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Abstract

Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but
whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of
comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and
the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community.
Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of
the community sampled. For instance, derived assemblies overlapped in ,90% of their total sequences and in situ
abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms
(R2.0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if
not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples
of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative
estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of
complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ,1% of
the protein sequences recovered in Illumina contigs of 106coverage and 50% G+C; this frequency increased to ,3% when
non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing
proper sampling strategies and data possessing protocols for future metagenomic studies.
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Introduction

From the human gastrointestinal tract to the ocean abyss, whole-

genome shotgun metagenomics is revolutionizing our understanding

of the structure, diversity, and function of microbial communities

[1,2,3,4]. Next generation sequencing (NGS) technologies, such as

the Roche 454, Illumina/Solexa, and, to a lesser extent, ABI SOLiD,

have been cornerstones in this revolution [5,6,7]. For example, the

high coverage of indigenous communities provided by NGS has

made it possible to quantitatively assess the impact of diet on human

gut microbiota [8] and the diversity of metabolic pathways within

marine planktonic communities [9]. NGS platforms produce millions

of short sequence reads, which vary in length from tens of base pairs

(bp) to ,800 bp. Even though read lengths increase as the

technologies advance, they are still far shorter than the desirable

length (e.g., the average bacterial gene length is ,950 bp) or the read

length obtained from traditional Sanger sequencing (,1000 bp).

Therefore, a desirable, first step in the analysis of metagenomic data

frequently is to assemble sequences into longer contigs and,

ultimately, into complete genome sequences. Analyzing raw (not

assembled) reads, as opposed to assembled contigs, is typically

restricted to cases where community complexity is too high or to

specialized studies that aim to determine in situ abundance and/or

population genetic structure and recombination [4,10].

It is critical to assess the quality of the derived assemblies; to this

end, several studies have recently attempted to evaluate the

sequencing errors and artifacts specific to each NGS platform.

For instance, it has been established that Roche 454 has a high error

rate in homopolymer regions (i.e., three or more consecutive

identical DNA bases) caused by accumulated light intensity variance

[5,11] and up to 15% of the resulting sequences are often products

of artificial (in vitro) amplification [12]. Illumina does not appear to

share these limitations but it has its own systematic base calling

biases [13]. Most importantly, different tiles of the sequencing plate

tend to produce reads of different quality [14], the 39 ends of

sequences tend to have higher sequencing error rates compared to

the 59 ends [15], and increased single-base errors have been

observed in association with GGC motifs [16]. Algorithms that

detect and correct these errors are being developed and

incorporated into existing data processing pipelines.
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It should be noted, however, that most of the previous error

estimates and sequencing biases have been determined based on

relatively simple DNA samples (e.g., a single viral genome) and

thus, their relevance for complex community DNA samples

remains to be evaluated. More importantly, it is currently unclear

how the above limitations affect the quality of the gene and

genome sequences assembled from complex DNA samples, and

whether the technologies provide different estimates of the genetic

diversity in a sample due to their inherent chemistry and protocol

differences. To provide new insights into these issues, we evaluated

the two most frequently used platforms for microbial community

metagenomic analysis, the Roche 454 FLX Titanium and the

Illumina GA II, by comparing and contrasting reads and

assemblies obtained from the same community DNA sample.

Results

Genetic diversity recovered in raw (not assembled) reads
and assembled contigs

We obtained (after trimming) a total of 502 Mbp (,450 bp long

reads) and 2,460 Mbp (100 bp pair-ended reads) from Roche 454

and Illumina sequencing, respectively, of the same community

DNA sample. For convenience, we called the two sequence data

sets Lanier.454 and Lanier.Illumina, respectively. The sample

comprised DNA from the prokaryotic fraction of a planktonic

microbial community of a temperate freshwater lake (Lake Lanier,

Atlanta, GA); the complexity of the community sampled (in terms

of species richness and evenness) was estimated to be comparable

to that of surface oceanic communities, but lower than that of soil

communities [17]. We applied widely used protocols to assemble

both sets of reads (see Materials and Methods for details), which

substantially collapsed the Lanier.Illumina dataset into 57 Mbp

of total unique sequences and the Lanier.454 dataset into

46 Mbp (Fig. 1C); 57.7% and 49.5% of the total reads in the

Lanier.Illumina and Lanier.454 datasets, respectively, were

singletons (i.e., remained unassembled). Total unique sequences

in this case included only contigs longer than 500 bp because

shorter contigs were usually characterized by low coverage and

thus, were error-prone (Fig. 2A, inset; and in [18]). We found that

about 90% of the Roche 454 unique contig sequences overlapped

with Illumina contig sequences (Fig. 1C). It is possible that the

remaining ,10% of the contig sequences might have been

Figure 1. Genetic diversity and gene abundance in Roche 454 vs. Illumina data. (A) Venn diagram showing the extent of overlapping and
platform-specific raw reads between the Lanier.454 and Lanier.Illumina datasets (without assembly). (B) Protein sequences annotated on raw (not
assembled) reads matched genes in the reference assembly more frequently for the Roche 454 than the Illumina data. Conversely, protein sequences
annotated on Illumina reads more frequently matched to the wrong protein sequence in the reference assembly (mismatched genes) or did not
match any reference gene (unmatched genes). (C) Assemblies were obtained from 502 Mbp of Roche 454 and 2,460 Mbp of Illumina data using
established protocols. Venn diagram showing the extent of overlapping and platform-specific sequences of assembled contigs longer than 500 bp.
(D) Number of Roche 454 (x-axis) and Illumina (y-axis) reads mapping on the same contig shared between the two assemblies.
doi:10.1371/journal.pone.0030087.g001

Illumina vs. Roche 454 Metagenomic Sequencing
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different because of imperfect or uneven splitting of the original

DNA sample into the two aliquots sequenced and the fact that

the diversity in the sample was not saturated by sequencing

(estimates based on rarefaction curves using raw reads indicated

that we sampled about 80–85% of the total diversity in the

Illumina data). Consistent with the results from assembled

contigs, we obtained ,90% of overlapping sequences (,80%

when the overlapping sequences were expressed as a fraction of

the total Illumina dataset) between the two datasets when we

performed a similar analysis using all raw (not assembled) reads

(Fig. 1A). These results revealed that, in general, the two

platforms sampled the same fraction of the total diversity in the

sample. We also estimated the abundance of each contig shared

between the two assemblies by counting the number of reads

composing the contig, which can be taken as a proxy of the

abundance of the corresponding DNA sequence in the sample

[19]. We found a strong linear correlation (r2.0.99) between the

Roche 454 and Illumina data with this respect (Fig. 1D).

Therefore, the two platforms provided comparable in situ

abundances for the same genes or genomes.

Figure 2. Average length and sequence accuracy comparisons of the Roche 454 and Illumina assembled contigs. (A) Length and
coverage distribution of the contigs assembled from the Lanier.Illumina dataset. Note that contigs shorter than 500 bp (red) were numerically more
abundant than longer contigs (green) but were characterized by substantially lower coverage (inset). (B) Graph shows the comparison of the contig
length of three assemblies plotted against the N statistic of the assembly [for instance, N40 (x-axis) is equal to about 1 Kbp (y-axis), which means that
(100240 = 60) % of the entire assembly is contained in contigs no shorter than 1 Kbp]. Due to frameshifts caused primarily by homopolymer-
associated errors in the derived consensus sequence of the contigs, genes from Roche 454 assembly had fewer complete matches in the NR database
relatively to their Illumina counterparts (inset; results are based on a total of 72,709 gene sequences annotated on contigs that were shared between
the two assemblies and were longer than 500 bp).
doi:10.1371/journal.pone.0030087.g002

Illumina vs. Roche 454 Metagenomic Sequencing
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Illumina-specific unique contig sequences (16 Mbp) were more

than three times as many as the Roche 454-specific ones (5 Mbp),

and these additional contigs were attributed to the larger Illumina

dataset rather than sequencing artifacts or errors. As evidence of

this, analysis of the assemblies of isolate genomes that were

sequenced using both platforms (see below) revealed that the

extent of chimeric contigs, i.e., contigs that contained contami-

nating or in vitro generated sequences, in the Illumina and Roche

454 assemblies was, on average, less than 0.2% of the total length

of the assembled contigs. Although low coverage contigs (e.g., 1 to

56) are likely to contain a higher fraction of chimeric sequences

than 0.2% according to our previous study [18], such contigs were

rare in the results reported here, which included only contigs

longer than 500 bp with average coverage 106 or higher (only

about 3% of the contigs showed less than 56 coverage; Fig. 2A,

inset). Lanier.Illumina contigs were generally longer than

Lanier.Roche 454 contigs, i.e., the assembly N50 (the contig

length for which 50% of the entire assembly is contained in contigs

no shorter than this length) was 1.6 Kbp versus 1.2 Kbp,

respectively. Even when only a fraction of the total Illumina

dataset was used in the analysis that was comparable to the size of

the Roche 454 dataset (i.e., 500 Mbp), the derived Illumina

assemblies were similar to those of Roche 454 (N50 values were

990 bp for Illumina and 1193 bp for Roche 454; Fig. 2B).

Sequencing errors in assembled contigs
We evaluated the type and frequency of errors in assembled

contigs from metagenomic data using both a comparative and a

reference genome approach. In the former approach, we

examined protein-coding sequences recovered in contigs longer

than 500 bp that were shared between the Lanier.454 and

Lanier.Illumina assemblies. We identified 0.4 million homopoly-

mers (three identical consecutive nucleotide bases or more), of

which 14 thousand (3.3% of the total) disagreed on length between

the two assemblies, resulting in alternative amino acid sequences

for about 7% of the total 72,709 gene sequences evaluated. Among

these genes, Roche 454 data appeared to have the wrong

(artificial) sequence more often than Illumina data. For instance,

searching all genes shared between the two assemblies against

NCBI’s Non Redundant (NR) protein database (Blastx) returned

more complete matches with the Lanier.Illumina than the

Lanier.454 data, regardless of the identity and e-value threshold

used (14% more on average; Fig. 2B, inset). These results were

attributable to a higher number of (artificial) frameshifts, caused by

homopolymer-associated base call errors, present in the La-

nier.454 versus the Lanier.Illumina assembled sequences.

In the reference genome approach, genes annotated in the

Lanier.454 and Lanier.Illumina contigs were compared against

their orthologs in publicly available genomes, and homopolymer

errors were identified assuming the publicly available sequences

contained no errors. We found that homopolymer errors affected

2.13–2.78% and 0.32–1.02% of the total genes evaluated for the

Lanier.454 and Lanier.Illumina data, respectively (dividing by

the average gene length, 950 bp, provided the per base error

rate; range was estimated from 100 replicates using Jackknife

resampling), despite the fact that sequencing error in the raw reads

of the two platforms was comparable (,0.5% per base, in our

hands). These percentages were similar to those reported above

based on the comparative method (the 3.3% of homopolymers

that disagreed between the two datasets includes both Roche 454-

and Illumina-specific homopolymer errors). A closer investigation

revealed that Roche 454 homopolymer sequence errors were

biased toward A’s and T’s over C’s and G’s, and the errors were

more frequent in homopolymers of greater length (Fig. 3). These

patterns were not as pronounced in the Illumina data, indicating

that Illumina errors were (more) randomly distributed than Roche

454 errors (see Fig. 4, which is based on isolate genome data).

Single-base sequencing errors increased by an average of 2%

when non-homopolymer-associated errors were also taken into

account for both platforms. The frequency of single-base errors

decreased with higher coverage of the corresponding contigs, i.e.,

the frequency dropped by about ten fold in contigs with 206
coverage relative to contigs with 26 coverage, reaching a plateau

at about 206 coverage. We did not observed a significant

difference in error frequency in contigs with higher than 206
coverage (standards on length and coverage for identifying error-

prone Illumina contigs are defined in our previous study [18]).

Given that the single-base error of individual reads was

comparable between Lanier.454 and Lanier.Illumina (,0.5%

per base), our results reveal that the lower single-base error rate of

Lanier.Illumina contigs (,3% vs. ,4.5% for Roche 454, counting

homopolymer- and non-homopolymer-associated errors) is pri-

marily due to the higher coverage obtained. Consistent with these

interpretations, we found that the single-base error of Illumina

contigs increased by about 0.07% when we removed reads from

the assembly so that the average coverage of the Illumina contigs

Figure 3. Characteristics of homopolymer-related sequence errors in Roche 454 metagenome assembly. (A) A’s and T’s contribute
significantly more homopolymer errors than C’s and G’s. The average G+C% content of the metagenome was 47.4%; thus, our results are not simply
attributable to higher abundance of A’s and T’s in the metagenome. (B) Error rate (as a percentage of the total genes evaluated, y-axis) increases as
homopolymer length increases (x-axis).
doi:10.1371/journal.pone.0030087.g003
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would approximate the average coverage of the Roche 454 contigs

(,86). It is, however, currently economically unfavorable to

obtain similar coverage with the Roche 454 sequencer to the

Illumina data (see Discussion below).

We also found that the systematic single-base errors associated

with GGC-motifs in Illumina data reported recently [16]

represented only a minor fraction of the non-homopolymer-

associated errors (0.015% of the total bases analyzed, consistent

with the frequency reported in the original study). Hence, the

majority of non-homopolymer-associated errors remain challeng-

ing to model and thus, to correct. Finally, gene calling on

individual reads (as opposed to assembled contigs) was found to be

less error prone in Lanier.454 reads than in Lanier.Illumina reads,

mainly due to the longer read length. For instance, protein

sequences called on Lanier.454 reads had ,10% more Blastp

matches to reference genes from the Lanier.454 assembly than did

protein sequences from Lanier.Illumina reads against the Lanier.-

Illumina reference assembly (Fig. 1B). Thus, Roche 454 is

advantageous with respect to gene calling when working with

unassembled reads.

Analysis on isolate genome data
To validate our findings from metagenomics, we performed

similar comparative analyses based on eighteen isolate genomes

that were sequenced by both Illumina and Roche 454 and showed

a range of genome sizes and G+C% content (Table 1). Consistent

with the metagenomic observations, we found that Roche 454

assemblies from genome data contained a significantly higher

portion of frameshift errors compared to Illumina assemblies from

the same genome, when the assemblies were built with 5 times

more Illumina data than the Roche 454 data, matching the

relative ratio of the metagenomic data reported above. Specifical-

ly, in genomes of about 50% G+C content (similar to the 47%

G+C of the Lake Lanier metagenome), Roche 454 assemblies

showed about 5% more frameshift errors than those of Illumina

assemblies. This corroborated our estimated error rate in

metagenomic data, i.e., that the Lanier.454 assembly had 7%

more frameshift sequences than the Lanier.Illumina assembly

(Fig. 2). Noticeably, due to the inherent biases of the Roche 454

sequencing approach to produce more frameshifts in A and T rich

DNA (Fig. 3), low G+C% genomes sequenced with this platform

may have 20% or more genes with frameshift errors whereas the

Illumina platform is not affected as much by the G+C% of the

sequenced DNA (Fig. 4). These findings call for special attention in

cases where the sequenced DNA (e.g., community or isolate

genome) is of low G+C%. Further, the single-base sequence and

gap opening error rates of individual reads were typically higher

by 0.5% and a factor of 10, respectively, for the Roche 454

compared to the Illumina reads (Fig. 4), despite the fact that reads

were trimmed based on the same quality standard prior to the

analysis. As noted above, similar gap opening errors were observed

for the metagenomic reads from the two platforms and single-base

accuracy was comparable between the two platforms (99.34% vs.

99.46% for the Lanier.454 and Lanier.Illumina metagenomic

reads, respectively). The slightly higher single-base accuracy of

Roche 454 metagenomic reads relative to that of the isolate

genome reads is presumably due to the use of the latest, optimized

Roche 454 protocol in the former and slight differences in the

performance of the sequencers used. Finally, in all genomes

analyzed, Illumina assemblies consistently recovered a larger

percentage of the reference genome than Roche 454 assemblies

(two tailed Whitney-Mann U test p-value = 0.014; Fig. 5), which

was consistent with our observations on the assembly N50 values

of the metagenomes (Fig. 2).

It should be mentioned that the RefSeq reference genome

sequences (complete or high draft) used in our reference genome

approach to detect errors in assembled contigs or genes were not

based on independent Illumina and Roche 454 data, but typically

represented the consensus sequence assembled using all Illumina

and Roche 454 data available for each genome (hybrid assembly).

To eliminate the possibility that our results were biased by the

selection of reference genomes, we used the reference assembly of

Fibrobacter succinogenes subsp. succinogenes S85, which was sequenced

independently by The Institute for Genomic Research (TIGR

GenBank accession: CP002158.1; JGI GenBank accession:

CP001792.1). We aligned the assembled contigs from 9 Illumina

and 8 Roche 454 assemblies from JGI data for the same genome

against the TIGR reference assembly and calculated base call

error rate and gap open error rate as described above for JGI

genomes. Although the use of the TIGR reference assembly

resulted in a slightly higher number of sequence errors for both

Illumina and Roche 454 data, Illumina consistently showed a

smaller number of sequencing errors and the relative error rate

between the two platforms was similar to that based on the JGI

genome data alone, independent of the reference genome used

(Fig. 6). The higher sequence error rate observed for the TIGR

reference genome might be due to the different strain of F.

succinogenes sequenced or differences in the sequencing platforms or

the assembly protocols used by JGI and TIGR. Finally, our

evaluations showed that the choices of parameters and amount of

input sequence of the assembly did not have any dramatic effect

on the quality of the resulting contigs for both Illumina and Roche

454 assemblies (Fig. 7); thus, the assembly step did not substantially

affect downstream analyses and our conclusions.

Discussion

We assessed the advantages and limitations of the Roche 454

and Illumina platforms for metagenomic studies by sequencing the

same community DNA sample with each platform. The two

platforms agreed on over 90% of the assembled contigs and 89%

of the unassembled reads as well as on the estimated gene and

genome abundance in the sample (Fig. 1). These findings suggest

Figure 4. Roche 454 and Illumina GA II read sequence quality based on isolate genome data. Roche 454 sequencing quality is evaluated
in panels A through D, which show: (A) base call error rate of individual reads (x-axis) for each genome evaluated (y-axis); (B) base call error rate (y-
axis) plotted against the G+C% of the genome; (C) gap opening error rate of individual reads (x-axis) for each genome evaluated (y-axis); (D) gap
opening error rate (y-axis) plotted against the G+C% of the genome. Illumina GA II sequencing quality is evaluated in panels E and F, which show: (E)
base call error rate of individual reads plotted against the G+C% of the genome; and (F) gap opening error rate of individual reads plotted against the
G+C% of the genome. Panels A and C represent the variation observed in reads from different (replicate) datasets of the same genome; red bars
represent the median, the upper and lower box boundaries represent the upper and lower quartiles, and the upper and lower whiskers represent the
largest and smallest observations. All 2D plots (panels B, D, E, and F) represent the arithmetic average of the medians of each dataset for the same
genome; Illumina medians were identical among replicate datasets; therefore, only one value is shown in panel E. The results show that Illumina
sequence quality was affected less than that of Roche 454 by the G+C% content of the sequenced DNA (note the lower r-squared value and the slope
in E). Thus, the results reported for Illumina based on the metagenome of Lake Lanier (47 G+C%) should be also applicable to metagenomes with
different G+C% contents.
doi:10.1371/journal.pone.0030087.g004
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that both NGS technologies are reliable for quantitatively assessing

genetic diversity within natural communities. Moreover, Illumina

yielded longer and more accurate contigs (e.g., fewer truncated

genes due to frameshifts) despite the substantially shorter read

length relatively to Roche 454 and the comparable average

sequencing error in the raw reads of the two platforms (,0.5% per

base in our hands; Fig. 2B). In addition, given the monetary

savings (e.g., we obtained the Illumina data for about one fourth of

the cost of the Roche 454 data), Illumina, and short-read

sequencing in general, may be a more appropriate method for

metagenomic studies. We also quantitatively assessed the errors in

the consensus sequences of the derived assemblies. Roche 454

recovered 14% fewer complete genes than Illumina (Fig. 2B, inset)

and this was primarily attributable to a higher sequencing error

rate associated with A- and T-rich homopolymers (Fig. 3), which is

in agreement with previous results [5,11]. These errors were not

observed in the Illumina data, presumably due to both the high

sequence coverage that greatly facilitated the resolution of

homopolymer ambiguities and the less pronounced sequencing

biases of Illumina (Fig. 4). Nevertheless, about 1% of the total

genes recovered in the Illumina assembly contained homopoly-

mer-associated sequencing errors and this number increased to

about 3% when non-homopolymer-associated errors were also

taken into account (for contigs showing 106 coverage, on

average). These results reveal the type and frequency of

sequencing errors to expect when performing NGS-enabled

metagenomic studies. Although Illumina generally provided

equivalent assemblies with Roche 454, there may be cases where

Illumina might be inferior to Roche 454. For example, Roche 454

sequencing may be advantageous for resolving sequences with

repetitive structures or palindromes or for metagenomic analyses

based on unassembled reads, given the substantially longer read

length (Fig. 1B).

Although our metagenomic analysis is based on a single

community sample, we believe it is robust and informative. Our

previous study [17] as well as those of others [20,21] reported high

reproducibility of Illumina-based and 454-based DNA sequencing

within the same community sample. More importantly, most of

our findings from metagenomic data were reproducible in data

from isolate genomes, which were sequenced by both sequencing

platforms and showed a range of G+C% content (Figs. 4, 5, 6 and

Table 1). Simulations with the isolate genome data also revealed

that our conclusions were not substantially affected by the

assembly protocols or the amount of input data used (Fig. 7).

Some of our results (e.g., assembly N50 comparisons, Fig. 2)

should be independent of the NGS platform considered and

broadly applicable to short-read sequencing. Lastly, our prelim-

inary evaluation indicates that the latest Illumina sequencer (Hi-

Seq 2000) performs similar to Illumina GA-II in terms of read

length and quality; hence, our results should be applicable to this

sequencer as well.

NGS platforms continue to improve, while new major

advancements in sequencing chemistries are on the horizon

[22], creating a lot of excitement among microbial ecologists and

engineers. The results presented here revealed the errors and

limitations as well as the strengths in current metagenomics

practice, and should constitute useful guidelines for experimental

design and analysis. Our work also provides a methodology for

evaluating and comparing metagenomic data from NGS plat-

forms.

Materials and Methods

Sampling, DNA extraction, and sequencing
Samples were collected from Lake Lanier, Atlanta, GA, below

the Browns Bridge in August 2009 and community DNA was

Table 1. Isolate genomes used in the analysis.

Species RefSeq
Genome
size (Mb)

GC
(%)

%
coding

Protein
coding genes

Size of 454
data (Mb)

Size of Illumina
data (Mb)

Acetohalobium arabaticum DSM 5501 NC_014378 2.47 36 85 2,282 603 2,982

Arcanobacterium haemolyticum DSM 20595 NC_014248 1.99 53 86 1,731 252 2,871

Archaeoglobus profundus DSM 5631 NC_013741 1.56 42 91 1,819 600 4,479

Arcobacter nitrofigilis DSM 7299 NC_014166 3.19 28 92 3,126 504 6,087

Bacillus tusciae DSM 2912 NC_014098 3.38 59 84 3,150 124 2,285

Brachyspira murdochii DSM 12563 NC_014150 3.24 27 85 2,809 331 5,115

Cellulomona flavigena DSM 20109 NC_014151 4.12 74 90 3,678 563 3,394

Chitinophaga pinensis DSM 2588 NC_013132 9.13 45 88 7,192 161 3,769

Conexibacter woesei DSM 14684 NC_013739 6.36 72 93 5,914 303 2,578

Fibrobacter succinogenes substr. succinogenes S85 NC_013410 3.84 48 90 3,085 769 3,275

Haloterrigena turkmenica DSM 5511 NC_013743 3.89 65 84 3,739 205 2,581

Ignisphaera aggregans DSM 17230 NC_014471 1.88 35 86 1,930 258 2,739

Ilyobacter polytropus DSM 2926 NC_014632 2.95 34 85 1,889 210 5,854

NC_014633 (plasmid) 0.96 34 83 992

Olsenella uli DSM 7084 NC_014364 2.05 64 86 1,739 248 3,542

Segniliparus rotundus DSM 44985 NC_014168 3.16 66 90 3,006 245 3,170

Spirochaeta smaragdinae DSM 11293 NC_014363 4.63 48 92 4,219 509 3,306

Streptosporangium roseum DSM 43021 NC_013595 10.34 70 85 8,945 373 2,506

Thermosphaera aggregans DSM 11486 NC_014160 1.32 46 90 1,387 243 3,181

doi:10.1371/journal.pone.0030087.t001
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extracted as described previously [17]. The DNA sample was

divided into two aliquots of equal volume. One aliquot was

sequenced with the Roche 454 FLX Titanium sequencer (average

read length, 450 bp) and the other one with the llumina GA II

(1006100 bp pair-ended reads) at Emory University Genomics

Facility.

Metagenome assembly and contig error calculation
We obtained a total of 513 Mbp and 3,640 Mbp Roche 454

and Illumina sequence data, respectively. Lanier.454 and

Lanier.Illumina reads were trimmed at both the 59 and 39 ends

using a Phred quality score cutoff of 20. Sequences shorter than

200 bp (Lanier.454) and 50 bp (Lanier.Illumina) after trimming

were discarded. The resulting datasets were 502 Mbp (Lanier.454)

and 2,460 Mbp (Lanier.Illumina) in size; all our bioinformatic

analyses and comparisons were based on these trimmed datasets.

Newbler (version 2.0) was used to assemble Lanier.454 with

parameters set at 100 bp for overlap length and 95% for

nucleotide identity. For Lanier.Illumina, the SOAPdenovo [23]

and Velvet [24] de novo assemblers were used to pre-assemble short

reads into contigs using different K-mers. We performed six

independent assemblies, using K = 21, 25, 29 for the three

Figure 5. Percentage of reference genome recovered by Illumina (yellow) and Roche 454 (green) assemblies. Graph shows the
variation observed in assemblies from different (replicate) datasets of the same genome; red bars represent the median, the upper and lower box
boundaries represent the upper and lower quartiles, and the upper and lower whiskers represent the largest and smallest observations. Note that
Illumina assemblies recovered a significantly larger fraction of the reference genome than Roche 454 assemblies (two tailed Whitney-Mann U test p-
value = 0.014), which is consistent with the results from the metagenomes (Fig. 2). The results for the isolate genomes were based on Illumina input
reads that were about 5 times as many as the Roche 454 input reads to provide a ratio that was similar to that of the metagenomic comparisons (5:1).
doi:10.1371/journal.pone.0030087.g005
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SOAPdenovo runs and K = 23, 27, 31 for the three Velvet runs.

The resulting contigs were merged into one dataset, and Newbler

was used to assemble this dataset into longer contigs, using the

same parameters as in the assembly of Lanier.454 data. Our

previous evaluation showed that our hybrid protocol outperforms

other approaches for assembling metagenomic and genomic data

[18]. Individual reads were mapped against the assembled contigs

using Bowtie [25] with default settings to calculate average contig

coverage. Protein-coding genes encoded in the assembled contigs

were identified by the MetaGene pipeline [26]. Contigs were

defined as shared between the assemblies of the Lanier.454 and

Lanier.Illumina data when they shared at least 95% nucleotide

sequence identity and overlapped by at least 80% of their length

(for the shorter contig). The same cut-off was used to map raw

reads on contigs. The 95% identity cut-off was used to

accommodate the maximum sequencing error observed in raw

reads of an isolate genome (about 5%); other cut-offs are not as

appropriate as the one used above and were not evaluated.

Raw (not assembled) read comparisons
We compared the reads from the Lanier.Illumina dataset

against the Lanier.454 dataset to identify the fraction of reads

shared between the two datasets. Shared reads were defined as

those that mapped on reads of the other dataset using Bowtie with

default settings [25]. For comparing gene calling accuracy on

unassembled reads, we employed FragGeneScan [27] to predict

genes on Lanier.454 and Lanier.Illumina reads using the 454 1%

error rate model and the Illumina 0.5% error model, respectively.

We extracted the predicted gene sequences from the reads and the

corresponding amino acid sequences were searched against the

genes of the reference assembly of the same dataset using BLAT

[28]. The matching gene of the assembly from the protein search

using BLAT was compared to the gene matched by the raw read

using Bowtie and instances of agreements (matched genes),

disagreements (mismatched genes) and ‘‘no match found’’ (BLAT

search did not match a gene while Bowtie mapping did) were

counted and reported in Fig. 1B.

To estimate the previously described errors associated with

GGC motifs in Illumina reads [29], we selected the Roche 454

reads that were covered by at least 10 Illumina reads per base, on

average, as reference sequences in Bowtie mapping (,86.6 Mbp

of reads in total). An in-house package written in Python and Perl

identified disagreements between Illumina and the reference

Roche 454 reads associated with GGC motifs using the rules

described previously [29] and counted the number of errors

(scripts available upon request).

Homopolymer error rate
We assessed homopolymer error rate in metagenomic data

using two different strategies. First, we examined disagreements in

gene sequences annotated on contigs larger than 500 bp and

shared between the Lanier.454 and Lanier.Illumian assemblies.

For this, Blastn [30] was employed to search all gene sequences

annotated in the Lanier.454 assembly against those in the

Lanier.Illumina assembly. Reciprocal best matches (RBMs), when

overlapping by at least 500 bp and showing higher than 95%

nucleotide identity, were identified and re-aligned using ClustalW2

[31]. Homopolymer disagreements between the sequences in the

alignment were identified and counted using a custom Perl script

(the same approach was applied to the isolate genome data as

well). Second, we directly assessed homopolymer error rate against

reference genomes from GenBank that represented close relatives

(average amino acid identity .70%) of the microorganisms

sampled in the Lanier metagenome. To select appropriate

genomes, we first identified the putative phylogenetic affiliation

of each assembled contig (genus level) in the Lanier.454 and

Lanier.Illumina datasets and ranked genera in terms of their

abundance. Abundance was determined based on the number and

coverage of the contigs, as described elsewhere [17]. Six genomes

that represented abundant genera in the lake metagenome were

Figure 6. Comparisons of Illumina and Roche 454 assemblies against an independently sequenced reference genome. Nine Illumina
and eight Roche 454 assemblies from independent replicate datasets of the Fibrobacter succinogenes subsp. succinogenes S85 genome sequenced at
JGI were compared against the reference assemblies from the JGI and TIGR genome projects of Fibrobacter succinogenes subsp. succinogenes S85.
Graphs show the calculated base call error rate (A) and gap open error rate (B) for each comparison (figure key). Red bars represent the median, the
upper and lower box boundaries represent the upper and lower quartiles, and the upper and lower whiskers represent the largest and smallest
observations.
doi:10.1371/journal.pone.0030087.g006
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identified this way. The genomes were: Candidatus Pelagibacter

ubique HTCC1062 (a-Proteobacteria), Opitutus terrae PB901 (Verruco-

microbia), Polaromonas sp. JS666 (b-Proteobacteria), Polynucleobacter

necessarius STIR1 (b-Proteobacteria), Synechoccocus sp. RCC307

(Cyanobacteria), and Synechoccocus sp. PCC6803 (Cyanobacteria). The

protein-coding sequences of these genomes were compared against

their homologs from the two assemblies to determine homopol-

ymer errors, as described above for direct comparisons between

the two assemblies. In order to account for possible biases

introduced by uneven genus abundance and provide statistically

robust estimates, we employed a Jackknifing resampling method.

We sampled 50% of the total homopolymers at random and

estimated homolopolymer rate in this subset. The results reported

represent averages from 100 iterations. A similar strategy based on

reference genome sequences was used to identify and count non-

homopolymer-related, single-base errors.

Analysis of isolate genome data
Assemblies of isolate genome sequences (closed or high-draft)

were downloaded from the NCBI RefSeq database (called

‘‘reference assemblies’’ for convenience); raw Illumina and Roche

454 sequencing reads were available through the Joint Genome

Institute (JGI, www.jgi.doe.gov). To compare the quality of

Illumina vs. Roche 454 contigs assembled from isolate genome

data the following approach was followed: Illumina data for each

genome was randomly sampled to form several technical replicate

datasets, each of which provided about 1006 coverage of the

reference assembly, on average. Velvet was used to assemble each

of these Illumina datasets with K-mer set at 31. Newbler was used

to assemble Roche 454 replicate datasets (about 206 coverage on

average), using 50 bp minimal alignment length and 95%

alignment identity. The amount of Illumina and Roche 454 input

sequence data was chosen so that the ratio of the two was similar

to the ratio in the metagenomic analysis (2.5 Gb Illumina reads

versus 500 Mbp Roche 454 reads, or 5:1). Between 10 and 15

replicate datasets for each genome and each sequencing platform

were analyzed; the exact number depended on the amount of total

data available for each genome. Gene sequences from assembled

contigs were extracted and ClustalW2 [31] was used to align the

sequences against their orthologs from the reference assembly.

The alignments were used to count frameshift errors separately for

each Illumina or Roche 454 dataset. We also measured the

percent of the reference genome recovered in each assembly and

the degree of chimerism of contigs as follows: A 500 bp window

was used to slide through all assembled contig sequences longer

than 500 bp with a step of 100 bp. This resulted in a set of 500 bp

long sequence fragments, which were subsequently mapped onto

the reference assembly using Blastn. The percent of the reference

genome recovered by these fragments as a fraction of the total

length of the reference assembly was calculated using a custom

Perl script. Similarly, the reference assembly sequence was cut into

500 bp long fragments and mapped onto assembled contigs longer

than 500 bp; the unmapped regions of these contigs were

identified as chimeric sequences and their total length (as a

fraction of the total length of the contigs) represented the degree of

chimerism for each dataset. Finally, we calculated the average

single-base call error rate and gap opening error rate of individual

reads of each dataset as follows: raw reads were trimmed using the

same standards as described above and subsequently mapped onto

the corresponding reference assembly from RefSeq. Base call

errors and gap opening errors were identified as discrepancies

between the read sequence and the reference assembly sequence

using a custom Perl script.

Assessing the effect of assembly parameters
We used the isolate genome data to evaluate the effect of the

parameters of the assembly on the quality of the contigs as follows:

a series of assemblies were obtained for genomes of low (Arcobacter

nitrofigilis, 28%), medium (Fibrobacter succinogenes, 48%), and high

(Cellulomonas flavigena, 74%) G+C% content. For each genome, we

varied the amount of sequences input to the assembly and the

primary parameters of assembly (K-mer for SOAPdenovo and

Velvet, and minimal alignment length for Newbler). Assemblies

were obtained for each possible combination and the base call

error and gap opening error of the resulting assemblies were

determined as described for individual reads above.
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