in INS-1 832/13 cells was shown to inhibit both glucose-induced

ROS production and insulin secretion [40]. In Fig. 8 we show that

MOG and ß-OHB, like glucose, generated ROS in INS-1 cells

(Fig. 8A and B). We also document that MOG- and ß-OHB-

induced ROS in dissociated rat islets (Fig. 8C, D and E). The

increase in ROS occurred rapidly with MOG compared to ß-

OHB as measured by increased DCF fluorescence (8A and B) and

increased Hyper fluorescence ratio (Fig. 8D and E).

Discussion

Using MOG and the mitochondrial reductant ß-OHB, we have

identified ROS as a novel obligatory messenger for insulin

secretion, independent of the consensus pathway of GSIS that

involves increased respiration, KATP channel closure, and elevated

cytosolic Ca2+. MOG rapidly and robustly mimicked the effects of

long-term exposure to elevated FA and glucose and the condition

described as glucolipoxity, manifested as basal insulin hypersecre-

tion.

The possible novel signals for insulin secretion derived from

MOG metabolism include lipid products such as LC-CoA (34) and

DG [17,18], ROS [39], action through membrane receptors such

Figure 3. The effect of MOG to stimulate basal insulin
secretion was independent of changes in cytosolic Ca2+ and
oxygen consumption. A. 200 mM MOG did not increase cytosolic
Ca2+ in dissociated rat islet cells. Arrows indicate addition of 11 mM
glucose (black trace) and 200 mM MOG (gray trace). B. 200 mM MOG
(white squares) did not affect basal O2 consumption in INS-1 cells.
Incubation with and without MOG started 30 min prior to O2

consumption measurements. Arrows indicate addition of 5 mM
oligomycin (O) to inhibit respiration and 100 mM dinitrophenol (DNP)
to stimulate maximal respiration. C. 200 mM MOG did not affect
glucose-stimulated O2 consumption in INS-1 cells. Arrow indicates
addition of 2 mM glucose (black diamonds) and 12 mM glucose alone
(white squares) or with 200 mM MOG (white triangles). A. Average
signal from more than 10 cells per condition. Representative of 3
separate measurements. B and C. n = 4 from single experiment
repeated three times.
doi:10.1371/journal.pone.0030200.g003

Figure 4. The DG kinase inhibitor R59949, failed to mimic the
effects of MOG to stimulate insulin secretion from INS-1 ß-cells
at 2 mM glucose. 0.2 mM MOG (hatched bar) increased basal (2 mM
glucose) insulin secretion from INS-1 cells 2.5-fold while 12 mM glucose
resulted in a 3.5-fold increase (first black bar). The effect of the DG
kinase inhibitor R59949 to stimulate basal insulin secretion (white bars)
was small and inconsistent over the concentration range tested (0.25–
10 mM) compared to the MOG-stimulated increase in basal release
(hatched bar). R59949 increased glucose-stimulated insulin release 2-
fold at low concentration (0.25 mM) with higher concentrations (1–
10 mM) having no stimulatory effect compared to the control (black
bars). N = 9 from 3 separate experiments. *p,0.05; **p,0.005
compared to control basal value. #p,0.005 compared to high glucose
control.
doi:10.1371/journal.pone.0030200.g004

Monoglyceride Induces Basal Insulin Secretion
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Figure 5. MOG was metabolized by INS-1 ß-cells leading to an increase in glycerol (B), LC-CoA (C) and the LC-CoA/CoA ratio (D).
Inhibition of LC-CoA synthetase with triacsin C reduced the stimulatory effect of MOG on basal (2 mM glucose) insulin secretion (E). A.
200 mM MOG increased basal (2 mM glucose) insulin secretion from INS-1 cells in a time-dependent manner. Glycerol release (B) and LC-CoA formation
(C) were increased over time from the same cells. D. 200 mM MOG increased LC-CoA: free CoASH ratio to a greater extent than 200 mM oleic acid bound
(4:1 molar ratio) to BSA (FA) compared to the 2 mM glucose control after 1 hr incubation. E. Triacsin C (96 mM) inhibited insulin secretion stimulated by
100 mM MOG by 30% without affecting basal (2 mM glucose) insulin secretion from INS-1 cells. Triacsin C was included in both the preincubation and
test conditions. A and B p,0.005 for all. C and E. *p,0.05 n = 9 to 12 from 3–4 different passages of cells. D. *p,0.05 n = 4 from single experiment.
doi:10.1371/journal.pone.0030200.g005

Figure 6. MOG and ß-OHB increased REDOX state in rat pancreatic islets. A. NADH fluorescence was increased in rat islets after addition, at
0 minutes, of 200 mM MOG (dashed line) or 10 mM ß-OHB (solid line) compared to basal 3 mM glucose (circles). Data plotted as a 3 point moving
average. B. Area under curve from point of addition to four minutes. Average of 48–55 islets from 3 separate animals. *p,0.05 ***p,0.0001.
doi:10.1371/journal.pone.0030200.g006

Monoglyceride Induces Basal Insulin Secretion
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as GPR40 [41] or protein acylation effects of the elevated LC-

CoA. We can rule out non-specific cell damage because islets

treated with MOG recovered fully following overnight incubation

in normal media (data not shown) and exhibited normal

respiratory responses to glucose (Fig. 3C). The fact that MOG

metabolism gave rise to increases in glycerol and LC-CoA

exhibiting different time-courses was unexpected (Fig. 5 B and

C). It may be that LC-CoA is rapidly esterified to other lipid

moieties inside the cell while the lack of glycerol kinase in the ß-cell

[42] precludes this re-esterification to glycerol itself. Thus it is

predicted that MOG gives rise to a host of other lipid moieties in

the ß-cell whose identification is beyond the scope of this study. A

role for LC-CoA, either directly or indirectly through lipid

esterification or protein acylation, is indicated as a result of the

partial inhibition of MOG-induced basal insulin secretion using

triacsin C, an acyl CoA synthetase inhibitor. Since it was possible

to block the stimulatory effects of MOG, ß-OHB and glucose with

the ROS scavengers NAC and resveratrol, we concluded that

ROS was the obligatory signal, whereas the other putative

mediators may be secondary. It is interesting that 200 mM

MOG stimulates a greater production of ROS in pancreatic ß-

cells than 10 mM ß-OHB. The metabolism of MOG results in a

global increase in LC-CoA in the cell leading presumably to other

lipid moieties while ß-OHB is metabolized solely in the

mitochondria of these cells. The contributions of cytosolic versus

mitochondrial sources of ROS measured as a result of MOG and

other nutrient metabolism is under investigation.

It is interesting to speculate why FA addition requires much

more time to cause basal hypersecretion than MOG. Several

possibilities may be considered. First, there is control of FA access

to the cell by albumin and acyl CoA synthases. High physiological

concentrations of albumin prevent rapid uptake of large quantities

of FA in excess of the ability of acyl CoA synthases to activate

them. This idea is supported by our previous studies showing that

only a small increase in LC-CoA occurs in response to FA acutely

but LC-CoA increases following overnight incubation [33,43].

Second, there are two possible pathways for MOG metabolism:

via MGL that generates FA and glycerol and via monoacylglycerol

acyl transferase (MGAT) to generate DG. The relative roles of

MGL and MGAT have not been assessed in the ß-cell. However,

both may occur and the implications of each may differ: DG

acting through a PKC signaling cascade and LC-CoA directly

stimulating exocytosis [36] as well as acting on a variety of steps

involved with energy metabolism.

We have previously demonstrated that LC-CoA stimulates

exocytosis at low Ca2+ concentrations [36] and activates the KATP

channel [33,44,45,46,47] leading to impaired Ca2+ signaling [48].

Interesting recent studies have documented reduced ß-cell

Figure 7. Scavenging ROS with NAC (A, B) or Resveratrol (C) blocked MOG, ß-OHB and glucose-stimulated insulin secretion. The
effect of MOG to stimulate basal (2 mM glucose) insulin secretion was not enhanced by the prescence of ß-OHB (D). A. 3 mM NAC
(black bars) inhibited 10 mM ß-OHB-, 100 mM MOG- and 8 mM glucose-stimulated insulin secretion from INS-1 cells. B. 10 mM ß-OHB-stimulated
insulin secretion was inhibited by NAC in a concentration-dependent manner (0.3–3 mM). C. 100 mM resveratrol (black bars) inhibited 10 mM ß-OHB-,
100 mM MOG- and 8 mM glucose-stimulated insulin secretion from INS-1 cells. D. The increase in insulin secretion stimulated by addition of ß-OHB
and MOG together was equal to the sum of their individual effects. A–D. n = 9–12 per condition from 3 separate experiments. * p,0.005 compared to
2G control. A, C. # p,0.005 compared to its own control. B. + p,0.005 compared to no NAC. D. # p,0.005 compared to ß-OHB or MOG added
separately.
doi:10.1371/journal.pone.0030200.g007
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excitability following elevation of endogenous saturated LC-CoA

in intact pancreatic ß-cells [49] and modulation of ß-cell Na+-Ca2+

exchangers by LC-CoA [49,50]. In addition, LC-CoA has been

shown to overcome inhibition of carnitine palmitoyl transferase-1

by malonyl CoA [51], and inhibit the adenine nucleotide

translocase [52,53], both of which are important in stimulation

of glucose-induced insulin secretion. Thus, increased LC-CoA

after MOG exposure is a potential candidate for mediating some

of the observed aberrant effects on secretion. The effect of triacsin

C to partially block the stimulation of basal insulin secretion by

MOG provides supporting evidence for a role for LC-CoA in the

development of lipid-induced basal hypersecretion.

It is not clear whether these effects of MOG are of physiological

importance. MOG caused a twofold increase in basal insulin

secretion at concentrations as low as 25 mM (Fig. 1). Monoglyc-

erides are normal products of TG degradation by tissue-associated

lipoprotein lipase [54] and in the intestine where a remnant

molecule of 2-monoglyceride is transported into the enterocytes

with two FA liberated from TG. In the past 30 years, mono-

glycerides have been increasingly added to foods as emulsifiers or

preservatives. However, relevance to human physiology and the

obesity and diabetes epidemic cannot be implied, as circulating

concentrations were not found and may be considerably lower

than concentrations tested. It is possible, however, that long term

exposure to low concentrations of MOG may elevate basal insulin

secretion like long term exposure to GL.

The key findings from these data are that basal hypersecretion

can be induced by exposure to MOG in the absence of elevated

glucose without increasing cytosolic Ca2+ or O2 consumption in

human islets, rodent islets and INS-1 cells. It should be noted that

an increase in redox without an increase in respiration implies

excess mitochondrial substrate supply (NADH) that leads to

increased ROS production. During the same interval we have

shown that MOG was metabolized, increased the redox state and

generated ROS. Scavenging ROS prevented all of the acute

MOG effects on secretion indicating that ROS was an obligatory

signal for insulin secretion. Mimicking the MOG-induced redox

changes with ß-OHB or inducing ROS changes by other means

[39] also increased insulin secretion. Thus, ROS may act

synergistically with other putative signals such as LC-CoA, Ca2+

and DG but basal hypersecretion does not appear to occur without

the ROS signal.

Figure 8. MOG and ß-OHB generated ROS in insulin secreting cells. A. Both 200 mM MOG (squares) and 10 mM ß-OHB (triangles) increased
ROS in INS-1 cells compared to basal (2 mM glucose) alone (circles). B. Area under curve of panel A. 200 mM MOG increased ROS generation in
dissociated rat islets (C) compared to 3 mM glucose controls as measured with DCF fluorescence. D. 200 mM MOG (squares) and 10 mM ß-OHB
(triangles) increased ROS generation in dissociated islet cells expressing the cytosolic HyPer protein compared to the basal (2 mM glucose) control as
measured by changes in fluorescence ratio. E. Area under curve of D. A, B. n = 16 from 4 separate passages of cells. C. Results are typical of three
separate experiments. D, E. Average of 14–33 cells from 3 separate animals. (A–C). ROS monitored for 1 hr in cells loaded with CM-H2DCFA using a
Tecan fluorescence platereader. (D–E). HyPer fluorescence ratio in dissociated islet cells monitored using a Zeiss 710 LIVE fluorescence microscope at
206magnification. B and E, * p,0.005% compared to basal.
doi:10.1371/journal.pone.0030200.g008
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ROS may also play a role in elevated basal insulin secretion

resulting from more traditional means of inducing GL. In this

regard gene expression profiling of clonal pancreatic ß-cells

cultured (24–72 hrs) under conditions of elevated glucose and

FA has been performed in the mouse cell line MIN6 using oleate

[55] and in INS-1 832/13 using palmitate [56]. Both studies

revealed a host of changes in metabolic enzymes affecting lipid

handling. Both studies demonstrated an increase in ROS

production and impaired insulin secretion in that basal secretion

was elevated and glucose-stimulated insulin release was inhibited.

Investigators using the MIN6 model also used NAC (1 mM) to

scavenge ROS. In this case they were able to reduce by 70% the

number of oleate-induced downregulated genes. NAC was

reported not to alter insulin secretion from the oleate treated

cells, however insulin content of cells treated with NAC was

increased 2-fold compared to oleate alone. NAC therefore could

be said to have increased insulin exocytosis when analyzed as

insulin release as a percent of content.

The rapidity of MOG effects may provide a novel model to

examine the role of elevated lipids on insulin secretion without

concern for the alterations in gene expression that may occur over

the hours required to achieve similar elevations in secretion by

GL.

Furthermore, the acute elevation of intracellular lipids by MOG

implied by the large increase in LC-CoA, independent of

stimulatory glucose, may provide a useful model to study the role

of lipid signaling during insulin resistance and may lead to

identification of important lipid and protein signals that modulate

secretion in the ß-cell.
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