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Abstract

Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect characterized by underdevelopment of the left ventricle and
pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right
ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular
pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression.
Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional
signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine
differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV) of six neonates with HLHS,
compared to the RV and left ventricle (LV) from non-diseased control subjects. In HLHS, over 180 genes were differentially
expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell
metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene
expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings
suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In
addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in
the future for diagnostic and prognostic stratification to improve patient outcome.
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Introduction

In Hypoplastic Left Heart Syndrome (HLHS), the right

ventricle (RV) is exposed to pressure overload, volume overload,

and hypoxia.[1,2] Despite recent medical advances, RV failure

remains the leading cause of death in children with HLHS.[3]

Recent studies have identified HLHS as a heritable phenotype

associated with certain chromosomal regions,[4,5] however, to our

knowledge, the molecular pathobiological state of HLHS has not

been examined. Identifying biomarkers of disease state and

progression is important for prognostic and therapeutic purposes

to ultimately improve patient outcome.

Alterations in mRNA expression and splicing have previously

been reported in a wide range of adult cardiac disease states,[6,7]

and affected transcripts have been considered as biomarkers of

adult cardiomyopathies and heart failure.[8], [9] Alternative

mRNA splicing is an important mechanism for generating

transcriptional diversity and regulating gene expression in specific

tissues, including the myocardium.[10] An increasing number of

human disease states have been attributed to alterations in mRNA

splicing as a result of genetic mutations and/or environmental

causes.[11] Further, the development of global exon level

interrogation techniques have provided insights into the pathobi-

ology of these disease processes at the level of cell- and tissue-

specific mRNA splicing events.[12], [13] Despite emerging studies

examining transcriptome profiles in adult cardiac disease, the

mRNA events associated with congenital heart disease (CHD) are

less well understood. Genetic studies have suggested a possible role

of mRNA alternative splicing in the pathogenesis of certain types

of CHD.[14,15] However to our knowledge, genome-wide mRNA

expression and splicing profiling has not been utilized to

investigate the myocardial pathobiology of HLHS.
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The objective of this study was to characterize mRNA

expression and splicing patterns in the RV myocardium of HLHS

newborns by utilizing genome-wide exon-level interrogation,

hypothesizing that mRNA expression and splicing profiles are

dysregulated in the HLHS myocardium as compared to control

LV and RV myocardium. As RV failure is the strongest predictor

of long-term outcome in HLHS, our study focused on defining the

gene expression and splicing patterns in the HLHS right

ventricular myocardium to provide insights into the molecular

mechanisms associated with RV adaptation or remodeling. In

addition, as previous work by our group has shown that TGF-b-

associated gene expression profiles in the HLHS-RV share greater

molecular similarities with Control-LV than Control-RV,[16] we

included HLHS-RV versus Control-LV comparisons in our

analysis. Using this approach, our analyses revealed previously

unappreciated insights into the molecular pathobiological state of

early stage HLHS. The findings from this study provide candidate

genes for the development of therapeutic assays that could

improve prognostic stratification and clinical management of

children with HLHS.

Methods

Tissue collection
This study was approved by the Institutional Review Board at

the University of Miami (Protocol #20101106). For this study,

tissue samples were collected from three experimental groups as

follows: 1) six RV samples from neonates with HLHS (HLHS-

RV), 2) five RV samples from control neonates (control-RV), and

3) five LV samples from the same control neonates (control-LV).

As previously reported,[16] RV myocardial samples were obtained

at the time of surgery from six neonates with HLHS undergoing

Stage 1 Norwood reconstruction (See Results and Table 1).

Myocardial sampling was carried out after institution of

cardiopulmonary bypass and prior to induction of cardioplegic

arrest. The diagnosis of HLHS was defined as previously reported

by others.[3] Myocardial tissue from non-diseased controls was

obtained at autopsy from the left ventricle (LV) and right ventricle

(RV) of five newborn with normal cardiac anatomy, as previously

described by our group[16] and others.[17]-18 Autopsy specimens

were collected by the same operator and absence of heart valve

pathology was confirmed during post-mortem examination.

Consistent with HLHS tissue harvesting, full-thickness RV tissue

was obtained from the same area of the RV free wall in controls,

whereas LV tissue was obtained from the mid-portion of the free

wall. In each experimental group, approximately 50 mg of

ventricular tissue were removed, snap frozen in liquid nitrogen,

and stored at 280uC until RNA extraction.

RNA preparation and processing
RNA was extracted using TRIzol reagent (Invitrogen) or

Qiagen RNeasy Mini Kit according to the manufacturer’s

instructions. In all samples, RNA integrity and purity were

determined with the Agilent 2100 Bioanalyzer (Agilent Tech-

nologies, Inc., Santa Clara, CA). For microarray analysis, RNA

samples were amplified and labeled using NuGEN Ovation Pico

WTA system, WT-Ovation Exon module and Encore Biotin

Module (NuGEN, San Carlos, CA). Briefly 20 to 50ng of total

RNA were subjected to the synthesis of first-strand cDNA using

a unique DNA/RNA chimeric primer mix and reverse

transcriptase. DNA-RNA heteroduplex double-strand cDNA

was generated and subjected to SPIA amplification, using an

SPIA DNA/RNA chimeric primer, DNA polymerase and

RNase H in a homogeneous isothermal assay. The resulting

cDNA was used to generate sense transcript cDNA suitable for

fragmentation and labeling as target for Affymetrix Human

Exon 1.0 ST arrays.

Hybridization of HLHS exon arrays
Microarrays (Affymetrix Human Exon 1.0 ST Arrays)[18] were

hybridized for 17 hours at 45oC in the Affymetrix Hybridization

Oven 645 according to the manufacturer’s instructions. After

hybridization, microarrays were washed, stained using the

Affymetrix Fluidics Station 450, and scanned with the Affymetrix

Scanner 3000 7G.

Analysis of microarray data
Images were analyzed with the Affymetrix Command Console

Software. The resulting CEL files were loaded into Exon Array

Analyzer (http://eaa.mpi-bn.mpg.de/) and R respectively for

quality control, and then processed by Affymetrix power tools

(APT) for background correction, normalization, and summariza-

tions with the Robust Multiple Average (RMA) algorithm to

generate exon- and gene-level intensity estimates. The analysis was

restricted to 287,329 exon-level and 22,011 gene-level core probe

sets by selecting the core.ps and core.mps file options during exon-

and gene-level processing with APT. The number of exon-level

probe sets for consideration was further reduced by removing

known cross-hybridizing exon-level probe-sets, per annotation file

‘‘HuEx-1_0-st-v2.na31.hg19.probeset.csv’’.

Table 1. Preoperative clinical and echocardiographic
characteristics of six newborns with Hypoplastic Left Heart
Syndrome.

Age, mean (range), days 5 (2 to 7)

Gestational Age, mean (range), weeks 38 (36–40)

Sex, male/female 3/3

Echocardiographic Data: n = 6 neonates

Ascending Aortic Size, mean (range), mm 2.2 (1.7–3.9)

Aortic Atresia (AA) vs. Stenosis (AS)

AA 5

AS 1

Mitral Atresia (MA) vs. Stenosis (MS)

MA 5

MS 1

Tricuspid Regurgitation

None 1

Trivial 2

Mild 3

RV Function* 4

Normal 2

Mildly reduced

Atrial Septum

Non-obstructed 5

Mild obstruction 1

Ductus Arteriosus

Non-obstructed 6

Obstructed 0

*RV function was defined qualitatively

doi:10.1371/journal.pone.0029784.t001
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Setting analysis thresholds. A custom ‘R’ script was then

used to eliminate data for non-expressing genes and exons from

the data set prior to hypothesis testing. In the first filtration step,

exon-level probe sets were marked as detected when the

Affymetrix-provided detection above background (DABG) p

value was ,0.05 in ,50% of the samples of at least one of the

three treatment groups. In the second filtration step, a transcript

cluster was marked as detected if .50% of exon-level probe sets

comprising the cluster were detected per filtration step 1.[19] All

exon-level probe sets marked as undetected in step 1 and all exon-

level probe sets making up undetected transcript clusters per step 2

were dropped to obtain a table of 166,628 detectable exon-level

probe sets. The gene-level data table from the RMA output was

then filtered to retain 13,628 transcript clusters mapping to one or

more of the detectable exon-level probe sets. Some transcript

clusters represented in the exon-level data were not represented in

the gene-level RMA output, reducing the final list of detectable

exon-level probe sets to 166,404.

The splicing index for each exon was calculated as: log2 (exon-

level probe set intensity/gene-level probe set intensity). BioCon-

ductor LIMMA package was used for differential analysis. One-

way ANOVA of splicing indexes and gene-level probe intensities

was performed to identify exon-level and gene-level probe sets (i.e.

transcript clusters) showing significant changes in intensity among

the three treatment groups. T tests were additionally used for

comparisons amongst two groups: HLHS-RV vs. Control-RV and

HLHS-RV vs. Control-LV. The false discovery rate (FDR) for

each P value was calculated by the method of Benjamini and

Hochberg.[20]

Venn Diagrams. Genes corresponding to differentially

expressed transcript clusters or exon probe sets with an altered

splice index were selected for representation in Venn diagrams

and further pathway analysis, providing threshold criteria were

met (FDR of ,0.05 in the three-group one way ANOVA, an FDR

,0.05 in the t-test for the specific two group comparison, and an

intensity or splice-index (exon probes) difference of .1.5-fold).

WebGestalt Software (Vanderbilt University)[21] was used to

identify KEGG pathways showing a statistically significant over-

representation of genes with altered total mRNA or exon levels in

the HLHS-RV samples compared to control groups. The 13,628

transcript clusters (genes) that showed detectable signal on the

array were used as the reference set for calculating statistical

significance in the pathway analysis. Venn Diagram Plotter was

used to draw Venn diagrams to compare genes either with

significant alternative splicing or significant overall expression

changes within different groups.

Clustering analysis. Criteria for selection of differentially

expressed transcript clusters or exon probe sets with an altered

splice index for display in hierarchical clustering was the same as

for the pathway analysis, other than a 2-fold change threshold in

gene-level probe set intensity or a 5-fold change in splicing-index

for exon-level probe sets were applied. Data for the detectable

probes were clustered using Cluster 3.0 software.[22] The log2-

transformed data were pre-processed by median centering of the

data for each probe set, and then hierarchically clustered using

centered correlation as the similarity metric and average linkage as

clustering method.

Principal component analysis. Principal component

analysis was conducted using Partek to visualize the overall

pattern of gene expression. All data is MIAME-compliant

(Minimum Information About a Microarray Experiment) and all

CEL files for this microarray study are available through The

Gene Expression Omnibus at: http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token=hfapraoacwqgwhg&acc=GSE23959.

Quantitative real-time PCR analysis. To validate

differential fold changes in gene expression between the

comparison groups from the microarray analysis, cDNA was

generated from 400 ng tRNA from human samples using the High

Capacity Reverse Transcriptase kit (Applied Biosystems). Then,

10 mL cDNA were subjected to quantitative real-time PCR using a

custom-designed Taqman Low Density Array (Applied

Biosystems) containing two endogenous controls (18s, GAPDH)

and 94 random genes that significantly changed in the microarray

analysis as described.21 Cycle counts for each target gene were

normalized to 18s expression, and significant differences in gene

expression were reported as a fold change compared to each

experimental group.21

Results

Myocardial gene expression and mRNA splicing are
altered in HLHS

To determine global transcriptome changes in early stage HLHS

pathogenesis, gene expression and exon array profiling (Affymetrix

Human Exon 1.0 ST Array) was performed using total RNA

isolated from the RV myocardium of neonates with HLHS (n = 6)

(HLHS-RV), and compared to RNA collected from control-RV

(n = 5), and control-LV (n = 5) samples. For each RNA sample

collected, the analysis was performed using the Agilent Bio-analyzer

2100 to confirm consistently high levels of RNA integrity and purity

across the sample groups. The clinical and echocardiographic data

of the six HLHS neonates included in this study are shown in

Table 1. To facilitate the interpretation of data, neonates with extra-

cardiac anomalies or known chromosomal defects were excluded

from the HLHS group. All 6 HLHS subjects were in a relatively

compensated hemodynamic state, had normal acid-base balance,

and received Prostaglandin E1 infusions before undergoing a Stage

1 Norwood procedure. The mean gestational age of HLHS

neonates was 38 weeks (range 36–40) and the mean postnatal age

was 5 days. For controls, the five subjects expired from various non-

cardiac disease processes including intra-ventricular hemorrhage,

meconium aspiration, and necrotizing enterocolitis. The mean

gestational age of control subjects was 33 weeks (range 26 to 39

weeks), and the mean postnatal age was 18 days.

In this study, RNA was hybridized to Affymetrix arrays

containing approximately 40 probes per gene and 4 probes per

exon, therefore allowing two complementary levels of analysis in

the same samples at the levels of gene expression and alternative

splicing, respectively. One-way ANOVA analysis was performed

to compare ‘core’ gene (17,800 transcript clusters: Refseq and full

length GenBank mRNAs) expression and alternative splicing

profiles in HLHS-RV tissue vs. Control-LV, and Control-RV

samples. Significant changes were considered with fold changes in

gene expression and splicing index .1.5 and a false discovery rate

(FDR) of ,0.05. Using these parameters to compare HLHS-RV

to control samples, a total of 183 genes were differentially

expressed: 153 genes in HLHS-RV vs. Control-LV, 96 genes

when compared to Control-RV, with 66 genes overlapping

between the two comparison groups (Figure 1A). Tables 2, 3, 4,

5 show the top ten most differentially expressed genes and

alternatively spliced transcripts in the HLHS-RV when compared

to each control group (Control-RV and Control-LV). Using exon

array analysis, we identified 1478 genes affected by alternative

splicing in HLHS-RV samples compared to control groups. Of the

1380 spliced genes in HLHS-RV vs. Control-LV, only 44 (3%)

showed significant changes in gene expression. The number of

alternatively spliced transcripts was much lower in HLHS-RV

when compared to Control-RV (525 genes), although the

mRNA Profiling in Hypoplastic Left Heart Syndrome
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percentage of genes that were both spliced and differentially

expressed was similar (23 transcripts, 4%). Worthy of mention, 13

of these transcripts were common to both HLHS-RV vs. Control-

LV and HLHS-RV vs. Control-RV comparative analyses. Table

S1 lists all common and unique differentially expressed genes and

alternatively spliced transcripts within each analysis group as

indicated in Figure 1.

To confirm observations from the microarray data, a total of 94

randomly selected genes that passed the threshold criteria were

validated by quantitative real-time PCR in n = 4 samples from

each subject group (HLHS-RV, Control-LV, and Control-RV).

Of the 94 genes, more than 86% showed consistent differential

changes in gene expression in HLHS-RV samples when compared

to the respective control groups. Examples of 6 validated genes

(GTF2I, LANCL2, PLOD2, SOS2, USP2 and ZFP3) are shown in

Figure 2. Collectively, this analysis validates the significance of the

microarray data and confirms the differential gene expression

observed in HLHS-RV vs. controls groups.

Clustering analysis distinguishes HLHS-RV samples from
controls

To visually represent commonality or variance in the pattern of

differentially expressed genes among the three sample groups, we

Figure 1. Venn diagrams showing the number of differentially expressed genes (A) and alternatively spliced transcripts (B)
common and unique in HLHS vs. Control-LV (red) and HLHS vs. Control-RV (green) sample groups. (C, D) Venn diagrams to indicate the
number of transcripts that were differentially expressed (red) and/or alternatively spliced (green) in HLHS-RV vs. Control-LV (C) and HLHS vs. Control-
RV (D) sample groups. Fold change in gene expression and splicing index .1.5-, FDR, False Discovery Rate ,0.05.
doi:10.1371/journal.pone.0029784.g001

Table 2. Top ten most differentially expressed genes and alternatively spliced transcripts in the HLHS-RV group: HLHS-RV vs.
Control-LV (Differential Gene Expression).

Gene Symbol
HLHS-RV vs. Control-
LV Fold Change

HLHS-RV vs.
Control-LV p-value

HLHS-RV vs.
Control-LV FDR

HLHS-RV vs. Control-
RV Fold Change

HLHS-RV vs.
Control-RV p-value

HLHS-RV vs.
Control-RV FDR

FAM129A 2.1 3.3E-07 2.3E-03 2.0 7.2E-07 2.2E-03

LANCL2 2.1 1.9E-07 2.3E-03 1.8 2.6E-06 3.0E-03

RGN 2.3 5.9E-07 2.7E-03 2.5 1.5E-07 1.5E-03

RAB3IP 2.2 1.7E-04 2.4E-02 3.2 2.1E-06 2.7E-03

MRPL46 2.5 7.7E-06 1.0E-02 2.3 2.4E-05 1.4E-02

C21orf62 2.9 9.7E-06 1.0E-02 2.8 1.3E-05 9.4E-03

IFI44 2.7 4.8E-06 1.0E-02 2.1 1.1E-04 2.9E-02

BRP44L 2.4 8.8E-06 1.0E-02 2.2 3.1E-05 1.4E-02

DCTN3 2.5 5.6E-06 1.0E-02 1.9 4.3E-04 4.6E-02

HBB 0.3 2.5E-05 1.6E-02 0.3 2.6E-05 1.4E-02

doi:10.1371/journal.pone.0029784.t002
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generated a multidimensional principal component analysis (PCA)

plot (Figure 3). This analysis illustrates similarities in transcriptome

profiles within the six HLHS-RV samples (green), and a clear

separation of profiles between HLHS-RV and the five Control-

RV (blue) samples and Control-LV (red) samples (Figure 3).

Importantly, the expression variance between HLHS-RV and

control samples was maintained irrespective of postnatal age and

gestational age, as transcriptional profiles between HLHS-RV and

control samples never overlapped, even when samples were age-

matched (Figure 3). This pattern of variance suggests that the

differences in age between HLHS and control neonates unlikely

contributed to the observed transcriptional variance between

HLHS and controls. In addition, the PCA analysis revealed a

modest transcriptional difference between Control-RV and

Control-LV samples. However, within each control group there

was substantial variability (Figure 3), likely reflecting the greater

biodiversity and clinical heterogeneity of control subjects as

compared to the more homogeneous HLHS group.

To further examine whether HLHS-RV gene expression and

alternative splicing profiles segregated from control samples,

hierarchical clustering analysis was performed. Figure 4 illustrates

clustering analysis of differentially expressed genes (Figure 4A) and

alternatively spliced transcripts (Figure 4B) in HLHS-RV vs.

indicated controls. In both clustering analyses, the 6 HLHS-RV

samples clustered separately from all control samples. Interesting-

ly, hierarchical clustering of the 5 Control-LV and Control-RV

samples was indistinguishable, suggesting indifferent gene expres-

sion and splicing profiles.

Several biological processes are dysregulated in the
HLHS myocardium

To determine the biological processes altered in the early stage

HLHS-RV pathogenesis, KEGG pathway analysis was performed.

Figure 5 shows the significantly affected KEGG pathways as a

result of differential changes in gene expression (Figure 5A) and

alternatively spliced transcripts (Figure 5B) in HLHS-RV samples

vs. Control-LV (light grey bars) and vs. Control-RV (dark grey

bars). At the gene expression level, ‘oxidative phosphorylation’ was

most significantly altered (p = 1.75E-05) in HLHS-RV compared

to Control-LV samples. This process, along with other cell

metabolism activities including ‘propanoate metabolism’ were also

significantly affected (p = 8.04E-05) in HLHS-RV when compared

to Control-RV samples. At the level of mRNA splicing,

‘spliceosome’ and ‘arrhythmogenic right ventricle cardiomyopa-

Table 3. Top ten most differentially expressed genes and alternatively spliced transcripts in the HLHS-RV group: HLHS-RV vs.
Control-RV (Differential Gene Expression).

Gene Symbol
HLHS-RV vs. Control-
LV Fold Change

HLHS-RV vs.
Control-LV p-value

HLHS-RV vs.
Control-LV FDR

HLHS-RV vs. Control-
RV Fold Change

HLHS-RV vs.
Control-RV p-value

HLHS-RV vs.
Control-RV FDR

FAM129A 2.1 3.3E-07 2.3E-03 2.0 7.2E-07 2.2E-03

RGN 2.3 5.9E-07 2.7E-03 2.5 1.5E-07 1.5E-03

USP2 1.9 6.4E-06 1.0E-02 2.3 2.2E-07 1.5E-03

AIFM1 1.8 8.8E-06 1.0E-02 2.0 1.1E-06 2.2E-03

PSD3 1.9 6.4E-05 1.9E-02 2.5 6.7E-07 2.2E-03

COQ10A 1.9 1.3E-04 2.3E-02 2.6 1.8E-06 2.7E-03

COL6A3 0.6 1.3E-03 5.2E-02 0.4 1.9E-06 2.7E-03

RAB3IP 2.2 1.7E-04 2.4E-02 3.2 2.1E-06 2.7E-03

MRPL46 2.5 7.7E-06 1.0E-02 2.3 2.4E-05 1.4E-02

C21orf62 2.9 9.7E-06 1.0E-02 2.8 1.3E-05 9.4E-03

doi:10.1371/journal.pone.0029784.t003

Table 4. Top ten most differentially expressed genes and alternatively spliced transcripts in the HLHS-RV group: HLHS-RV vs.
Control-LV (Alternatively Spliced Transcripts).

Gene Symbol
HLHS-RV vs. Control-
LV Fold Change

HLHS-RV vs.
Control-LV p-value

HLHS-RV vs.
Control-LV FDR

HLHS-RV vs. Control-
RV Fold Change

HLHS-RV vs.
Control-RV p-value

HLHS-RV vs.
Control-RV FDR

INADL 5.38 1.5E-02 4.91 1.2E-04 4.1E-02 1.5E-02

SPTA1 0.16 6.4E-03 0.13 2.0E-06 6.5E-03 6.4E-03

ENAH 0.16 2.2E-08 4.0E-04 0.21 2.1E-07 2.4E-03

RYR2 6.02 1.6E-05 7.8E-03 3.47 6.9E-04 8.0E-02

ITGB1BP1 5.53 6.4E-07 1.9E-03 2.95 1.4E-04 4.3E-02

IFT172 0.18 1.2E-04 1.8E-02 0.43 2.5E-02 3.0E-01

C2orf55 5.24 5.6E-04 3.6E-02 5.68 3.6E-04 6.2E-02

GYPB/GYPA 0.16 7.3E-07 1.9E-03 0.17 1.0E-06 4.4E-03

CPNE5 0.16 4.0E-05 1.1E-02 0.44 2.4E-02 3.0E-01

C6orf186/DDO 6.49 2.8E-06 3.8E-03 2.91 1.1E-03 9.4E-02

doi:10.1371/journal.pone.0029784.t004
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Table 5. Top ten most differentially expressed genes and alternatively spliced transcripts in the HLHS-RV group: HLHS-RV vs.
Control-RV (Alternatively Spliced Transcripts).

Gene Symbol
HLHS-RV vs. Control-
LV Fold Change

HLHS-RV vs.
Control-LV p-value

HLHS-RV vs.
Control-LV FDR

HLHS-RV vs. Control-
RV Fold Change

HLHS-RV vs.
Control-RV p-value

HLHS-RV vs.
Control-RV FDR

SPTA1 0.05 2.0E-09 8.4E-05 0.07 9.9E-09 4.2E-04

MXD1 0.21 4.2E-05 1.2E-02 0.17 6.8E-06 1.1E-02

GYPB/GYPA 0.16 7.3E-07 1.9E-03 0.17 1.0E-06 4.4E-03

GRM1 4.84 7.4E-05 1.5E-02 5.04 5.7E-05 2.9E-02

ANK1 3.60 6.3E-04 3.8E-02 6.18 1.7E-05 1.6E-02

CACNB2 0.17 2.1E-05 8.8E-03 0.18 3.2E-05 2.2E-02

CCNJ 0.17 5.5E-10 5.8E-05 0.19 1.1E-09 1.8E-04

PPFIA2 4.00 1.9E-04 2.2E-02 5.43 2.2E-05 1.9E-02

PMP22 2.40 2.0E-03 6.6E-02 5.89 1.1E-06 4.6E-03

PLD6 2.16 4.4E-02 2.8E-01 5.84 1.1E-04 4.0E-02

doi:10.1371/journal.pone.0029784.t005

Figure 2. Validation of the microarray data by real-time qPCR on randomly selected genes. Dark grey bars indicate microarray findings
and light grey bars indicate qPCR results. Error bars show SEMs. * p,0.05 in HLHS-RV compared to indicated control groups.
doi:10.1371/journal.pone.0029784.g002
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thy’ KEGG pathways were significantly altered in HLHS-RV

compared to Control-LV and Control-RV samples, respectively.

The differentially expressed genes and alternatively spliced

transcripts associated with these altered KEGG pathways are

included in Table 6. These findings suggest a broad dysregulation

in mRNA expression and splicing patterns in the HLHS

myocardium involving a variety of biological processes.

Exon abundance of individual genes is altered in HLHS
To determine alterations in the abundance of individual exons

of alternatively spliced genes in HLHS-RV, expression profiling

was performed. Figure 6 shows the splicing index of pre-designed

probe sets that hybridized at nucleotide positions consistent with

individual exons of the top three transcripts affected my mRNA

splicing (but not gene expression) in HLHS-RV samples compared

to controls. As indicated by the arrows, HLHS-RV samples show

distinct exon-specific expression profiles compared to control

samples and provide insights into the post-transcriptional events

active in early stage HLHS.

Discussion

Recent studies have partly unveiled the chromosomal loci

associated with hereditary HLHS,[4,5] however the molecular

pathobiology of this disease remains poorly understood. Recent

studies have demonstrated significant changes in mRNA expres-

sion and splicing profiles in a variety of adult cardiac pathophys-

iologic states, although transcriptome alterations in CHD have not

been reported.[12] To address this, we performed a genome-wide

exon array and found significant changes in gene expression and

alternative splicing events in the RV of a representative cohort of

infants with HLHS compared to non-diseased controls. These

transcriptome alterations were associated with changes in a variety

of biological processes involving cell metabolism, the cytoskeleton,

cell adherence and mRNA processing. Further, hierarchical

clustering based upon gene expression and alternative splicing

analysis data revealed unique molecular profiles segregating

HLHS-RV samples from LV and RV control samples. Collec-

tively, our findings provide new insights into the transcriptional

events active in the RV myocardium of early stage HLHS. In

addition, they provide the basis for the identification of novel

transcriptome-based markers of disease state that may be useful for

prognostic stratification and treatment purposes.

Signature profiles of gene expression have been used as tools for

diagnostic and prognostic purposes in human cardiomyopa-

thies.[23] In this study of congenital heart disease, a total of 183

core genes passed threshold criteria and were considered

differentially expressed in HLHS-RV samples compared to

controls. Among these, 66 genes overlapped between the two

comparison groups (HLHS-RV vs. Control-LV and HLHS-RV

Figure 3. Principal component plot of normalized gene expression values from microarray analysis of six HLHS (green), five
Control-LV (red), and five Control-RV (blue) samples. Gestational age (in weeks) and postnatal age (in days) of each subject is indicated in
parentheses. HLHS-RV samples segregated apart from all Control-RV and Control-LV samples, irrespective of post-natal age and gestational age. Post-
natal and gestational age did not appear to result in any particular trend either within the HLHS or the control groups.
doi:10.1371/journal.pone.0029784.g003
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vs. Control-RV). However, of the differentially expressed tran-

scripts that were not common, the genetic profile of HLHS-RV

was most similar to Control-RV. This observation is in contrast to

our previous study showing that activity of TGF-b signaling

pathways in HLHS-RV was most similar to Control-LV.[16]

Despite the unique genetic profiles in HLHS-RV vs. Control-LV

and Control-RV, differentially expressed genes associated with

‘oxidative phosphorylation’ were similarly affected in HLHS-RV

when compared to each of the control groups (Table 6). Based

upon the pathophysiological exposure of the RV to pressure

overload, volume overload and hypoxia in HLHS, the overrep-

resentation of oxidative phosphorylation and other metabolic

genes (Figure 5, Table 6) in the HLHS-RV myocardium suggest a

shift from normal fatty acid metabolism to glucose metabolism

found in myocytes undergoing hypertrophy. [24,25] In addition, it

is likely that the differential gene expression profile observed in

HLHS-RV samples is representative of early post-natal adaptive

RV remodeling in response to compensatory changes in

myocardial hypertrophic growth. It is therefore surprising that

other genes associated with myocardial hypertrophy were not

differentially expressed including extracellular matrix genes and

regulatory transcription factors. We suspect that this may be due

to the collection of RNA from newborns with HLHS and not older

patients in whom the RV remains exposed to pressure/volume

overload and hypoxia for a longer period of time. However, more

long-term studies are required to confirm this hypothesis.

In addition to altered whole-gene expression patterns, altered

splicing patterns resulting in differential exon abundance in HLHS

tissue are also consistent with other studies of adult cardiac disease

states.[12], [26], [27] Similar to differential gene expression, cell

metabolism processes were also significantly altered by mRNA

splicing. However, KEGG pathway analysis revealed that splicing

events also led to significant changes in transcripts associated with

‘spliceosome’ and ‘adherens junctions’ categories in HLHS-RV

compared to Control-LV, and ‘arrhythmogenic right ventricle

cardiomyopathy’ when compared to Control-RV. The individual

transcripts affected within these broad KEGG categories included

genes associated with mRNA processing (Prp 2, 16–18, 53),

consistent with the overrepresentation of the ‘spliceosome’ and

consistent with splicing events. In addition, genes involved with

cell-cell communication (CTNNB1, DSG2, ITGB3, CDH2), cyto-

skeleton (DMD, SGCG), and calcium movement (CACNA1C,

CACNB2) were largely underexpressed in HLHS-RV. These latter

changes are consistent with compensatory remodeling in the RV

of HLHS patients to support pathophysiological changes in

hemodynamic load as a result of an underdeveloped LV. Although

Figure 4. Hierarchical clustering and heat map analysis of differential gene expression (A) and alternatively spliced (B) profiles in
HLHS-RV vs. Control-RV and Control-LV samples. Clustering was performed on log2-transformed and normalized gene-level probe set
intensities and splicing indexes for transcript clusters or exon-level probe sets, respectively, that met specific significance and fold-change criteria (see
Methods). Except for the right image of panel A, all of the probe sets meeting the specific criteria are displayed. Note significant clustering of HLHS
samples compared to controls that show indistinguishable identity. Key: one unit = a difference of one log2 unit from the gene (A) or splicing index
(B) mean for all the samples.
doi:10.1371/journal.pone.0029784.g004
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informative, we cannot determine if the observed changes in gene

expression and mRNA splicing are causative of HLHS or the

result of adaptive or maladaptive myocardial changes in the RV

myocardium of HLHS subjects. Nonetheless, this analysis provides

insights into the biological processes that are altered in the HLHS-

RV as a result of changes in transcriptome profiles.

In this study we have identified a number of differentially

expressed and differentially spliced transcripts that have the

Figure 5. KEGG pathway analysis to show the relative significance of affected biological processes in HLHS-RV samples versus
controls as a result of differential gene expression and alternative splicing events. Numbers indicate the number of differentially
expressed or alternatively spliced transcripts that within each indicated KEGG category.
doi:10.1371/journal.pone.0029784.g005

Table 6. Most significantly affected KEGG pathways by differentially expressed genes and alternatively spliced transcripts in the
HLHS-RV group.

KEGG Pathway
Differentially
Expressed Genes

Fold Change
(HLHS-RV vs.
Control-LV) p-value FDR

Fold Change
(HLHS-RV vs.
Control-RV) p-value FDR

Oxidative Phosphorylation: 1.75E-05

NDUFV1 1.7 4.4E-04 3.4E-02 1.7 3.8E-04 4.3E-02

NDUFS1///LOC100329109 1.9 1.4E-04 2.4E-02 1.9 1.4E-04 3.2E-02

NDUFB6///DFFB 2.8 1.9E-04 2.4E-02 2.2 1.8E-03 8.0E-02

UQCRQ 3.5 1.8E-04 2.4E-02 2.0 1.7E-02 2.0E-01

UQCR10 2.1 5.2E-04 3.6E-02 2.0 1.1E-03 6.8E-02

SEC31B 1.8 3.2E-05 1.7E-02 1.9 1.1E-05 8.1E-03

NDUFAB1 2.0 1.1E-04 2.1E-02 1.8 9.6E-04 6.5E-02

COX4I1 1.6 3.3E-04 3.0E-02 1.5 9.2E-04 6.4E-02

ATP5A1 1.6 9.6E-05 2.0E-02 1.7 2.7E-05 1.4E-02

SNORD59A/// 1.6 7.0E-05 1.9E-02 1.6 8.8E-05 2.8E-02

NDUFA8 2.4 8.2E-05 2.0E-02 2.1 3.3E-04 4.2E-02

Propanoate Metabolism: 8.04E-05

ACAT1///ACAT1 1.9 9.2E-04 4.5E-02 2.1 4.1E-04 4.5E-02

PCCB//PCCB 1.9 1.8E-04 2.4E-02 1.8 3.4E-04 4.2E-02

ALDH1B1 2.1 5.9E-05 1.9E-02 2.0 2.0E-04 3.6E-02

ECHS1 1.5 4.9E-04 3.5E-02 1.5 2.1E-04 3.6E-02

doi:10.1371/journal.pone.0029784.t006
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potential to serve as biomarkers of HLHS disease state. These

include differential expression and splicing of calcium transporter

(SLC8A1, CACNB2, RYR1) and energy metabolism (COX4I1,

ACAT1, ATP5A1) genes, as well as structural proteins (STPB,

DCTN5, XIRP2), detectable in myocardial samples obtained from

HLHS patients during surgical intervention. In addition to tissue-

specific biomarkers, levels of secreted factors (IFI44, VEGFA) and

cell surface markers (PROM1) have previously shown to be

measurable in serum samples and serve as biomarkers for other

pathological states.[28] Our findings also revealed that, in HLHS,

less than 5% of alternatively spliced transcripts are also

differentially expressed. In addition, we have also observed that

splicing events result in variable levels of individual exon

abundance, suggesting that gene dosage may have important

implications in understanding the mechanisms of HLHS and RV

failure. Therefore, in the development of a prognostic and

therapeutic HLHS biomarker assay, it is important to use exon

interrogation and include splicing profiling to target specific

chromosomal exon locations as an adjunct to gene expression

analysis. As HLHS remains associated with a considerable risk of

RV failure, this study holds promise as it establishes the basis for

using mRNA expression-based and splicing-based profiling in

myocardial tissue or even in serum samples for prognostic

purposes and to guide therapeutic interventions.

We acknowledge that this study presents several limitations.

While somewhat uncontrollable, it is recognized that compared to

HLHS subjects, control tissue was obtained from a heterogeneous

group of newborns aged ,37 weeks of gestation who died from

non-cardiac disease states. Although our PCA selective analysis

(Fig. 3) suggests that pre-natal age was unlikely a major contributor

to differential expression, it is possible that this factor introduced a

bias in our study. Similarly, the unavoidable deterioration or stress

in the control subjects during the period leading to their demise

might have played a role. Unfortunately, sudden neonatal death

due to non-cardiac causes is a very rare event, and therefore ideal

control subjects are usually not available. Also, while our analysis

provides a descriptive cross-sectional assessment of genomic

profiling at a specific maturational age, it does not identify which

pathways are active during fetal life or in subsequent develop-

mental stages. Further work is required to determine transcrip-

tome profiles in a larger cohort of HLHS subjects at different

stages of disease state. Also, it is exceedingly difficult to obtain

myocardial tissue from age-matched control living subjects and it

is recognized that this might have introduced a bias, although

RNA quality from post-mortem samples was consistent with that

from HLHS subjects. Finally, our approach is unable to

distinguish between mRNA splicing events causative of HLHS

phenotypes and those that are secondary to pathophysiology-

induced alterations.

In conclusion, using genome-wide exon interrogation we have

identified new mRNA expression and splicing signature profiles

associated with early stage HLHS pathobiology. Our findings

suggest that mRNA expression and splicing are broadly dysreg-

ulated in the RV myocardium of HLHS neonates. This study

provides novel clues into the molecular events and biological

processes associated with neonatal HLHS pathobiology. In

addition, this dataset establishes the basis for future investigations

to identify transcriptome-based biomarkers of disease severity and

progression that could be useful for diagnostic and prognostic

stratification to improve patient outcome.
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