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Abstract

The dimension of the population genetics data produced by next-generation sequencing platforms is extremely high.
However, the “intrinsic dimensionality” of sequence data, which determines the structure of populations, is much lower.
This motivates us to use locally linear embedding (LLE) which projects high dimensional genomic data into low dimensional,
neighborhood preserving embedding, as a general framework for population structure and historical inference. To facilitate
application of the LLE to population genetic analysis, we systematically investigate several important properties of the LLE
and reveal the connection between the LLE and principal component analysis (PCA). Identifying a set of markers and
genomic regions which could be used for population structure analysis will provide invaluable information for population
genetics and association studies. In addition to identifying the LLE-correlated or PCA-correlated structure informative
marker, we have developed a new statistic that integrates genomic information content in a genomic region for collectively
studying its association with the population structure and LASSO algorithm to search such regions across the genomes. We
applied the developed methodologies to a low coverage pilot dataset in the 1000 Genomes Project and a PHASE Ill Mexico
dataset of the HapMap. We observed that 25.1%, 44.9% and 21.4% of the common variants and 89.2%, 92.4% and 75.1% of
the rare variants were the LLE-correlated markers in CEU, YRI and ASI, respectively. This showed that rare variants, which are
often private to specific populations, have much higher power to identify population substructure than common variants.
The preliminary results demonstrated that next generation sequencing offers a rich resources and LLE provide a powerful
tool for population structure analysis.
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Introduction

Next-generation sequencing technologies detect millions or
even ten millions of the genomic variants including both
common and rare variants [1-3]. The structure and organiza-
tion of the human genome can be completely identified by next-
generation sequencing. The fully sequenced population samples
of the human genome are a rich resource for uncovering the
distribution of genetic variability among populations, identify-
ing the population structure and inferring the demographic
histories of natural populations [4,17]. Next-generation se-
quencing will broaden the range of questions open to empirical
investigation of population genetics and offer unprecedented
opportunities for population genetic studies, but also raises
great challenges for our data analysis. The next generation
sequencing technologies suffer from three limitations: sequence
errors, assembly errors, and missing data. The dimension of the
population genetics data produced by next-generation sequenc-
ing platforms is extremely high. However, the “intrinsic
dimensionality” of sequence data which determines the
structure of populations is much lower. It is increasingly
recognized that the high dimension reduction that can reduce
the noises and effectively extract useful population genetics
information from the data holds a key to the success of
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population structure and historical inference from next-
generation sequencing data [4]. This motivates us to use
dimension reduction techniques to represent high dimensional
sequence data in a low dimensional space for population
structure studies.

A widely used method for dimension reduction in population
genetic studies is principal component analysis (PCA) which
searches directions with maximum variability [5-9]. PCA is a
traditional nonparametric linear data reduction method and is
designed to model linear variability in high-dimensional space and
applied to inferring axes of human genome variation PCA
identifies axes that are uncorrelated and represent maximal
variance of the data in a linear projection [10]. The computational
simplicity of PCA makes it a major tool for population structure
and historical inference from large data sets. However, PCA also
suffers from some limitations. It is still difficult to completely reveal
substructure of heterogeneous samples collected from continents
using PCA [7]. More seriously, PCA is sensitive to data noises and
missing values [11].

In the past decade, there has been increasing interest in
developing algorithms for recovering compact, informative low
dimensional structure hidden in the high dimensional space. The
underlying hidden structure of the observed data often arises
from a low dimensional manifold embedded in the high
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dimensional ambient space [11-20]. This approach for recov-
ering hidden manifold structure is usually referred to as manifold
learning which seeks to design a low-dimensional graph
embedding incorporating neighborhood information of the data
set [12,16]. Manifold learning has several remarkable features.
First, it develops a low dimensional graph representation of the
high dimensional data set which optimally preserves local
topological and structural (or neighborhood) information of the
original dataset. The structure of the dataset can be character-
ized by the geodesic distance in isometric mapping (ISOMAP)
[13], or geometrical distance between data points in locally
linear embedding (LLE) [21], or the Laplacian function of the
data points in the Laplacian Eigenmap [12]. In population
genetic studies, the geometrical distance between individuals can
be measured by their sequence (or genetic) similarity. The
neighborhood information among the data points reflects the
population structure of the individuals. Second, the manifold
learning is a nonlinear data reduction technique. Unlike PCA
that searches for representation to maximize the linear
variability of the dataset, the manifold learning searches for a
nonlinear low dimensional representation which optimally
preserves the local neighborhood structure of the data. Third,
the neighborhood preserving projection of manifold learning
makes it relatively insensitive to outliers, sequencing errors and
noises. Outliers in the classical PCA will dramatically increase
dimensions to separate outliers from the bulk of the remaining
data.

The purposes of this report are twofold. The first is to use LLE
[21] as a general framework for inferring relationships among
individuals and population structure from next-generation
sequencing data in the presence of common and rare variants.
The second is to use LLE and LASSO [22] as tools for
developing algorithms to identify structure informative SNPs and
genomic regions. To achieve this, we first introduce geometric
distance and frequency-weighted genetic distance. Then, we use
the LLE method as a tool to develop a low dimensional
representation of the high dimensional genomic data while
preserving the structural relations among the data points. To
facilitate application of the LLE to population genetic analysis,
we systematically investigate several important properties of the
LLE for population structure and history inference and reveal the
connection between the LLE and PCA. To achieve the second
goal, in addition to analyzing a set of markers significantly
correlated with top principal components (PCs) and genomic
regions enriched with these PC correlated markers, we develop
statistical methods for identifying markers that are significantly
correlated with low dimensional representation of the high
dimensional genomic data. To further reduce the impact of the
sequence errors on the population structure inference and
increase the power to identify structure informative genomic
regions, we propose to integrate genomic information content in
a genomic region and use LASSO regression for collectively
testing association of the genomic region with the low
dimensional representation of the high dimensional genomic
data. Finally, to assess the challenges which the LLE method
faces in analyzing next-generation sequencing data, we apply the
LLE and PCA to low coverage pilot dataset in the 1000 Genomes
Project which was released in July, 2010 [23]. To further evaluate
the performance of the LLE for population structure inference,
we also apply the LLE and PCA to the PHASE III Mexico
dataset of the HapMap released in May, 2010 (ftp://ftp.ncbi.nih.
gov/hapmap/genotypes/2010-05_phaselll) [24]. Our results
show that the LLE provide a valuable tool for population
structure analysis of next-generation sequencing data.
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Results

Neighborhood Structure of Genomic Data

A remarkable feature of the LLE for nonlinear dimensionality
reduction is to compute a low dimensional coordinates of high
dimensional genomic data by incorporating neighborhood infor-
mation of the genomic data set. To examine the neighborhood
structure of the genomic data, the LLE was applied to the low
coverage pilot dataset in the 1000 Genomes Project which were
released in July, 2010 (ftp://ftp.1000genomes.cbi.ac.uk). The
dataset included 179 unrelated individuals from four populations:
Yoruba in Ibadan, Nigeria (YRI, 59 individuals); Utah residents
with ancestry from Northern and Western Europe (CEU, 60
individuals); Han Chinese in Beijing, China (CHB, 30 individuals)
and Japanese in Tokyo, Japan (JPT, 30 individuals). In this study,
CHB and JPT populations were combined as one population
(ASI). These samples were sequenced on an average cover rate of
4x. A total of 14,397,437 SNPs on the 22 autosomes were
identified. The LLE algorithm first used geometric distance to
calculate k=7 nearest neighbors and computed the weights that
best reconstructed each data point from its neighbors. Figure 1
shows a graphical representation of 179 individuals based on
14,397,437 SNPs where each node in the graph represents an
individual and each edge represents the connection between a pair
of nodes. If a weight associated with a pair of nodes was not equal
to zero, two nodes were then connected in the graph. Several
remarkable features emerge from Figure 1. First, Figure 1 shows
that individuals from YRI, CEU and ASI formed three
disconnected subgraphs. It clearly uncovered population structure
in the genomic dataset. Second, each subgraph has several hubs
with high node degrees. These individuals might play an
important role in the evolution of population. Third, several
isolated individuals in the YRI and CEU subgraphs were
observed. These individuals shared less genetic similarity with
other individuals in the populations.

It can be shown that the weights in the LLE are a function of
kinship coefficients or the probability sharing IBD (identical by
descent) among individuals (See Material and Methods). There-
fore, the LLE algorithms can be used to estimate the genetic
relationships between individuals. To further illustrate the power
of the LLE for discovering the genetic relations among individual
in the dataset, the LLE was applied to the PHASE III Mexico
dataset of the HapMap released in May, 2010, which included 86
individuals from 33 families (ftp://ftp.ncbi.nith.gov/hapmap/
genotypes/2010-05_phaselll). These samples were genotyped on
both the Illumina Human 1 M BeadChip and the Affymetrix
Genome-Wide Human SNP Array 6.0 platforms. After quality
control and removing SNPs with missing genotype, the final data
set for our analyses consisted of 374,434 SNPs on the autosomes.
Similar to Figure 1, Figure 2 presents the graph of 86 individuals
computed by the LLE algorithms where strong connections
between individuals were represented by real lines with the width
of the lines denoting the degree of connection and weak
connections were represented by dotted lines. Figure 2 demon-
strates that the LLE can reconstruct 33 families. We observe that
all parents and their children were connected by thick real lines. It
1s surprising that all family structures discovered by the LLE are
completely consistent with the records in the original dataset.
Except for family 5 where only the father was genotyped, all
remaining 32 families were connected. Families 8 and 13 and
families 12 and 15 were strongly connected.

Next we consider three generation families with much less
genotyped SNPs. Figure 3 plots a reconstructed three generation
French family from the CEPH dataset by the LLE where 765
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Figure 1. The reconstructed graphs of 179 human genomes from three populations: YRI, CEU and ASI by the LLE algorithms
assuming k=7 nearest neighbors. Each node in the graph represents an individual. A pair of nodes associated with the non zero weight is

connected.
doi:10.1371/journal.pone.0029901.g001

SNPs were genotyped. We observed that the estimated pedigree
structures by the LLE algorithms were consistent with the reported
pedigree structures very well (http://ccr.coriell.org).

Block Structure and Ancestral Representation of
Populations in Low Dimensional Space

To evaluate the topology (genetic structure) preservation of the
LLE for mapping high dimensional genomic data to low
dimensional space, we plot Figure 4 to visualize the map of all
14,397,437 SNPs of 179 individuals from three populations to low
dimensional space by the LLE where the X axis is the individual
index and the Y axis is the eigenvalue that is arranged from large to
small. The color of the pixel at (X, Y) 1s the value of the eigenvector
corresponding to eigenvalue at Y for individual X. Green color
represents negative values, red color represents positive values and
white color represents values close to zero. Figure 4 clearly shows
that the LLE algorithm mapped individuals from three populations
to three separate clusters in low dimensional embedding. It is
interesting to observe that eigenvectors (low dimensional coordi-
nates of the genomic data) have remarkable block structure. Each
block represents a specific population.

@ PLoS ONE | www.plosone.org

If several populations are completely separated, the eigenvec-
tors with zero eigenvalue can be used to define the axes of
population ancestry. The LLE for mapping the low coverage pilot
genomic data in the 1000 Genomes Project to the low
dimensional data space found four eigenvectors with zero
eigenvalue. The unit eigenvector with all equal components
should be removed to enforce the constraint: Y1,=0. The
remaining three eigenvectors with zero eigenvalue were coordi-
nates in low dimensional space of the high dimensional genomic
data of 179 samples from three populations. Figure 5 shows that
these three eigenvectors define the axes of the populations: YRI,
CEU and ASI. We can link each population to an eigenvector.
Three eigenvectors can form three axes and an axis corresponds
to a population. The LLE projects samples from three
populations onto three orthogonal axes with samples from a
population projected onto its corresponding axis.

To assess the impact of different measures of genetic distance
between individuals on the performance of LLE for investigating
population structure, we plot Figure 6A showing the correspond-
ing coordinate of the eigenvector associated with individuals from

YRI, CEU, and CHB and JPT (ASI) mapped by the LLE using
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Figure 2. The reconstructed graph of Mexican Americans in the Los Angeles, California (MEX) population data of HapMap phase Il
released in May 2010 with 86 individuals from 33 families. A Father is represented with a large size square, a mother is represented with a
large size circle and a child is represented with a small size circle. The number insight the squares and circles denotes the index of the family. The
strong connections between individuals are represented by real lines and the weak connections between individuals is represented by dotted lines.

doi:10.1371/journal.pone.0029901.9002

the allele frequency weighted genetic distance. The individuals
from YRI and CEU were mapped to a point in the X axis and Y
axis, respectively, and individuals from the CHB and JPT were
mapped to the Z axis. It is clear from Figure 6 that the individuals
from the CHB and JPT were completely separated. However, as
shown in Appendix S1, the mapped points of the individuals in the
7 axis from the CHB and JPT by the Euclidean distance cannot be
well separated except for the individuals NA18976 and NA18532.
This demonstrates that the genetic distance measures between
individuals have a large impact on the performance of the LLE to
study the population structure.

@ PLoS ONE | www.plosone.org

To further evaluate the performance of the LLE, we plot the
first two PCis for 179 individuals from four populations YRI, CEU,
CHB and JPT on 14,397,437 SNPs in Figure 6B to compare the
power of the LLE and the popular PCA for detecting the
population structure. Unlike in Figure 6A where the individuals
from the CHB and JPT can be well separated by the LLE
algorithms, Figure 6B shows that the individuals from the CHB
and JPT cannot be well separated by the PCA.

The LLE has very nice property that the genetic relationship
information in the original genomic data will be preserved in their
low dimensional projection. We have shown that the low

January 2012 | Volume 7 | Issue 1 | e29901
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Figure 3. A reconstructed three generation French family from the CEPH dataset by the LLE where a rectangle represents a male
and a circle represents a female, assuming k=7. The numbers next to each edge are the weights that reconstruct each of the data points from
its neighbors in the LLE. The red real lines denote connections between the grandfathers and their children or between fathers and their children. The
blue real lines denote connections between the grandmother and their children or between the mothers and their children. The green lines denote

the connections between the grandchildren.
doi:10.1371/journal.pone.0029901.9003

dimensional coordinates are a function of kinship coefficients of
the individuals (Appendix S2). Therefore, we can expect that the
weights that are calculated by the original genomic data can be
well approximated by the weights that are calculated by the low
dimensional coordinates. To confirm this, we plot Appendix S3,
that shows the differences between weights estimated by the
original genomic data and the low dimensional coordinates.
Appendix S3, shows that their differences in weights are very
small. However, we can also see from Appendix S3, that the
difference between the weights estimated by the original genomic
data and PCA are quite large. This further shows that the low
dimensional coordinates may include more genetic information
than the principal components.

Fine-Scale Population Structure by the LLE

To investigate the properties of the LLE for discovering fine-
scale population structure, the LLE was applied to the PHASE III
dataset of the HapMap released in May, 2010 (ftp://ftp.ncbi.nih.
gov). This dataset included 1,397 individuals from eleven
populations: Yoruba in Ibadan, Nigeria (YRI); Utah residents
with ancestry from Northern and Western Europe (CEU); Han
Chinese in Beijing, China (CHB) and Japanese in Tokyo, Japan
(JPT); Luhya in Webuye, Kenya (LWK); Maasai in Kinyawa,
Kenya (MKK); Toscani in Italy (TSI); Gujarati Indians in

@ PLoS ONE | www.plosone.org

Houston, Texas (GIH); Chinese in Metropolitan Denver,
Colorado (CHD);Mexican Americans in Los Angeles, California
(MEX); and African Americans from the Southwestern United
States (ASW). The samples were genotyped on both the Illumina
Human 1 M BeadChip and the Affymetrix Genome-Wide
Human SNP Array 6.0 platforms. After quality control and
removing SNPs with missing genotyping, a total of 374,434 SNPs
on the autosomes were used for our analysis. The results of the
LLE were shown in Figure 7 where the X axis represents an
individual index in each population and the eight eigenvectors
(low dimensional coordinates) with increasing eigenvalues were
placed along the Y axis. Similar to Figure 5, four continental
populations: Africa, Europe and Mexican American, Asia and
Gujarati Indians were completely separated by the four smallest
eigenvectors. Eigenvector 7 can separate Europe and Mexican
American populations and eigenvector 8 can well separate
Chinese and Japanese populations. Combinations of eigenvectors
5 and 6 can further distinguish the YRI, ASW, LWK and MKK.

SNPs Significantly Correlated with Low Dimensional
Coordinates for Structure Identification

A popular method for detecting structure informative SNPs and
genomic regions is to identify SNPs that are significantly correlated
with PCs [10,25]. In this report, we show that SNPs significantly
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Figure 4. Low-dimensional coordinates in a non-linear dimensional projection of all 14,397,437 SNPs of 179 individuals from three
populations mapped by the LLE where the X axis is the individual index and the Y axis is the eigenvalue arranged from large to
small. The color of the pixel at (X, Y) is the value of the eigenvector corresponding to eigenvalue at Y for individual X . Green color represents
negative values, red color represents positive values and white color represents values close to zero.

doi:10.1371/journal.pone.0029901.g004

correlated with the low dimensional coordinates (representations)
can also be used to measure local contributions to structure
inference. To illustrate this, we present Table 1 in which the
number of SNPs significantly correlated with top low-dimensional
coordinates in a non-linear dimensional projection which define
the populations and the PC with the largest eigenvalue is listed.
The P-values after Bonferroni correction for multiple tests for
declaring significance are 6.51 x1072,4.75x 10" %and 8.23 x
10~ °for the samples from the CEU, YRI and ASI, respectively.
For the convenience of discussion, the SNPs that are significantly
correlated with the low-dimensional coordinates in a non-linear
dimensional projection or PC are referred to as ancestry
informative SNPs. We observed that 40.3%, 59.1% and 28.6%
of the total SNPs in the CEU, YRI and ASI were ancestry
informative SNPs, respectively, and YRI had the largest number
while ASI had the smallest number of ancestry informative SNPs.
It is also interesting to find that the majority of rare variants
(89.2%, 92.4% and 75.1% of the rare variants in the CEU, YRI
and ASI, respectively) is the ancestry informative SNPs. The rare
variants arose recently and are often population specific. The
populations with recent expansion have a higher proportion of
rare variants. Therefore, rare variants are often likely to be
ancestry informative markers [26]. The number of ancestry
informative SNPs identified by the LLE algorithms and PCA is

@ PLoS ONE | www.plosone.org

close except for ASI where the number of ancestry informative
rare SNPs identified by PCA is much smaller than that identified
by the LLE algorithms. We also observe that the proportion of
shared ancestral informative SNPs identified by LLE and PCA is
very high except for ASIL.

Next we study the frequency pattern of the ancestral informative
SNPs across populations. Some examples illustrating the frequency
pattern of the ancestral informative SNPs for CEU are presented
in Figure 8 where the top 3 most informative common and top 2
most informative rare SNPs identified by the LLE algorithms and
PCA, respectively are listed. As shown in Figure 8 where the blue
color represents an ancestral allele and the red color represents a
non-ancestral allele, the ancestry informative SNPs are population
specific. These SNPs characterize local changes in ancestry along
the genome. For example, the top informative ancestral SNP RS
139903495 identified by the LLE algorithms is a CEU specific
SNP. It has an ancestral allele A. The frequency of allele A in the
YRI and ASI is 0. In other words, the samples from the YRI and
ASI show no polymorphism at RS 139903495. The mutation at
this SNP is private for the CEU. However, samples from the CEU
showed significant DNA variation at this SNP. The frequency of
an ancestral allele was reduced to 0.46. The top informative
ancestral rare SNPs identified by the LLE algorithms shared the
same feature with the informative ancestral common SNPs.

January 2012 | Volume 7 | Issue 1 | e29901



LLE for Population Structure Studies

YRI | CEU | ASI |

59 : 60 : 60 :

015 | 1 H
] . i

Vector 1 : :
0.15 ; ; .

015 ! : :

: i

Vector 2 : : :
U, . | .

os e | e

Vector 3 :
-0.15 E E

Figure 5. Three eigenvectors in the eigenspace of zero eigenvalue for the nonlinear dimensional mapping of all 14,397,437 SNPs of
179 individuals from three populations mapped by the LLE define axes of populations: YRI, CEU and ASI. Three intervals along the y-
axis ranging from —0.15 to 0.15 were used to represent the values of the components in the eigenvectors (low dimensional representations) and the
x-axis represents the individual index. The red color represents the YRI samples, green color represents the CEU samples and blue color represents the
ASI samples.

doi:10.1371/journal.pone.0029901.g005

However, both top informative ancestral common and rare SNPs
identified by PCA do not show such population specific features.
We observe that these SNPs show DNA variations at least in
two populations. This observation demonstrates that the LLE
algorithms can identify the most informative ancestral SNPs and
unravel finer population structure than PCA methods. From
Figure 8 we also observe that when the P-values for declaring
significance for informative ancestry are increased this remarkable
population specific feature for the informative ancestral SNPs
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Bt B
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0054...
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0054

0154,

=TS
NN}

L I B U B

identified by the LLE algorithms disappeared. Following this
argument, we can expect that un-informative ancestral SNPs will
show DNA variations across the three populations (Figure 8). We
can observe the similar features for YRI and ASI population

specific SNPs (Appendix S4 and Appendix S5).

Structure Informative Genomic Regions
The evolutionary forces such as genetic drift, positive natural
selection, recombination, and admixture and population bottle-

B) \

. YRI

CHB
PT

Figure 6. A. Three eigenvectors in the eigenspace of zero eigenvalue for the nonlinear dimensional mapping of all 14,397,437 SNPs of 179
individuals from four populations YRI, CEU, CHB and JPT mapped by the LLE using the allele frequency weighted genetic distance. The corresponding
coordinate of the eigenvector associated with individuals from YRI, CEU, and CHB and JPT (ASI) was mapped to the x axis, the y axis and z axis,
respectively. B. Graphic representation of the first two PCs for 179 individuals from four populations YRI, CEU, CHB and JPT on 14,397,437 SNPs.
doi:10.1371/journal.pone.0029901.g006
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neck shape the patterns of population structure. The relative
effects of various evolutionary forces on the genomic information
contents are difficult to separate. However, we can identify
structure informative genomic regions that may have implication
in characterizing locus-specific patterns of evolutionary forces. In
this report, two approaches are used to identify structure

Table 1. Number of SNPs significantly correlated with top
low dimensional coordinates and PCs.

Population CEU YRI ASI
Individuals 60 59 60

P-value for significance 6.51E-09 4.75E-09 8.23E-09

All SNPs 7,681,165 10,518,225 6,077,954

LLE Significant 3,099,007 6,216,648 1,740,342

PCA Significant 3,413,850 6,124,608 1,272,679

LLE (%) 40.3% 59.1% 28.6%

PCA (%) 44.4% 58.2% 20.9%
Common SNPs 5,853,886 7,382,215 5,259,537

LLE Significant 1,468,999 3,318,249 1,125,869

PCA Significant 1,860,653 3,266,439 1,172,668

LLE (%) 25.1% 44.9% 21.4%

PCA (%) 31.8% 44.2% 22.3%

Rare SNPs 1,827,279 3,136,010 818,417

LLE Significant 1,630,008 2,898,399 614,473

PCA Significant 1,553,197 2,858,169 100,011

LLE (%) 89.2% 92.4% 75.1%

PCA (%) 85.0% 91.1% 12.2%
Ancestry-informative markers in the LLE and PCA are identified by a simple
regression where the low dimensional coordinates and principal component
score are regressed on a genomic variant variable. SNPs with P-values less than
threshold after Bonferroni correction for multiple tests are selected as LLE or
PCA significantly correlated markers.
doi:10.1371/journal.pone.0029901.t001
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informative genomic regions. One approach is to integrate
genomic information content in a genomic region and use the
LASSO regression (Materials and Methods) that uses a Ljpenalty
to achieve a sparse solution for identifying structure-informative
genomic regions that characterize local changes in ancestry. A
second approach is to identify regions significantly enriched with
ancestry informative SNPs identified by either the LLE algorithms
or PCA (see Material and Methods). To search for the structure
informative genomic regions across the genome, we divide the
genome into nonoverlapping 250 kb bins. The total number of
regions is 10,805. Table 2 lists the number of structure informative
genomic regions (P<4.63 x 10~ where LLE and PCA represent
that we use the Fisher Exact Test for testing whether the region is
enriched with LLE-correlated SNPs or PCA-correlated SNPs (P-
value<3.45x107%) than expected by chance, and LASSO
represents a structure information region that is identified by
LASSO regression [22]. Table 2 shows that the number of regions
identified by the LLE algorithms or PCA is almost sixteen times
than that identified by the LASSO method. The number of
significant regions shared by the LLE and LASSO method, and
the number of significant regions shared by the LLE and PCA is
close. They share about half the structure informative regions.
However, the number of significant regions shared by three
methods: LLE, PCA and LASSO is only 38. The distribution of
structural informative genomic regions identified in the CEU
samples by the three methods is shown in Figure 9. The
distribution of structural informative genomic regions in the YRI
and ASI is shown in Appendix S6 and Appendix S7, respectively.
Some regions on chromosomes 1 and 4, and HLA regions on
chromosome 6 demonstrate high significance in ancestry although
in general structural informative regions are widely distributed
across the genome, which is consistent with the conclusion of
Biswas et al. 2009 [25].

To characterize the features of the structure informative
genomic regions and investigate the difference in the genotype
frequency pattern between the structure informative genomic
regions identified by the LASSO method and by LLE or
PCA methods we present Figures 10 and 11. The genomic
region considered in Figure 10 is significantly enriched with

January 2012 | Volume 7 | Issue 1 | e29901



LLE for Population Structure Studies

chr  position pvalue ancestral YRI CEU ASI
(LLE) minimum
9 139902485 <1E15 A " oes osa |
4 2544673 <1E15 c [ ess T om
10 sma2eEes <1E15 G [ oas = @s2 ]
12 46582962 <1E15 G [ oss ool
8 30292388 <1E15 c Y . -T- T T3 1]
{LLE) bonferroni
14 s0813106 651609 A [IGEINTEE TS ET s
2 41832485  B51E09 c [ "osa  oosll  eee  _em [ ess  oml
2 128011789 651E08 A [ esy T oas |l oas T osa ]
15 9508389 6H0E0® G - - - 1 - - - I
18 81187484  B.50E09 T [TTTTTess T el ess ool

{LLE) maximum
2 170876059
3 149948212

PR -y
OFrFroOo

18 485814338
2 1127534
1 186848802
{PCA) minimum
1 85775459 <1E15
18 85748075 <1E15
18 54583829 <1E-15
12 91154208 <1E15
"8 117296141 <1E15
(PCA) bonferroni
9 97912882 6.51E09
e 78882724 651609
2 212485145  B8.51E-09
*10 133773275 8.51E09
5 66239092 851609
{PCA} maximum
9 1654615  0.999997
17 468871532  0.999998
e 168758145 0.999398
-3 112610832 0.999385
] 22222849  0.999973

OO roe 4P 0OAG

O 406060

Figure 8. DNA variation pattern of the LLE-correlated, CEU specific SNPs across populations. Raw with star denotes rare alleles
(MAF=5%), raw without star denotes common alleles (MAF>5%); (LLE) minimum or (PCA) minimum indicates that SNPs are selected by the smallest
p-value; (LLE) Bonferroni or (PCA) Bonferroni indicates that SNPs are selected by the p-values around the threshold of significance after Bonferroni
correction for adjusting multiple testing; (LLE) maximum or (PCA) maximum indicates SNPs are selected by the highest p-value.

doi:10.1371/journal.pone.0029901.g008

both LLE-correlated and PCA-correlated SNPs, but shows
no significance by LASSO. We observe substantial difference
in genotype frequencies of each SNP within the region among
the CEU, YRI and ASI samples in Figure 10. However, we
also can observe in Figure 10 that in all three populations CEU,
YRI and ASI there were large genotype frequency variation
among SNPs in the region. On the whole region, we did not
observe large differences in genotype frequency variation
patterns among the CEU, YRI and ASI samples. Therefore,
this region was assessed to be a structure un-informative region
by the LASSO method. The genomic region on Chromosome
3 covering positions from 164,500,000 to 164,750,000 in
Figure 11 is a structure informative region identified by the
LASSO method, but not enriched with LLE-correlated or PCA-
correlated SNPs. We do not observe large genotype frequency
variation among SNPs in the CEU samples. In other words,
the genotype frequencies at each SNP in the region were
similar. However, we do observe significant genotype allele
frequency variation in the YRI and ASI samples. This genotype
frequency pattern was CEU population specific. This explains
why this region was identified as a structure informative
genomic region by the LASSO method, but not by the LLE
or PCA method.

The human genomic variation is created by mutation and
changed by biological, demographic and historical processes [27].

@ PLoS ONE | www.plosone.org

Genomic variation has been shaped by genetic drift and natural
selection, and by the demographic history of our ancestors. To
investigate the potential causes of the structure informative
genomic regions and impact of natural selection on their
formation, we scanned the CEU population for selection using
Tajima D test. The number of most extreme 5% regions under
selection is 1,080. We observe that 3.2%, 53.2% and 57.4% of the
identified selection regions were overlapped with the structure
informative genomic regions detected by the LASSO, LLE and
PCA, respectively.

To further illustrate that natural selection might be involved in
the formation of structural informative genome regions, we present
Figures 12 and 13 where the structure informative genomic
regions (CEU specific) on Chromosomes 1 and 10 identified by all
three methods: LASSO, LLE and PCA were overlapped with
negative and positive selection regions in the CEU samples,
respectively. Figure 12 shows that negative selection reduces
variation in the region by eliminating some deleterious alleles in
the CEU samples, while we observe in Figure 13 that positive
selection caused local reduction in genetic diversity via increasing
frequencies of favorable alleles in the population and “genetic
hitchhiking”.

To further characterize the inherent features of the structural
informative genomic regions, we study their LD patterns. The LD
pattern is characterized by pair-wise 12 between SNPs. We
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Table 2. Number of structure informative genomic regions.
CEU YRI ASI
All Regions 10,805 10,805 10,805
LLE Significant Regions 3,575 4,128 4,039
PCA Significant Regions 3,674 3,674 3,674
LASSO Significant Regions 219 219 228
LLENPCA 1,849 3,213 1,984
LLENLASSO 87 94 85
PCANLASSO 68 90 66
LLENPCANLASSO 38 81 39
doi:10.1371/journal.pone.0029901.t002

consider the genomic region on Chromosome 3 between
164,500 kb and 164,750 kb which is identified to be a structure
informative region for the CEU by the LASSO method. Figure 14
shows that a large proportion of SNPs in the CEU samples has a
much stronger LD than that in the YRI and ASI samples.
However, if the genomic region that is identified as structure
uninformative, the LD levels across the region in all three
populations CEU, YRI and ASI are very weak (Appendix S8).
Since the LASSO regress the axis of population variation on the
integral of genomic content within the region, it identifies
collective association of the SNPs in the genomic region with the
formation of structure. The many SNPs in the region as a whole
undergo the same evolution events. These SNPs are co-evolved.
The most SNPs in the structure informative region identified by
the LASSO method will show a similar pattern. The existing LD
among the SNPs in the region is kept in the evolution. The
genotypes of SNPs in the structure informative region identified by
the LASSO will be correlated and hence have a strong LD
between them.

LLE

LLE for Population Structure Studies

Discussion

Emerging next-generation sequencing technologies which are
evolving rapidly enable sequencing individual genomes and have
the potential to discover the entire spectrum of sequence variations
in a sample of individuals. The analysis of genome-wide
sequencing data will provide new valuable tools for uncovering
the evolution of populations, identifying the structure informative
markers and genomic regions, improving our knowledge of
population structure and developing personalized medicine.
However, the development of efficient analysis tools for
sequence-based population genetic studies is significantly lagging
behind. Low frequency, high sequence errors, and missing data
are three important challenges for the population genetic analysis
of DNA sequence data. While often successful in uncovering
population structure, PCA is sensitive to genotyping errors,
outliers and missing values. As an alternative to PCA for
population structure analysis, we used the LLE as a new low
dimensional data representation tool to infer population structure
and history. The population genetic analysis of next-generation
sequencing data is currently in its infancy. The goal of this report is
to stimulate discussion about the challenges for analyzing next-
generation sequencing data in population structure and evolution
studies.

We have shown several remarkable features of the LLE method
for population structure and historical inference. First, the LLE
was designed to discover a single global coordinate system in low
dimensional space while preserving an important property that
nearby data points in the high dimensional genomic space are co-
projected to the low dimensional space. We showed that the
reconstruction weights in the LLE which capture the topological
properties of local neighborhoods of the subjects allow the
estimation of relatedness structure among individuals and discover
the pedigree tree of studied individuals. Second, we observed that
in the presence of rare variants, the performance of the weighted
genetic distance is better than Euclidean distance in the LLE
analysis. Third, unlike PCA which is a linear reduction method,

PCA
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Figure 9. The distribution of structural informative genomic regions identified by the LASSO, LLE and PCA for CEU samples. The
genome was divided into nonoverlapping 250 kb bins (x axis), and the y axis represents the P-value for testing whether the genomic region is

significantly structure informative.
doi:10.1371/journal.pone.0029901.9g009
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Genotype frequency pattern of LASSO non_significant region on chr2:37750000-38000000
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Figure 10. Genotype frequency pattern of the SNPs within the structure significantly informative genome region located on
chromosome 2 between 32,750 kb and 32,500 kb which was identified by the LLE and PCA methods, but non-significant by the
LASSO method for CEU samples. The red color represents the homozygous genotype with the main allele, green color represents the
heterozygous genotype and blue color represents the homozygous genotype with the minor allele.

doi:10.1371/journal.pone.0029901.g010

the LLE is a nonlinear dimension reduction algorithm. The LLE
can efficiently extract information on an intrinsically low
dimensional nonlinear graph embedding from high dimensional
data space. The LLE has higher power to uncover population
substructure. For instance in a study of 179 individuals from four
populations YRI, CEU, CHB and JPT on 14,397,437 SNPs
which were obtained from a low coverage pilot dataset in the
1000 Genomes Project, the individuals from the CHB and JPT
can be completely separated by the LLE algorithms, but cannot
be well separated by the PCA. Fourth, the LLE generates a sparse
eigenvalue problem derived from a weighted graph which
represents neighborhood relations, as opposed to the dense
eigenvalue problems in PCA. The eigenvectors generated by both
LLE and PCA can be used to define axes of genomic variation.
However, the eigenvectors generated by the LLE can completely
define the population axis. An interesting observation is that in a
study of 179 individuals from a low coverage pilot dataset in
the1000 Genomes Project, three eigenvectors with zero eigen-
value define the axes of populations: YRI, CEU and ASI. We can
link each population to an eigenvector. Three eigenvectors can
form three axes and an axis corresponds to a population. The
PCA fails to have such representations. Fifth, the LLE can
alleviate the impact of missing genotypes on the population
structure inference. In the presence of rare variants, the true
heterozygous are more likely to be called as missing. Biased
estimation of genomic variation may introduce spurious popula-
tion structure. Since the LLE algorithms only use pair-wise
individual distance to construct neighborhood and genomic data
of a few nearby individuals to calculate local reconstruction
weights and low dimensional representation of the high
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dimensional genomic space, the impact of missing values and
sequence errors on the LLE maps is limited. Therefore, the LLE
is a better choice for sequence-based population structure
inference than the PCA methods.

Identifying a set of markers that could be used for population
structure and history inference will provide valuable information
for population genetics and association studies. Similar to
identifying PCA-correlated SNPs, we used a simple regression to
search all LLE-correlated SNP markers that explicitly capture the
structure of a population as identified by the LLE algorithms.

We used gene-set enrichment analysis to identify genomic
regions which are enriched with either PCA-correlated SNPs or
the LLE-correlated SNPs. Although traditional simple regression is
successful for identifying PCA or LLE-correlated SNPs for
structure inference one at a time, this method is mainly designed
for common variants. While single SNP might make large
contributions to the major axes of genomic variation individually,
at the population level, the contribution of some individual SNP to
the axes of genomic variation is too small to detect. The next-
generation sequencing data are full of rare variants. Alternative to
simple regions methods for identifying LLE or PCA-correlated
SNPs and gene enrichment analysis for identifying genomic
regions enriched with LLE or PCA-correlated SNPs, we have
developed a new statistic that integrates genomic information
content in a genomic region for collectively studying association of
the genomic region with the low dimensional representation of the
genomic data and used LASSO regression to search such regions
across the genomes.

We have analyzed the entire set of SNPs including both
common and rare variants in a low coverage pilot dataset in the
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Genotype frequency pattern of LASSO significant region on chr3:164500000-164750000
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Figure 11. Genotype frequency pattern of the SNPs within the structure significantly informative genome region located on
chromosome 3 between 164,500 kb and 164,750 kb which was identified by the LASSO method, but non-significant by the LLE
and PCA method for CEU samples. The red color represents the homozygous genotype with the main allele, green color represents the
heterozygous genotype and blue color represents the homozygous genotype with the minor allele.

doi:10.1371/journal.pone.0029901.g011

1000 Genomes Project. We observed that 25.1%, 44.9% and
21.4% of common variants were LLE-correlated SNPs and
31.8%, 44.2% and 22.3% of common SNPs were PCA-
correlated, in the CEU, YRI and ASI populations, respectively.
We found that the majority of rare variants ranging from 75.1%
to 92.4% were LLE-correlated SNPs, which show that most rare
variants are population specific. The number of ancestry
informative SNPs identified by the LLE algorithms and PCA is
close except for ASI where the number of ancestry informative
rare SNPs identified by PCA is much smaller than that identified
by the LLE algorithms. Interestingly, we observed the different
allele frequency patterns between the top LLE-correlated and
PCA-correlated SNPs. The top LLE-correlated SNPs contribut-
ing to the axis of genetic variation in the CEU were CEU specific.
In other words, samples from the CEU showed significant DNA
variation at the top LLE-correlated SNPs. However, samples
from the YRI and ASI did not show any DNA variation at these
top-LLE correlated SNPs. However, both top PCA-correlated
common and rare SNPs did not show such population specific
features. We observed that these SNPs showed DNA variations at
least in two populations.

We observed that the number of the LLE-correlated SNP or
PCA-correlated SNP enriched genomic regions is almost sixteen
times than that identified by the LASSO method. We observed
substantial differences in allele frequency and LD patterns between
the LLE-correlated SNP or PCA-correlated SNP enriched
genomic regions, and LASSO identified structure informative
genomic regions. In the LLE-correlated or PCA-correlated SNP
enriched genomic regions, we observed not only large variation in
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genotype frequency at single SNPs in the region among three
populations, but also large genotype frequency variation among
SNPs across the genome in all three populations. However, in the
LASSO identified structure informative genomic regions that are
specific for the CEU, the genotype frequencies at almost all SNP in
the region were similar in the CEU samples, but genotype allele
frequency variation among SNPs in the YRI and ASI samples
were significant. It is also observed that a large proportion of the
structure informative genomic regions identified by the LLE, PCA
and LASSO methods are not overlapped. This shows that these
three methods are complimentary.

Interestingly, we found that a large proportion of identified
selection regions ranging from 3.2% to 57.4% were overlapped
with the structure informative genomic regions. This implies that
natural selection might contribute to the formation of population
structure. We also observed that both negative and positive natural
selection may lead to local reduction in genetic diversity and cause
differences in the genotype frequency and LD patterns between
populations.

Although our results are preliminary due to limitations of
available next-generation sequence data, the concepts and
methods described in this report are expected to emerge as an
alternative analytic framework to current methods for population
structure and historical inference and should stimulate further
discussions in addressing the great challenges raised by next-
generation sequencing technologies for population genetic studies.

A program for implementing the developed statistics can be
downloaded from our website http://www.sph.uth.tmc.edu/hgc/
faculty/xiong/index.htm.
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Genotype frequency pattern of negative natural selection significant region on chr1:27750000-28000000
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Figure 12. Genotype frequency pattern of the SNPs within the structure significantly informative genome region located on
chromosome 1 between 27,750 kb and 28,000 kb under negative selection which was identified by all three methods: LASSO, LLE
and PCA for CEU samples. The red color represents the homozygous genotype with the main allele, green color represents the heterozygous
genotype and blue color represents the homozygous genotype with the minor allele.

doi:10.1371/journal.pone.0029901.g012

Materials and Methods

Problem Formulation for the Low Dimensional
Representation of High Dimensional Genomic Data by
the LLE

The dimension in the genomic variant data space is very high.
To alleviate the curse of dimensionality, it is indispensable to
transform the data from the original high dimensional space to a
low dimensional space. The LLE algorithm is a recently developed
algorithm [28]. It is an extension of mixture models for local
dimensionality reduction which perform PCA within each cluster
[29]. The LLE algorithm attempts to project a nonlinear manifold
in a high dimensional space onto the desired low dimensional
representation with the property that nearby data points in the
high dimensional space remain nearby in the low dimensional
space.

We assume that » individuals are sampled. We consider p SNPs.
In general, p is much larger than n. Values of 0, 1, and 2 are
assigned to the indicator variable x; for the genotypes AA, Aa and
aa at the j-th SNP of the i- th individual, respectively. Let

=[Xi1,X12,.- x,p] be a vector of the indicator variables for the i-
th individual which represent the genetic information for the i-th
individual. We define the data matrix X =[x1,X2,...,X,] with
dimension n X p. The data X can be represented by an undirected
weighted graph G={X,I#}, where each node denotes an
individual and weight associated with an edge measures the
similarity between a pair of nodes (a pair of individuals). Given a
set of genotype data X1,xp,..x, in R, find a set of points
Y1,Y2...,¥n 1n the low dimensional space R” (m<<p) which best
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preserves the similarity relationship between the individuals in
the original high dimensional data space. To achieve this goal, the
LLE algorithm consists of three steps. The first step is to search
the nearest neighbors of each data point. The second step is
to compute the weights that best reconstruct each data point
from its neighbors. The third step is to find the desired low-
dimensional coordinates in a non-linear dimensional projection
Y =[y1,)2,....yu] of the original high dimensional data X. Next we
mntroduce three steps in detail.

Neighborhood Construction

Before searching nearest neighbors, we should develop a
statistic to measure the distance between two data points. The
widely used geometric distance between two data points is the
Euclidean distance. Euclidean distance is similar to the genetic
distance between individuals defined as the number of alleles
shared by state (IBS) [30]. Other genetic distance measures
between individuals can also be used to quantify the genetic
similarity between data points (individuals) [31,32]. To adjust for
impact of allele frequency on the genetic distance we can
incorporate allele-specific weights into the genetic distance
measure. Let IBSA/ and IBSaj be the number of copies of alleles
A; and ¢; at the j-th SNP shared by the pair of individuals,
respectively. Then, the allele frequency weighted genetic distance
can be defined as

P
1
Z IBSA + 5 1BSy).
./ “j

1
2p
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Genotype frequency pattern of positive natural selection significant region on chr10:111250000-111500000
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Figure 13. Genotype frequency pattern of the SNPs within the structure significantly informative genome region located on
chromosome 10 between 111,250 kb and 111,500 kb under positive selection which was identified by all three methods: LASSO,
LLE and PCA for CEU samples. The red color represents the homozygous genotype with the main allele, green color represents the heterozygous
genotype and blue color represents the homozygous genotype with the minor allele.

doi:10.1371/journal.pone.0029901.g013

where PAj and Paj are the frequencies of the alleles 4; and a;,

respectively.

Now we are in a position to introduce the neighbors of each
data point [29,33]. The simplest formulation of the algorithm is
to find a fixed number of nearest neighbors per data point. Let
k<<p be the number of data points in a neighborhood and le
denote the neighborhood of the data point Xx; in the high
dimensional data space that includes only its £ nearest data
points, as measured by genetic distance (each data point may
chose a different size k of its neighborhood). In the graphical
representation of the data, nodes ¢ and j are connected by an
edge, if ¢ is among £ nearest neighbors of j or j is among k nearest
neighbors of «. The size k of the neighborhood has a large impact
on the performance of the LLE algorithm. The size £ should be
small enough to make the approximate manifold locally linear,
but also must be sufficiently large to recover embedding. An
implementation of LLE should ensure that the graph formed by
linking each data point to its neighbors is connected. Otherwise,
the LLE algorithm should be applied separately to each
connected component.

Local Reconstruction Weight Calculation
The second step of the LLE algorithm is to reconstruct each
data point by a linear combination of its nearest £ neighbors:

n
Xi= E w,-jxj,
j=1
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n
where wy is a scalar weight, w; =0 if x;¢N¥ and Z wi=1. Let
j=1
W =Wi),xn be a sparse weight matrix. We define the
reconstruction error as

n
§ : T
w; GiWi,

i=1

n
=3 i

i=1

> il = (1)
=

T T
where w;= [Wil,...,Win] and Gi=(Guv)nX,,,GuV=(xi—xu) (xi—xv),
is a symmetric, nonnegative definite matrix. The optimal
reconstructed weights can be obtained by minimizing the

n
reconstruction error under the constraint: Z wj; = 1. The optimal
j=1
solution is given by

G 1,

/LS
17611,

w; A, (2)

where 1,=[1,...,1]"and it is understood that for X;¢NK the
corresponding weight w;; is zero. The solution (2) requires an
explicit inverse of the matrix Gj. In practice, to avoid inverse
computing, the same results can be obtained by solving the linear
system of equations:

GW;=1,.
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LD pattern of LASSO significant region on chr3:164500000-164750000
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Figure 14. LD pattern in the structure significantly informative
genome region for CEU samples, but not for YRI and ASI
samples located on chromosome 3 between 164,500 kb and
164,750 kb which was identified by the LASSO method except
the LLE or PCA method. The LD levels were measured by pair-wise
r?and illustrated by colors.

doi:10.1371/journal.pone.0029901.g014

The final optimal weights can be obtained by rescaling the weights
to sum to one.

Eigenvalue Problem

The final step of the LLE algorithm is to compute the low
dimensional representation 1" while preserving the neighborhood
relationship among the data points in the original high
dimensional data space. Since the local construction weights
measure the neighborhood relations among the data points in the
original high dimensional data space, the low dimensional
representation 1" can be identified by minimizing the following
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graph embedding cost function:

n
dollvi-

i=1

> owiill? (3)
j=1

1
subject to the constraints: Y'1,=0 and — YYT=1I,. The cost

n
function in equation (3) can be obtained by replacing x; by y; in
the equation (1). Instead of optimizing the weights in equation (1),
we optimize the low dimensional representation Y in the
graph embedding the cost function while keeping the weights
found in equation (1) fixed. In other words, we attempt to find
low dimensional representation Ythat are reconstructed by
the same weights as that for the high dimensional data X.

Let W= [Wl,...,W,,]T, I, be an identity matrix and M=
(I, — W) (I,— W). Then equation (3) can be reduced to

m(YMYT), (4)
where tr denotes a trace of the matrix. Therefore, the low
dimensional representation Y can be identified by solving the
constrained minimization problem:

(YMYT) (5)

1
s.t. Y1,=0 and - Yy'=1,.

There are many ways to solve this optimization problem. One way
that has a close connection to PCA and is also most straightforward is
to find the bottom m eigenvectors of the matrix M as the desired low
dimensional representation Y (see Appendix S9).

Why would we expect that the LLE will preserve the
neighborhood structure of the graph embedding in the low
dimensional space? For simplicity, we explain the one dimensional
case. We assume that Y=y is a vector of low dimensional
representation. Then, we have

F=tr(YMYT)=yT(I— W) (I1—W)y= zn:(yl-— > wy).
i=1 j

If yi= Zw,-jy,- which implies that each data point in the low
J

dimensional space can be restructured from the same neighbors
with the same weights as that in the original dataset then the
objective function F is minimized over all vectors. The
neighborhood relationships among the data points reflect the
population structure. If vectors that minimize the objective
function F are chosen then they will allow revealing of the
population structure.

The LLE for the population genetic studies has several
remarkable features (Appendix S2 and Appendix S10 [34]). First,
we can show that both weights and low dimensional coordinates of
nonlinear dimensional project are a function of kinship coefficients
or the probability of individual sharing IBD. Therefore, the LLE
algorithms will provide a useful tool for identifying the genetic
relationships among the individuals and population structure.

Second, if the number of y+1 eigenvalues of the matrix Mis
equal to zero then the number of subpopulations in the studies is y.
Third, the eigenvalues measure the reconstruction errors. We can
show that the eigenvalue is the average square of the locally linear
reconstruction error in the low dimensional embedding space. The
eigenvalue zero indicates that the each low dimensional coordi-
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nates can be completely, linearly reconstructed by its neighbor-
hood data points. Fourth, the degree of population substructure
can be measured by the trace of between-class covariance matrix.
If m subpopulations are completely separated, then their
separability is defined as

1
D=1——.
m

(6)

If subpopulations cannot be completely separated, the measure of
separability of subpopulations is defined as

m

_1 “NT=T
D—mZ(u) u,

=1

()

where # i1s a vector of the average of m low dimensional
representation of the original genetic data in the high dimensional
data space of n individuals.

The LLE and PCA have close relationships. PCA seeks
projection direction with maximal variance or to remove the
projection directions with minimal variance [14]. PCA can be
formulated (Appendix S11) as

min  yT(I— W)y, (8)

1
where W=—-11T1=[1,1,..,1]7, yis a vector. Equation (8)
n

implies that under the graph embedding framework for dimension
reduction of the graph embedding underlying PCA has the
intrinsic graph structure with all nodes connected and equal
weights associated with the edges. If we define the matrix
W'=W+WT —WTW and consider a row vector yof the data
matrix Y, the equation (9) is reduced to

min  y"(I—W')y. )
Equation (9) has the similar form as that in equation (8), but with
the complex weight matrix W’ which has neighborhood structure.
Unlike PCA whose graph embedding connects all the nodes in the
graph and hence does not have neighborhood structure, the LLE
projects high dimensional data to a desired low dimensional space
while optimally preserving local neighborhood information.
However, we should also point out that PCA gives a very natural
ranking, whereas LLE-like methods may not so.

Identification of Ancestry-Informative Markers and

Genomic Regions

The low-dimensional coordinates in a non-linear dimensional
projection of genomic variants of an individual are summary
statistics. Although they unravel the patterns of genomic variation
in populations and uncover the population substructure the low
dimensional representation of genomic data do not provide
information about what genomic variations and regions influence
the formation of subpopulations. It is useful to identify SNPs or
genomic regions associated with the low dimensional representa-
tion of the high dimensional genomic data which can provide
information on local changes in ancestry across the genome.
Emerging next-generation sequencing technologies enable se-
quencing individual genomes and have the potential to discover
the entire spectrum of sequence variations in a sample of
individuals including common and rare variants [1,35—41]. A
popular method for identifying ancestry-informative markers in
the PCA is a simple regression where the principal component
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score 1Is regressed on a genomic variant variable. Although an
individual rare variant may have a large genetic effect, at the
population level, their genetic effect is too small to detect. In
addition, new sequence technologies are highly error prone. To
overcome these limitations, we propose to integrate genomic
information content in a genomic region for collectively testing
association of the genomic region with the low dimensional
representation of the genomic data. Let ¢ be the position of a
genetic variant along a chromosome or within a genomic region
and 7 be the length of the genomic region being considered. For
convenience, we rescale the region [0,7] to [0,1]; because the
density of genetic variants is high, we can view f as continuous. We
assume that the whole genome is grouped into k genomic regions
[ai,b)]j=1,....,k. We define the indicator variable for the genotype
of the i-th individual at the genomic location ¢ in the genomic
region [a;,b;] as

1 MM
zi()=¢ 1 Mm, i=1,---.nj=1,.k (10)
0 mm

where M is a minor allele at the genomic position 7. The genotypic
profiles z;;(#) contain the information of the genetic variation and
its relative genomic position. For convenience of discussion, z;(f)

are referred to as the information content at the genomic position
b

. J

t. Their integral x;= J

a

zi(t)dt summarizes the information
i

content of the genome in the region [a;,b;]. It is a useful measure of
the genetic variability of a genome region. We assume that the
variable Xx;; are standardized:

X —Xj
b
Sj

Xj=

_ I
where X;= — x; and S? =
] n i J

i=1

1 n
n—IZ(xij—fc)z. Thus, we have
T =1

%;X,]:Oand %;ifj:l.

The LASSO regression that uses a L penalty to achieve a sparse
solution will be used to identify ancestry-informative genomic
regions which characterize local changes in ancestry. The LASSO
is to solve the following problem:

1
H%HEZ(V:‘— (11)

k k
Zii/ﬁj)2+iz ;1
i=1 =1 =1
where y;is the low dimensional coordinate of the genomic data for
the ¢th individual in the nonlinear dimensional project, 4 is a
penalty parameter, and f3; are regression coefficients. A solution by
a successive coordinate-wise descent algorithm for optimization
problem (11) is given by [42]

Bi=5C>" % =34,

i=1

(12)

(i > . , a a>0
where =3 " xufy, SE.)=signC)(H—4)., (a)+={ 0 otherwise’
I#j '

The genomic regions with [; #0 are considered ancestry-
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informative regions which provide information on local changes in
ancestry across the genome. After the ancestry-informative
genomic regions are identified, a simple regression will be used
to test association of each SNP in the ancestry-informative region.

Supporting Information

Appendix S1 Three eigen-vectors in the eigen-space of
zero eigen-value for the nonlinear dimensional mapping
of all 14,397,437 SNPs of 179 individuals from four
populations YRI, CEU, CHB and JPT mapped by the
LLE using the Euclidean distance. The corresponding
coordinate of the eigenvector associated with individuals from
YRI, CEU, and CHB and JPT (ASI) was mapped to the x axis, the
y axis and z axis, respectively.

(TIF)

Appendix S2 Proof A.

(DOC)

Appendix S3 The differences between the weights
estimated by the original genomic data, and the low
dimensional coordinates and the difference between the
weights by the original genomic data and the PCA as a
function of the weights arranged by their location in the
weight matrix for 60 individuals from CEU population .
(TIF)

Appendix S4 DNA variation pattern of the LLE-corre-
lated, YRI specific SNPs across populations.
DOC)

Appendix S5 DNA variation pattern of the LLE-corre-
lated, ASI specific SNPs across populations.
(DOC)

Appendix S6 The distribution of structural informative
genomic regions identified by the LASSO, LLE and PCA
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