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Abstract

Information technology has revolutionized the traditional structure of markets. The removal of geographical and time
constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide
and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online
auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food,
we find that agents adopt Lévy flight search strategies in their exploration of ‘‘bid space’’. The Lévy regime, which is
characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude.
We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding
strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are
many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.
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Introduction

Animals searching for scarce food resources display movement

patterns that can be statistically classified as Lévy flights [1–8].

Lévy flights [9] represent the best strategy that can be adopted by

a searcher looking for a scarce resource in an unknown

environment [10], and foraging animals seem therefore to have

learned the best strategy for survival. Lévy flights describe also the

movement patterns of humans in real space [11] and the

variability of economic indices [12], but these observations do

not correspond to search processes as in the case of foraging

animals. Surprisingly, there is no indication of whether humans

also use Lévy flight strategies when searching for scarce resources.

Analyzing apparently unrelated data regarding online auctions, we

address here this question and show that, when searching for

scarce resources, humans explore the relevant space in the same

class of strategies as foraging animals do.

Lowest unique bid auctions are a new generation of online

markets [13–18]. Agents winning lowest unique bid auctions may

purchase expensive goods for absurdly low prices; cars, boats and

even houses can be bought for only hundreds of dollars. The idea

of the auction is strikingly simple. A good, typically with a market

value V of at least a thousand dollars, is put up for auction. The

auction duration is fixed a priori. A bid can be any amount from

one cent to a pre-determined maximum value M, generally lower

than one hundred dollars. Each time an agent makes a bid on a

value 1ƒbƒM, she pays a fee c, which ranges from one to ten

dollars depending on the auction. During the bidding period, an

agent knows only the status of her new bid, that is, whether it is

winning or not. None of the agents knows on what values the other

agents have bid until the end of the auction. When the bidding

period expires, the agent who made the lowest unmatched bid can

purchase the good for the value of the winning bid (see Fig. 1 for

an illustration of the determination of the winning bid).

Lowest unique bid auction markets are competitive arenas.

Each agent performs a search for a single target whose position

changes from auction to auction, as it is determined by the bid

history of the whole population of agents. Since the cost of each

bid is as much as 100 times larger than the natural unit of the bid,

the number of bids that can be made by a single agent is limited

and allows only a partial exploration of the bid space. Successful

agents need to identify good strategies in order to maximize their

winning chances and thus limit their risk.

Lowest unique bid auctions are just a particular variant of

online pay-to-bid auctions, but other types of pay-to-bid auctions

are regularly hosted on the web. For example, in highest unique

bid auction the mechanism of lowest unique bid auction is

inverted, and the winning bid is determined by the highest value

closest to a pre-determined upper bound value. Since these

auctions still involve a blind search of the winning value, highest

unique bid auctions are equivalent to lowest unique bid auctions.

Indeed, in this paper we analyze data taken from both types of

auctions.

Other online pay-to-bid auctions, however, can be very different

from lowest unique bid auctions. For example, the so-called penny

auctions, which have acquired a great popularity in recent years,
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appear quite similar to but are not. As in the case of lowest unique

bid auctions, the cost of the fee is at least 100 times larger of the

bid increment, and as a consequence, the final value of the

winning bid is much lower than the real value of the good up for

auction. However, in penny auctions the value of the winning bid

is publicly known and can only grow during the auction (i.e., the

word ‘‘penny’’ is used because, in penny auctions, bid increments

are equal to one cent). While escalation plays a very important role

in penny auctions, in this type of auctions agents do not need to

explore the bid space because the value of the winning bid is

known. Penny auctions have been the focus of some theoretical

and empirical studies [19–23].

Results

We collected data from three distinct web sites hosting lowest

unique bid auctions. We automatically downloaded and parsed the

content of the tables reporting the bid history of closed auctions.

These data sets contain all the information on individual auctions,

including the details of each bid: its value, when it was made and

who placed it. These data allow us to keep track of all the

movements performed on bid space by a given agent bidding in a

specific auction.

We show in Figure 2A a typical exploration of the bid space

performed by a single agent. The exploration of the bid space is

bursty: consecutive bid values are generally close to each other, but

from time to time the agent performs ‘‘long jumps’’ in bid space.

We first compute the jump lengths (Fig. 2B) and estimate their

probability distribution function (Fig. 2C). We find a strikingly

robust power-law scaling consistent with the exploration of the bid

space using a Lévy flight search strategy [9]. Note that here we use

the notion of discrete Lévy flights. Time and space are in fact

discrete, and the exploration of the bid space is modeled as a

discrete time Markov chain [with transition probability defined in

Eq. 8]. Our discrete model converges to a standard Lévy flight

only in the continuum limit of space and time [24]. The power-law

Figure 1. Unique bid auctions. Illustration of the rules of a lowest
unique bid auction. At the end of the auction, the winner results to be
the agent who has bid 3
other bids are not unique apart from the one of 5 , which is not the
lowest one. In highest unique bid auctions the mechanism is reversed,
and the winner is the agent making the highest unmatched bid.
doi:10.1371/journal.pone.0029910.g001

Figure 2. Individual activity. (A) Bid values explored by agent 1632 on auction 19 in the data set www.uniquebidhomes.com. Bids are sorted
chronologically, and the figure reports the value bt of the t-th bid. The unit of the bid amount is one hundredth of an Australian dollar. (B) Absolute
value of the difference between two consecutive bids. The exploration of the bid space is characterized by a bursty behavior, where many small
movements are occasionally followed by large jumps. (C) Cumulative distribution function of the change in bid value. The distribution is well fitted by
a power-law, with decay exponent consistent with a~1:3+0:1 (dashed line). The agent therefore explores the bid space using a Lévy flight strategy.
Notice that the curve bends down because of the finiteness of the bid space. (D) Probability density function of the Lévy-flight exponents adopted by
agents in lowest unique bid auctions (www.uniquebidhomes.com). The blue line indicates the average value SaT^1:26 of the distribution, the red
line identifies the mode ab^1:21 of the distribution, the orange lines bound the region within one standard deviation s^0:23 from the average. (E)
Probability density function of the Lévy-flight exponents adopted by agents in highest unique bid auctions (www.bidmadness.com.au). In this case
we find SaT^1:36, ab^1:35 and s^0:23.
doi:10.1371/journal.pone.0029910.g002
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scaling can be observed both at the level of single agents (whenever

the number of bids is sufficiently large for estimating the

distribution; c.f. Figs. 2C and Supporting Information S1) and

globally, by aggregating the length of the jumps made by all agents

in all auctions (Figs. 3A and Supporting Information S1). The

density distribution of the exponents calculated over single agents

is peaked around a mean value SaT^1:3 (Figs. 2D, 2E and

Supporting Information S1), the same exponent value we estimate

for the aggregated data. Significant variations around the average

value are anyway present, and reflect the heterogeneity of the

agent strategies. The density distributions of Figs. 2D and 2E are

in fact calculated by considering different agents bidding in

different auctions.

The power-law scaling and its measured exponent are very

stable. Exponent estimates do not depend on the direction of the

jumps (Figs. 3B and Supporting Information S1) or the level of

activity of the agent (Figs. 3C and Supporting Information S1).

Surprisingly, performing Lévy flights does not appear to be a

learned strategy. Instead it appears to be an intrinsic feature of the

mental search process: the jump lengths in the bid space follow the

same power-law at any stage of the auction (Figs. 3D and

Supporting Information S1).

Our results represent the strongest empirical evidence for the

use of Lévy flight strategies in the search of scarce resources

reported in literature up to now. Differently from previous studies

where ‘‘two orders of magnitude of scaling can represent a luxury’’

[6], here the power-law decay can be clearly observed even over

four orders of magnitude. It is unlikely, though, that adopting Lévy

flight strategies is a deliberate choice of the agents, just as it is not

likely that animals searching for food consciously follow a Lévy

flight strategy. Nevertheless, the data demonstrate that the changes

in bid value are statistically consistent with a power-law decaying

distribution over several orders of magnitude (see and Supporting

Information S1) [25]. Simple correlation measurements show also

that the lengths of consecutive jumps are independent of each

other (see and Supporting Information S1). We believe that the

power-law is valid over such a broad regime because the space is

not strictly physical. That is, movements of tens of thousands of

cents can be performed for the same cost of those of only one cent.

Agents thus explore the bid space in an effectively super-diffusive

fashion, and steps are made with infinite velocity.

Model
Next, we model the lowest unique bid auction process. Consider

N agents competing in a lowest unique bid auction. We model the

successive bids of these agents as Lévy flight searches on bid space.

Each agent moves in a bounded one-dimensional lattice with an a

priori chosen exponent value, which may be regarded as the agent’s

strategy in the auction. In our formulation, every agent performs

the same number T of bids and may return to already visited sites.

At the beginning of the auction, every agent sits at the leftmost site

on the lattice and then performs T movements by changing, at

Figure 3. Bidding strategies of agents are Lévy flights. (A) Probability density function of the bid change for all agents in all auctions. We
analyze data sets from three different web sites hosting auctions: www.uniquebidhomes.com (black circles), www.lowbids.com.au (red squares) and
www.bidmadness.com.au (blue diamonds). (B) Probability density function of positive (black circles) and negative (red squares) bid changes. (C)
Probability density function of the change amount for data aggregated over agents with different levels of activity (T indicates the total number of
bids made by an agent in a single auction). (D) Probability density function of the change amount at different stages of the auctions (t stands for
order of the bid change in the bid history of an agent). In (A), (B) and (D) results have been obtained for lowest unique bid auctions (www.
uniquebidhomes.com). All dashed lines stand for best power-law fits (least square) and all exponent values are consistent with a~1:4+0:1. The unit
of the bid value change amount is one hundredth of an Australian dollar.
doi:10.1371/journal.pone.0029910.g003
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each step, her actual position by an amount randomly drawn from

a power-law distribution. If at stage t{1 the agent with strategy a
is sitting at position j, then at stage t she jumps to position i with

probability proportional to i{jj j{a
. This model provides us with

an independent way to determine the exponent values of the Lévy

flights and offers a strikingly good statistical description of the data

(Fig. 2B and Supporting Information S1).

We focus our attention on a generic agent bidding with strategy

b and on her chances to win auctions in which the rest of the

population is bidding with strategy c. More complicated situations

may in principle be studied with the same formalism.

Single bid
Consider first the case in which agents make a single bid. The

probability that a generic opponent, using bidding strategy c, bids

on value i is

pc ið Þ~i{c=m cð Þ, ð1Þ

with m cð Þ~
PM

j~1 j{c proper normalization constant. Here we

consider the simple case in which all agents adopt the same

bidding strategy c. The probability of Eq. (1) can be anyway made

more general by assuming that agents chose strategies from a

density distribution g að Þ and calculating the probability of Eq. 1 as

p ið Þ~
Ð

da i{a=m að Þ g að Þ. After all agents have bid, there will be

nk bids on the k-th bid value. Such variables clearly obey the

constraint N~
PM

k~1 nk. The probability to observe a particular

configuration nf g~ n1,n2, . . . ,nk, . . . ,nMð Þ is given by

Pc nf gð Þ~N! P
M

k~1

pc kð Þ
� �nk

nk!
, ð2Þ

which is a multinomial distribution with weights given by Eq. (1).

In particular, the probability that only one bid (i.e., a unique bid) is

made on value i is

uc ið Þ~Pc ni~1ð Þ~
X

P
k=i

nk~N{1

Pc nf gð Þ~ Npc ið Þ 1{pc ið Þ
� �N{1

: ð3Þ

Focus now on the agent with bidding strategy b. The probability

that, making a bid on value v, she makes a lowest unique bid can

be calculated exactly by summing the multinomial distribution of

Eq. (2) over all configurations for which there are no bids on the

value v and there is not a unique bid on a value smaller than v, and

finally multiplying this factor by the probability that the agent with

bidding strategy b bids on the value v. Such exact calculation is

however unfeasible due to the extremely high number of possible

combinations, and therefore we approximate the probability that,

making a bid on value v, the agent with bidding strategy b makes a

lowest unique bid as

lb,c vð Þ~pb vð Þ 1{pc vð Þ
� �N

P
kvv

1{uc kð Þ
� �

: ð4Þ

The r.h.s. of Eq. (4) is the product of three terms: pb vð Þ is the

probability that the agent bids on value v; 1{pc vð Þ
� �N

is the

probability that none of the opponents have bid on value v;

Pkvv 1{uc kð Þ
� �

is the probability that none of the bid values

smaller than v are occupied by a single bid made by one of the

opponents. In spite of the fact that Eq. (4) is just an approximation

of the real lb,c vð Þ, the approximation can be considered good

because able to reproduce the results obtained from the direct

simulation of the process (see the section Results). Moreover in the

simplest case in which N~1, it correctly reduces to the exact value

lb,c vð Þ~pb vð ÞPkƒv 1{pc kð Þ
� �

.

Finally, the probability that the agent with bidding strategy b
wins the auction is

wb,c~
XM
v~1

lb,c vð Þ ð5Þ

and, on average, the value of her winning bid is

SvTb,c~
XM
v~1

v lb,c vð Þ: ð6Þ

Repeated auctions
Imagine now to repeat the same auction G independent times.

The probability that the agent bidding with strategy b wins g times

out of G total auctions is given by a binomial distribution

Pb,c gð Þ~
G

g

� �
wb,c

� �g
1{wb,c

� �G{g
:

If the agent with bidding strategy b wins g auctions, the sum of her

winning bids is a random variable I whose probability is

determined by

Rb,c I gjð Þ~
X

v1zv2z...zvg~I

lb,c v1ð Þlb,c v2ð Þ � � � lb,c vg

� �
,

where the sum runs over the integer indices v1, v2, …, vg with the

constraint that their sum should equal I . Excluding bidding costs,

the average return of the agent in g victories is

rb,c gð Þ~ gV{Ið Þ=G:

In general, the probability that the sum of the winning bids is

equal to I in an arbitrary number of auctions won by the player

with bidding strategy b can be calculated as

Rb,c Ið Þ~
X

g

Pb,c gð ÞRb,c I gjð Þ,

and a similar expression can be derived for the distribution of

rb,c gð Þ. However, we are interested in the case in which the

number of auctions diverges (G&1). In this limit, we can

approximate the number of victories with its average

SgT~Gwb,c as well as the sum of the winning bids as

I~SgTSvTb,c~Gwb,cSvTb,c. The return of the agent with bidding

strategy b is therefore

rb,c~wb,c V{SvTb,c

� �
: ð7Þ

For rb,cwc, the agent has a positive return for participating in the

auction, whereas, for rb,cvc, her return is negative.

Levy Flights in Online Auctions
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Multiple bids
Given a generic agent with bidding strategy a, her first bid is

placed on value i with probability q(1)
a ið Þ~i{a=m að Þ. For the

subsequent bids, we need to define a transition matrix Qa, whose

generic element Qað Þji gives the probability that the agent bids on

value i when her previous bid has been made on value j. In our

model, we have

Qað Þji~
i{jj j{a 1{d i{jð Þ½ �

mj að Þ , ð8Þ

for all i and j in the interval ½1,M�. d :ð Þ is the Kronecker delta,

equal to one if its argument is equal to zero, and equal to zero

otherwise. The normalization constant mj að Þ~
XM

i~1,i=j
i{jj j{a

ensures the proper definition of the transition matrix. The matrix

Q describes a random walker performing uncorrelated Lévy flights

with exponent a. Notice that the agent has no memory of her

previous bid values and therefore she may place more than a bid

on the same value. At the generic step t, the probability that the

agent with bidding strategy a bids on the value i is

q(t)
a ið Þ~

XM
j~1

Qað Þji q(t{1)
a jð Þ:

The probability that this agent has bid, during her T bids, on

value i is then

s(T)
a ið Þ~1{ P

T

t~1
1{q(t)

a ið Þ
� �

:

The term 1{q(t)
a ið Þ counts the probability that the agent has not

bid on value i at stage t. The probability that the agent has not bid

on value i at any stage is therefore the product of this single step

probabilities. Finally, the probability that the agent has bid on

value i at least once is calculated as the probability to have bid on

value i an arbitrary number of times minus the probability to have

never bid on value i.

Now go back to the situation in which an agent with bidding

strategy b is opposed to a population of N agents with bidding

strategy c. The probability that the agent with bidding strategy b
has bid, in T steps, at least once on value i is s

(T)
b ið Þ. The

probability that one of the N opponents, bidding with strategy c,

makes a unique bid on value i is given by

u
(T)
b,c ið Þ~N s(T)

c ið Þ 1{s(T)
c ið Þ

h iN{1

1{s
(T)
b ið Þ

h i
: ð9Þ

u
(T)
b,c ið Þ is the product of two terms: N s(T)

c ið Þ 1{s(T)
c ið Þ

h iN{1

is the

probability that a bid on value i is unmatched by any of the other

N{1 opponents, while 1{s
(T)
b ið Þ is the probability that also the

agent, with bidding strategy b, does not bid on value i. The probability

that the agent with strategy b wins the auction with a bid on value v is

l
(T)
b,c vð Þ~s

(T)
b vð Þ 1{s(T)

c vð Þ
h iN

P
kvv

1{u
(T)
b,c vð Þ

h i
, ð10Þ

respectively standing for the product of the probabilities that: she bids

on value v; none of the other agents bids on value v; none of the bids

with value smaller than v is unique. Eqs. (9) and (10) represent the

generalization of Eqs. (3) and (4), respectively. In Eq. (10) we made the

same type of approximation as the one used for writing Eq. (4). The

probability w
(T )
b,c that the agent with bidding strategy b wins the

auction and the average value SvT(T)
b,c of her winning bids can be

respectively calculated using Eqs. (5) and (6). Finally, excluding

bidding costs, the return rb,c of the agent with strategy b over an

infinite number of auctions is again given by Eq. (7). For rb,cwTc, the

agent has a positive return for participating in the auction, whereas, for

rb,cvTc, her return is negative.

Model predictions
We show in Fig. 4 the results obtained with our analytical

model. The presence of a saddle point at cs~bs indicates that bs is

an optimal strategy or Nash equilibrium [26–28]. When the

opponents do not bid rationally (i.e., c=cs), it is more convenient

to use a strategy b=bs. On the other hand, when the other agents

bid rationally (i.e., c~cs), there is no better strategy than bs. The

value of bs depends on the parameters N and T , but for realistic

choices (see and Supporting Information S1 and Fig. 4), bs is in the

range 1:2 to 1:5, the same range of the exponent values we

estimated from the data. Thus, despite its simplicity, our model

captures the main features of the real auctions. Performing Lévy

flights with small exponents (ballistic motion) yields unique bids

that are unlikely to be the lowest. On the other hand, performing

preferentially short jumps (high exponents, diffusive motion)

guarantees to always bid on small values which are unlikely to

be unique. Intermediate values of the exponent (super-diffusive

motion) represent a compromise between staying low and being

unique, and therefore lead to maximal winning chances. These

considerations are valid only for finite values of N and T , which is

the realistic case. Because the available positions in the lattice are

finite, when either N or T grow, the probability to observe a

unique bid progressively approaches zero [29]. Notice that at the

saddle point cs~bs, all Nz1 agents are using the same bidding

strategy and therefore they all have the same chances to win the

auction. In particular, the probability that a generic agent wins the

auction is wbs ,cs
ƒ1= Nz1ð Þ, where the inequality may arise

because a unique and lowest bid may not exist.

The value of the exponent, corresponding to the optimal Lévy

flight strategy in lowest unique bid auctions, is distinct from the

one found in the case of purely random searches [10], and

empirically observed in the movement patterns of foraging animals

[1–8]. The quantitative difference arises, we believe, as a

consequence of the anisotropy of the bid space (low values are

favored), the role of competition, and, more importantly, the fact

that the target is not ‘‘static’’ but moving according to the actions

of the whole population of agents.

Discussion

In lowest unique bid auctions, agents have the possibility to win

goods of high value for impossibly low prices (Figs. 5A and 5C),

However, these all-pay auction markets are designed to be very

profitable for the auctioneers [30–33], who, on average, double

their investment (Figs. 5B, 5D and Supporting Information S1).

For auctioneers, the profitability of lowest unique bid auctions is in

fact guaranteed by the validity of the inequality VvBc, where B

stands for the total number of bids and equals Nz1ð ÞT in our

model. Under this constraint however, the payoff of a generic

agent in a perfectly rational population is always negative since

rbs ,csvwbs,cs Vƒ

V

Nz1
vTc,
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and there is no expected economic gain to be obtained for

participating as a bidder in the auction markets. The rationality of

the economic agents in adopting optimal strategies seems,

therefore, in contrast with the ultimate irrationality that induces

agents to take part in these auction markets.

Competitive irrationality, based on rational choices, has been

investigated in economic theories [34–37], such as the dollar

auction game [38]. The decision to participate or not participate

in lowest unique bid auctions presents a paradox for potential

bidders. If the number of agents participating in the auction is not

too high, then the auction would bring a positive economic return

to the agents, but not to the auctioneers. For example, in the case

in which only one bidder participates in the auction, this bidder

would have the maximal economic return by placing a single bid

on the lowest value allowed. But by this token, every agent will feel

that participating is profitable as long as not many other agents

have bid yet. However, no agent can know how many other agents

will actually bid on the good.

Our results raise a number of important research questions.

First, which brain regions are responsible for implementing the

search strategies used by agents? Since agents use similar search

strategies to bees or birds, it is likely that there is no frontal cortex

involvement. Using neuroimaging techniques such as fMRI it

should be possible to answer this question. Second, does the

economic paradox that the agents face reveal itself in brain activity

patterns? Specifically, do some of the changes in brain activity

observed for preference reversal [39,40] occur also in this case?

Additionally, our results suggest that controlled lowest unique bid

auction markets would offer the possibility to run large-scale

experiments at relatively low cost [41]. These experiments could

be used for monitoring the behavior of agents in auction markets

with tunable optimal search strategies, and see if (and how fast)

agents are able to adapt their behavior to optimality.

Materials and Methods

Data have been collected from three publicly accessible web

sites: www.uniquebidhomes.com, www.lowbids.com.au and www.

bidmadness.com.au. Also, we make available a version of these

data at the web page filrad.homelinux.org/resources.

Figure 4. Model predictions. Economic return rb,c [Eq. (7)], divided by the number of bids T , of an agent bidding with strategy b when competing,
in a lowest unique bid auction with upper-bound M~1,000 and for a good of value V~10,000, against N~100 opponents bidding with strategy c.
Unless specified, the quantity rb,c reported in this plots is computed by numerically solving the equations of the model. (A) Case where each agent
performs a single bid in the auction, for three values of c. Theoretical predictions (lines) are compared with the results of numerical simulations
(symbols). In each simulation of the auction, we randomly extracted N bid values j with probability proportional to j{c , and a single bid value v with
probability proportional to v{b. For a given set of parameters, we repeated the same simulation G~10,000 times, and calculate the number of times
g in which the bid value extracted from the power-law distribution with exponent b was the winning bid, and the sum I of these winning bid values.
The economic return has been finally calculated as rb,c~ gV{Ið Þ=G. (B) Exploration of parameter space reveals the existence of a saddle point at
bs~cs^1:27. (C) Case where each agent performs 10 bids in the auction, for three values of c. Numerical simulations have been carried out as in the
former case, but considering agents moving in the bid space according to Eq. (8). (D) Exploration of parameter space reveals the existence of a saddle
point at bs~cs^1:38.
doi:10.1371/journal.pone.0029910.g004
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