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Abstract

Splicing is a complex process regulated by sequence at the classical splice sites and other motifs in exons and introns with
an enhancing or silencing effect. In addition, specific histone modifications on nucleosomes positioned over the exons have
been shown to correlate both positively and negatively with exon expression. Here, we trained a model of ‘‘IF … THEN …’’
rules to predict exon inclusion levels in a transcript from histone modification patterns. Furthermore, we showed that
combinations of histone modifications, in particular those residing on nucleosomes preceding or succeeding the exon, are
better predictors of exon inclusion levels than single modifications. The resulting model was evaluated with cross validation
and had an average accuracy of 72% for 27% of the exons, which demonstrates that epigenetic signals substantially mark
alternative splicing.
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Introduction

The human genome contains around 20 000 genes and

currently around 140 000 transcripts coding for different protein

isoforms are known [1]. The process of concatenating the exons

into a complete transcript, splicing, involves elimination of introns

and specific exons and is performed by the spliceosome; a massive

complex containing hundreds of proteins [2]. The constitution and

function of the spliceosome is not yet fully known. The vast

majority of eukaryotic introns end and start with specific

sequences, AG and GT and these acceptor- and donor-sites

constitute an invariant part of a signal by which specific subunits of

the spliceosome can recognize the intron-exon boundaries [3]. On

the mRNA-level, there are also exonic and intronic splicing

enhancers (ESEs and ISEs) and silencers (ESSs and ISSs) [4,5]

These are short (6–8 nucleotides) sequence motifs that can be

bound by proteins that further guide the splicing process.

Recently, it has been suggested that in a given cell type, sequence

information alone is enough to distinguish constitutively spliced

exons from alternatively spliced exons [5]. However, this

sequence-based system for splicing is not sufficient since different

protein isoforms are produced by different cell types [6], and so

the cell needs to regulate the splicing through a system not locked

into the sequence itself. These epigenetic mechanisms are not the

sole answer [7], but several DNA-binding proteins and chromatin

remodelers have been shown to be important, and recently, post

translational modifications to the histone proteins have been

shown to, at least partly, regulate exon inclusion/exclusion

[8,9,10,11,12] in gene transcripts. Conceptually, splicing can be

achieved in two ways, either post-transcriptional or co-transcrip-

tional. The classical textbook model is post-transcriptional where

the whole mRNA is first transcribed and then the introns and,

possibly, some exons are removed. Recently, the co-transcriptional

model has been proposed [13,14,15,16,17] where inclusion/

exclusion of a specific exon into the mRNA is decided before the

whole mRNA is transcribed. The co-transcriptional model puts

the spliceosome close to the DNA during transcription and it thus

has the possibility to read and recognize the histone code.

Recently, a number of studies [8,9,10,12,18,19] have shown

genome-wide correlation between specific nucleosome modifica-

tions over internal exons and the exons expression and specifically,

Luco et al [11] demonstrated histone modification mediated splice

site selection in a set of genes. Taken together, this suggests an

epigenetic signalling platform that could both serve as recognition

of splice sites and determine inclusion and exclusion of exons into

transcripts. Current studies on epigenetic control of expression

focus on finding the strongest relations between a single histone

modification and the expression of the exon and the combinatorial

aspects have not yet been comprehensively addressed [20]. Here

we present a combinatorial rule-based model that better reflects a

part of the complex biological machinery behind splicing.

Following our recent study [8] on nucleosome positioning and

histone modifications over internal exons, we have now created a

data-driven model which predicts exon inclusion levels from a
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binary (present/absent) representation of modifications to nucle-

osomes preceding, on, or succeeding the individual exon.

Results and Discussion

The rule-based model was created using the most comprehensive

data set on histone methylations and acetylations [21,22] available

to date. In all, 38 histone modifications are available in CD4+ T-

cells and these where used to build a decision system with the

modifications as attributes and exon inclusion or exclusion based on

exon expression [23] data as decision. For each histone modification

we considered regions preceding and succeeding the exons as well as

centred over the exon giving a total of 114 attributes (3*38). Each

histone modification was discretized as present or absent over the

three regions (Methods). The generated rules are in the form of ‘‘IF

… THEN ..’’ and a typical rule will read as ‘‘IF H2BK5me1

preceding exon is absent AND H3K4me1 succeeding exon is

present AND H3K36me3 succeeding exon is absent AND

H4K29me1 preceding exon is present THEN exon is exclud-

ed’’. This means that the model is in human readable form and thus

immediately interpretable and could be used as starting point for

detailed experimental investigation on the interplay between histone

modifications in relation to alternative splicing.

The data set used to train the model was carefully constructed.

The inclusion level of an exon in a gene was determined by first

calculating the expression of the gene as an average over the ten

highest expressed exons annotated to that gene. The exon

inclusion level was then calculated as the quote between the exon

expression and the average gene expression, and the exons with an

inclusion level below 0.4 or between 0.9 and 1.1 were annotated as

‘spliced out’ or ‘included’, respectively. The exons were then

filtered using several criteria. Firstly, we excluded the top 20%

expressed genes as it has previously been postulated that, due to

frequent polymerase II traffic, highly expressed genes are depleted

of nucleosomes [24]. Secondly, we removed exons ranked first or

last in any transcript and required that the exons were at least

50 bp long, flanked by at least 360 bp of intronic sequences

(Methods). Lastly, we removed any exons that overlapped another

exon. A schematic representation of the data is shown in Figure 1.

The final data set of excluded exons contained 11 165 unique

examples and we randomly selected the same number of unique

exons from the 12 692 examples in the included class to get

balanced classes for the training of the model. This was repeated

ten times to catch variations of the results based on the selection of

examples and the heuristic algorithms used for rule generation.

The attributes most contributing to the decisions were ranked

using Monte Carlo feature selection [25] and the 20 highest

ranked of the original 114 attributes were kept. Strikingly,

modification to nucleosomes immediately preceding and succeed-

ing the exon were often ranked higher than their counterparts

‘centred on’ exons and among the 20 selected attributes, only two

were centred on the exon (Table S1). The 20 top-ranked attributes

were used to build a rule-based classifier using the Rosetta system

[26]. In order to prevent over-fitting of the rule model, we

generated so-called approximate reducts and filtered the generated

rules on both accuracy and support (Methods). The final model

consisted of 165 rules and covered 27% of the selected exons. The

performance of the primary model was assessed by a 10-fold cross

validation schema for the ten data sets and yielded an average

accuracy of 71.9% with a standard deviation of 0.3%. This

accuracy is considerably higher than the 50% that would be

expected by random guessing on the two equally sized data sets.

Histone modifications previously [8,9] identified as related to exon

expression were present in the rules (e.g. H2BK5me1 and

H4K20me1) as well as previously less well-studied modifications.

However, the strongest univariate candidates [8,9,10,11] e.g.

H3K79me1, H3K79me3 and H3K36me3, were all selected as

significant by the MCFS, but only H3K36me3 succeeding and

preceding the exon were among the 20 highest ranked

modifications and thus included in the rule model. Surprisingly,

H3K36me3 was always required to be ‘absent’ in the rules for

both decisions although it has previously been suggested that its

presence is related to inclusion [8,10,11]. These results lead us to

investigate the properties of the H3K36me3 histone modification

in particular and we could conclude that the distribution of this

specific mark was too similar (Table S2) over both our classes for

its presence/absence to constitute a rule in itself. When

H3K36me3 was explicitly absent, however, it the model was able

to distinguish between ‘included’ and ‘spliced out’ exons using

combinations with other marks.

Figure 1. Schematic representation of the constructed data set. For each histone modification, e.g. H3K36me3, we deem it as present or
absent in the region centred over the exon and the regions preceding and succeeding depending on if the histone modification pileup in such region
is higher than a defined cut-off. This cut-off is specific for each histone modification since they were sequenced at difference depths.
doi:10.1371/journal.pone.0029911.g001
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In the model, the number of condition attributes in the rules

varied between two and nine (Figure S1). The most common

number of condition attributes was five (56%) for the ‘spliced out’

class and six to eight (75%) for the ‘included’ class. In total 66% of

the rules in contained 6–8 condition attributes and no rules

consisted of a single attribute. Only 6 rules out of the total 165 did

not require at least one histone modification to be absent from the

region. The complexity of the interplay between histone

modifications is illustrated in Figure 2A, demonstrating pair-wise

co-occurrence of attributes in the rules predicting ‘spliced out’. We

calculated the predicted accuracy of the rules assuming that the

histone modifications were independent from each other (Meth-

ods). If the accuracy of a rule is greater than the predicted sum of

its parts, this corresponds to rules where the combination indeed

gives more information about the exon inclusion level than what

can be obtained using only one attribute at a time. If it is not, it

could be explained by correlation between attributes in the rules,

or by rules that only summarize the contribution of independent

attributes. Many of the histone modifications are indeed expected

to be correlated and, moreover, modifications present e.g. centred

on the exon are often accompanied by modifications in the

flanking introns and vice versa.

We observed an overall combinatorial effect for the ‘spliced out’

class where 23 out of the 32 rules had a combinatorial gain in

accuracy (Table S3) and 4 of them had a gain of more than 10

percentage units. This suggests that the attributes, e.g. histone

modifications, in rules predicting ‘spliced out’ exons share control

of exon inclusion levels and are not only independent correlations

taken together. The rules for the ‘included’ class were of a different

character. They contained, in general, more attributes and many

of these were required to be absent. Only 2 out of the 133 rules

showed a combinatorial gain, and we did not find specific patterns

for inclusion, but rather a description of the background state

exons without any ‘spliced out’ signals. The pair wise co-

occurrence of attributes for the ‘included’ class is illustrated in

Figure 2B. The five top-ranked rules for both classes are shown in

Table 1, and footprints for the exons that fulfilled some of these

are shown in Figure 3A–D. Note that there all histone

modification signals were low when the class is ‘included’

(Figure 3D), which confirmed that this correspond to a

background state of an exon.

Due to the fact that the model was trained only on exons that

did not overlap one another, we expect it to explain splicing of

cassette type that can be estimated on cell population level from

expression data. The model thus cannot consider e.g. splicing

caused by alternative exon boundaries and such events needs to be

formulated as a classification problem and additional investiga-

tions are required to assess whether other splicing patterns can be

predicted using out approach.

In conclusion, we have shown that a substantial proportion of

alternative splicing events can be attributed to the combinatorial

status of histone modifications on nucleosomes preceding, on, or

succeeding the exon and that combination of specific histone

modifications are often better predictors of exon inclusion levels

than single histone modifications.

Methods

Experimental Data
The data used here was based on ChIP-seq histone modification

data for 38 methylations and acetylations [21,22] in CD4+ T cell

together with exon expression data [23].

A signal assembly for the ChIP-seq fragments was done as

described by Andersson et al. [8] and individual fragments were

Figure 2. Pair-wise co-occurrence of histone modifications in the model. (A) Rules predicting ‘spliced out’. Any each histone modification
that occurs in any rule is labelled on the outer ring, and co-occurrence with other histone modifications are illustrated by ribbons across the circle.
The width of the ribbon correlates to the number of rules where the two modifications co-occur as attributes. Colouring of the ribbons indicates
ranking of number of rules with the given pair over the whole model with the lower 75% coloured in grey. The colours of the inner ring correspond
to the colour in the outer ring in the other end of a given ribbon. The figure labels are ‘I’: H2BK5me1, ‘II’: H3K36me3, ‘III’: H3K4me1, ‘IV’: H3K9me1, ‘V’:
H3K9me2, ‘VI’: H3K9me3, ‘VII’: H3R2me1, ‘VIII’: H4K16ac, ‘IX’: H4K20me1, ‘X’: H4K91ac; S: succeeding the exon, P: preceding the exon, E: on the exon; 0:
is absent, 1: is present (e.g. ‘‘A P0’’ is interpreted as ‘‘H2BK5me1 preceding the exon is absent’’). (B) Same as (A) but for the rules predicting ‘included’
exons. Images was generated using Circos [29].
doi:10.1371/journal.pone.0029911.g002
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extended to 150 bp and pileup signals was stored in a binary

format [27]. To discretize the modification signals to binary

(present/absent) attributes for three positions in relation to the

exon (preceding, on or succeeding the exon), exons and the

closest 180 bp of flanking intronic regions were searched for

significant enrichment of the histone modification signals,

assuming a Poisson distribution (p,0.05) of the fragments. 80%

of the genome was considered mappable in the calculation of the

mean signal for the Poisson distribution. The 20 bp closest to the

intron/exon or exon/intron junction on both sides were excluded

from the search.

We considered only internal exons, that is we excluded all exons

that where annotated as first or last in any transcript. Exons longer

than 50 bp with flanking introns longer than 360 bp and no

overlap to other exons were identified. As introns of more than

360 bps were required in the exon selection, the intronic regions

selected for consecutive exon could never overlap one another.

The gene expression may theoretically be approximated as the

highest expression of an exon in the gene, but to avoid high noise

impact the gene expression was calculated from the exon

expression as the average of the ten highest expressed exons in

the gene. The 20% highest expressed genes were excluded from

the study and the inclusion levels of the remaining exons were

calculated as the exon expression divided by the gene expression.

Genes with only one exon were excluded and among the

remaining exons 13 374 which had an inclusion level below 0.4

were annotated as ‘spliced out’ and 11 587 which had an inclusion

level between 0.9 and 1.1 were annotated as ‘included’. Exons

with no modifications present were removed from the data, which

gave in total 12 692 ‘included’ and 11 165 ‘spliced out’ exons. All

annotation data on exons were taken from the Ensembl [28]

system (H.Sapiens 54_36p).

Table 1. Top-ranked rules.

ID LHS Rule Support Accuracy Comb gain P-value

S1 H2BK5me1.prec = 1 H2BK5me1.succ = 1
H3K4me1.succ = 0 H3K36me3.prec = 0
H3K36me3.succ = 0 H4K20me1.prec = 1
H4K91ac.prec = 1

358 0.737 26.1 1.54E-025

S2 H3K9me1.prec = 1 H3K4me1.prec = 0
H3K36me3.succ = 0 H4K20me1.succ = 1
H4K91ac.prec = 1

307 0.733 +1.4 2.18E-021

S3 H2BK5me1.prec = 1 H2BK5me1.succ = 1
H3K36me3.prec = 0 H3K36me3.succ = 0
H4K20me1.prec = 1 H4K91ac.succ = 0

296 0.736 +4.6 3.30E-021

S4 H3K4me1.prec = 0 H3K4me1.succ = 1
H3K36me3.succ = 0 H4K20me1.prec = 1
H4K91ac.prec = 1

195 0.785 +4.4 9.48E-020

S5 H2BK5me1.prec = 0 H3K4me1.succ = 1
H3K36me3.succ = 0 H4K20me1.succ = 1

260 0.738 +11.8 4.62E-019

I1 H2BK5me1.prec = 0 H2BK5me1.succ = 0
H3K9me1.prec = 0 H3K36me3.prec = 0
H3K36me3.succ = 0 H4K16ac.prec = 0
H4K20me1.prec = 0 H4K91ac.prec = 0
H4K91ac.succ = 0

3738 0.775 27.5 6.99E-244

I2 H2BK5me1.prec = 0 H2BK5me1.succ = 0
H3K9me1.prec = 0 H3K36me3.prec = 0
H3K36me3.succ = 0 H4K16ac.prec = 0
H4K20me1.succ = 0 H4K91ac.prec = 0
H4K91ac.succ = 0

3737 0.774 27.7 5.28E-242

I3 H2BK5me1.prec = 0 H2BK5me1.succ = 0
H3R2me1.prec = 0 H3K9me1.prec = 0
H3K4me1.succ = 0 H3K36me3.prec = 0
H3K36me3.succ = 0 H4K91ac.prec = 0
H4K91ac.succ = 0

3282 0.784 25.6 4.74E-227

I4 H2BK5me1.prec = 0 H2BK5me1.succ = 0
H3R2me1.prec = 0 H3K9me1.prec = 0
H3K36me3.prec = 0 H3K36me3.succ = 0
H4K16ac.prec = 0 H4K20me1.prec = 0
H4K91ac.succ = 0

3026 0.783 25.9 2.72E-205

I5 H2BK5me1.prec = 0 H2BK5me1.succ = 0
H3R2me1.prec = 0 H3K9me1.prec = 0
H3K36me3.prec = 0 H3K36me3.succ = 0
H4K16ac.prec = 0 H4K20me1.succ = 0
H4K91ac.succ = 0

3024 0.782 26.0 1.22E-202

Top ranked rules in the model for ‘Spliced out’ (top) and ‘Included’ (bottom). The ID column contain a rule identifier in which the first letter indicate the rule outcome (S
for ‘spliced out’ and I for ‘included’). The left-hand side of the rule (LHS Rule) is the conditions in the IF-part of the rule. The support is defined as the number of
examples in the data that are covered by the IF-part of the rule and the accuracy is the proportion of the correct decision among those. The combinatorial gain (Comb
gain) is the change in accuracy (percentage points) compared to the theoretical accuracy, assuming independent modifications. The P-value denotes the probability of
the rule calculated from a hypergeometric distribution.
doi:10.1371/journal.pone.0029911.t001
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Model generation and validation
The decision table was created with exons from all autosomes,

taking the histone modifications as condition attributes and the exon

inclusion level as decision. The two inclusion level classes ‘spliced

out’ and ‘included’ were roughly of similar size why all those exons

were used in the Monte Carlo feature selection (MCFS). The MCFS

was performed using dmLab 1.70 [25] with the parameters

s = 5 000, m = 10, t = 5, u = 0 and v = 1. The remaining settings

were mcfs.classifier = j48, mcfs.splitRatio = 0.66, mcfs.balanceClas-

ses = true, mcfs.balanceRartio = 1, mcfs.cutPointRuns = 30, mcfs.

cutPointAlpha = 0.05 and j48.useInfoGain = false. The rankings are

shown in Table S1. Out of 114 attributes, 94 were found significant

(p,0.05) using a randomization test. The 20 highest ranked

attributes were kept for the rule generation step.

Rules were generated in Rosetta [26] with the JohnsonReducer,

relative to the objects and using approximate reducts with a hitting

fraction of 0.80. All 11 165 exons from the ‘spliced out’ class were

selected together with approximately the same number from the

‘included’ class to define a training set with an equal number of

examples from each decision class. This was repeated ten times to

construct ten different data sets. On each of those data sets, a rule

model was trained and a 10-fold cross validation was performed to

assess the performance of the rule model. The cross validation

results were averaged and the rules trained on all data sets were

merged together, and rule accuracy and support were re-

calculated on the original data. The support was calculated as

the number of examples that fit the conditions on the left-hand

side of the rule, and accuracy as the number of correctly classified

objects by the rule divided by the rule support.

Footprints visualizing the mean modification signal-per-bp for

all exons supporting each rule were created using the SICTIN

software [27]. The number of exons that is covered by a rule was

defined as the number of exons that fulfil the IF-part of the rule.

The predicted rule accuracy was calculated assuming linear

independence between the attributes and was calculated as

|T|pT
1pT

2…pT
n/(|T|pT

1pT
2…pT

n+|F|pF
1pF

2…pF
n) were T is the

set of objects in the decision class of the rule, F is the objects in the

other classes, and pC
i is the probability that an object from class C fulfil

condition number i. The probabilities were estimated by counting the

proportion of objects from each class that passed each condition.

Supporting Information

Figure S1 Rule length. The number of rules for the classes

‘Spliced out’ and ‘Included’ shown split on the number of

attributes in the LHS of the rules.

(TIF)

Table S1 Ranking of the histone modifications by their
relative importance (RI). The P-value shows the significance

of the RIs relative the permutation test. The 20 highest ranked

attributes (marked by an ‘x’ to the left) were kept for rule

generation.

(DOC)

Table S2 Exon inclusion depending on the presence of
histone modifications. Inclusion percent is defined as the

percentage of exons from the ‘included’ class.

(DOC)

Table S3 All rules in the classifier. Each rule is represented

as a list of the conditions in the rule (Rule) and the decision

outcome (Class). The support is defined as the number of examples

in the data that are covered by the IF-part of the rule and the

accuracy is the proportion of the correct decision among those.

The theoretical accuracy was calculated assuming independent

modifications, and the combinatorial gain (Comb gain) is the

change in accuracy (percentage points) between the accuracy and

the theoretical accuracy. The P-value denotes the probability of

the rule calculated from a hypergeometric distribution.

(XLS)
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