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Abstract

Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low
recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-
strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB
frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots
and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold
spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and
H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic
recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental
study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot
spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature
selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel
predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong
enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where
systematic biases have been documented.

Citation: Hansen L, Kim N-K, Mariño-Ramı́rez L, Landsman D (2011) Analysis of Biological Features Associated with Meiotic Recombination Hot and Cold Spots in
Saccharomyces cerevisiae. PLoS ONE 6(12): e29711. doi:10.1371/journal.pone.0029711

Editor: I. King Jordan, Georgia Institute of Technology, United States of America

Received November 28, 2011; Accepted December 1, 2011; Published December 29, 2011

Copyright: � 2011 Hansen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Intramural Research Program of the National Institutes of Health, National Library of Medicine and National Center
for Biotechnology Information. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: marino@ncbi.nlm.nih.gov

Introduction

Meiosis is the biological process by which the genome is divided

in half to generate daughter cells that can participate in sexual

reproduction. In eukaryotes, this process is accompanied by

meiotic recombination, which involves pairing of homologous

chromosomes and exchanging of genetic material. Meiosis serves

to increase genetic diversity in progeny (for review see [1] and [2]).

Recombination does not occur with a uniform frequency across

the genome. Instead, there are regions with high and low

recombination rates called hot and cold spots, respectively.

Recombination is initiated by double-strand breaks (DSBs) which

are catalyzed by Spo11 [3]. In this biological event, broken DNA

ends are processed to produce single-strand ends that can invade

the homologous chromosome [4].

Mapping DSB hot spots [5,6,7] and factors correlated with hot/

cold spot formation is an active area of research. Several biological

features have been found to correlate with higher levels of Spo11-

catalyzed DSBs. Genome-wide mapping and analysis of Spo11-

catalyzed DSB sites in the yeast Saccharomyces cerevisiae showed that

regions with a high break frequency had a high G+C content [7].

A recent study using this same dataset revealed that several types

of microsatellites were associated with recombination hot spots [8].

Additionally, studies using machine learning-based techniques and

sequence-based features have differentiated DSB hot and cold

spots somewhat successfully [9,10], suggesting that differences in

sequence composition between these regions exist.

In addition to sequence-based factors, chromatin structure is

associated with regions of high and low recombination. Many hot

spots exhibit an open chromatin structure constitutively in both

meiotic and mitotic cells [11,12]. Some of these hot spots also

show an increase in micrococcal nuclease (MNase) sensitivity in

meiotic cells shortly before DSB formation [13], indicating active

chromatin remodeling to a more open configuration upon the

onset of meiosis. Some posttranslational histone marks are also

associated with increased DSB frequency, with H3K4me4 and

bulk histone acetylation (in Schizosaccharomyces pombe) showing a

positive correlation [14,15] and H3K36 methylation exhibiting a

negative correlation. Here we used a multivariate feature selection

approach to determine the sequence and chromatin features that

best distinguish hot and cold spots in S. cerevisiae. The histone

modifications and nucleosome occupancy data used in our analysis

were derived from vegetatively growing mitotic cells, which is a

different cell state than meiotic cells. Genome-wide epigenetic

studies using both mitotic and meiotic states were used to increase

the amount of useable data; there is good reason to believe that
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epigenetic marks found at hot or cold spots in mitotic cells will also

be present at those same sites in meiotic cells (see Discussion).

Feature selection is a dimensionality reduction technique

designed to identify the subset of features that is most informative

in producing robust predictive models. Feature selection has been

used successfully in microarray gene expression studies [16,17]

and biomarker identification [18,19]. When attempting to build a

classifier based on vectors of features, many features are irrelevant.

For example, a common task in microarray studies is to identify

which genes are relevant in distinguishing between two or more

experimental conditions. In this case, the expression level of

thousands of genes (i.e., features) is measured, but only a small

subset is relevant in discriminating between the experimental

conditions. Many pattern recognition techniques were not

designed to deal with circumstances in which the number of

relevant features is outnumbered by irrelevant ones [20]. In these

instances, feature selection can be used to reduce over fitting,

improve predictive performance by identifying a subset of relevant

features, and provide insight into the underlying biological

processes that generated the data. Machine learning-based

approaches have already been applied to the problem of

discriminating between hot and cold spots [9,10]. However, these

studies analyzed low resolution data and feature selection was not

performed. Here we report the results of applying feature selection

to identify factors associated with recombination hot and cold

spots. A feature vector as used in this study is a string of numerical

features; each feature in the string represents a measurement of a

biological quantity.

Methods

Definition of hot and cold regions
Buhler et al. [5] mapped the frequency of meiotic DSBs in S.

cerevisiae with high resolution tiling arrays. Using this data, we

obtained 1179 and 1028 regions identified as hot and cold spots,

respectively, for a total of 2207 regions. Each region was 600 base

pairs (bp) in length. Buhler et al. produced a set of peaks representing

hot spots with 5-fold and 2-fold enrichment over background. In our

analysis, hot spots were defined by centering a 600-bp window at the

midpoint of peaks that were enriched 5-fold over background. Cold

spots were obtained by finding at least three adjacent probes with a

log2 hybridization ratio of less than 0.75, and then centering a 600-

bp window at the midpoint of the centermost probe. For each

region, we produced a vector of length 350 to represent features

such as the chromatin-associated factors ‘‘Nucleosome occu-

pancy’’, ‘‘H3K14ac’’, ‘‘H3K36me3’’, ‘‘H3K4me1’’, ‘‘H3K4me2’’,

‘‘H3K4me3’’, ‘‘H3K79me3’’, and ‘‘H3K9ac’’.

Pan et al. [21] identified hot spots by mapping the binding of

Spo11 using high throughput sequencing. We centered 600-bp

windows at the middle of hot spots as defined by Pan et al. Cold

spots were defined by a set of non-overlapping 600 bp windows

with no reads aligned that did not overlap to any extent simple

repeats as downloaded from the UCSC genome browser.

Generation of chromatin structure-based features
Pokholok et al. used tiling arrays to map histone modifications in

S. cerevisiae. We obtained this data from the public database

ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) and

normalized using MA2C normalization [22]. There are a number

of publically available datasets containing additional chromatin

marks mapped genome wide that potentially could have been

included in this study. Unfortunately they are low resolution; one

microarray element per ORF or intergenic region or they do not

control for differences in nucleosome occupancy. For each region,

we obtained the degree of enrichment by averaging the

normalized hybridization values of the probes within that region.

For example, the feature ‘‘H3K14ac’’ represents the average

degree of acetylation of lysine 14 in histone H3 for the given

region. A similar approach was used for each histone modification.

To calculate the degree of nucleosome occupancy we used a

dataset produced by Kaplan et al. [23]. For most positions in the

genome, Kaplan and co-authors calculated a nucleosome

occupancy score. The average nucleosome occupancy was

normalized to zero. A value greater than zero represents

nucleosome enrichment relative to the genome-wide average,

while a value less than zero signifies nucleosome depletion. For

each hot or cold region, nucleosome occupancy was calculated by

averaging the nucleosome occupancy scores for that region.

Generation of sequence-based features
In this study, 342 out of 350 features were sequence-based in

which each sequence feature represented the normalized frequen-

cy of the region for one of the 1–4 possible k-mers. For example,

feature 9 for region 6 would be the number of times the 2-mer

‘‘AT’’ was found in the region divided by the number of k-mers of

size 2 found in the region. Hence the feature represents the

enrichment of AT relative to all 2-mers found in the region.

Similarly, feature 300 for region 6would be the number of times

‘‘AAGT’’ was found in the region divided by the number of k-mers

of size 4 found in the region. We also included two sequence

features ‘‘AT content’’ and ‘‘GC content’’, reflecting the overall

AT and GC content for that region, respectively. It would seem

the sequence features could further be reduced by removing the

reverse complement of the given k-mer (CG is the same as GC).

Whether or not the reverse complement is redundant is based on

whether or not strand specific processes are acting at Hot spots.

There are examples of strand specific trans-acting factors

operating at hot spots [24]. Hence reverse complements were

retained in the final set of features.

Feature selection
Feature selection can be described as finding the subset of

features from the set of all possible combinations of features that

can best distinguish classes of interest. Because the search space of

all possible combinations of features grows exponentially with the

number of features, it is rarely feasible to perform an exhaustive

search. Instead, various heuristic search methods can be used to

identify meaningful feature subsets that can be used to build

classifiers with high accuracy. Here we used a genetic algorithm

(GA)- based approach [25] similar to those published previously

[26,27,28]. We used the R package Galgo [29] to implement the

algorithm.

The dataset of 2207 features was divided randomly into two

groups, a training dataset containing 1471 regions and a testing

dataset containing 736 regions. Each dataset contained roughly

equal numbers of hot and cold regions. The training dataset was

further divided into three pairs of sub-training and validation

datasets. Each pair of the sub-training datasets contained 981

regions, while those of the validation dataset contained 490

regions. The GA was then applied to these datasets in search of a

subset of features with optimal accuracy based on the average

accuracy across all sets of sub-training and validation data. More

specifically, the GA searched for a feature subset that optimized a

score defined as Atotal = (A1+A2+A3)/3, in which Ai is defined as

the accuracy of the given subset of features using a random forest

classifier built utilizing the sub-training dataset i and tested on the

validation dataset i and i = {1, 2, 3}. In general, accuracy was

defined as the total number of regions classified correctly divided

Recombination Hot and Cold Spots in Yeast
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by the total number of regions in the validation dataset. The search

space of 350 features was prohibitively large, and running the GA

twice on the same training and validation datasets would most likely

have yielded two different solutions representing local optima. Thus,

a sampling of the fitness landscape was used in which the GA was

run 10,000 times on different random divisions of the training

dataset into the sub-training and sub-validation datasets. The final

solution was obtained by combining the results of these independent

runs. Features were ranked according to their frequency of

occurrence within the subset of optimal features selected by the

GA. Features that were present across many runs were presumed to

be more important than those that were selected less often (Figure 1).

For example, if feature one was present in 9,000 of the 10,000

optimal subsets returned by the GA, while feature two was present

in only 5,000, then feature one would be considered more important

and thus ranked higher than feature two. The final subset of features

was obtained using a forward selection approach. Features were

added individually based on ranking until no significant improve-

ment in accuracy was observed. The corresponding accuracy was

calculated using the testing dataset.

Alignment methodology
Alignments were performed using BLASTN with default

parameters [30]. When allowing multimapping of reads we

followed the procedure as defined in [31]; briefly any alignment

yielding an identify less than 90% was discarded and, for

alignments between 90% and 95%, only the maximum score

was retained. All alignments with greater than 95% identity were

kept. Identity was defined as alignment length divided by read

length.

MNase control subtraction methodology
Normalizing for differences in sequencing coverage was

accomplished by dividing read counts at each base pair by the

total number of unique mappable reads for each dataset, similar to

the procedure used in [32]. The following formula was used to

subtract out the normalized counts of the MNase control. Given

two sequencing datasets D1 and a control D2 with normalized

counts of read coverage at each base pair represented by c1 = {c1,1,

c1,2 ,….c1,m} and c2 = {c2,1, c2,2 ,….c2,m}, the subtracted read

density was defined at each base pair as

Figure 1. Overview of the feature selection procedure. The initial set of 2207 regions was divided into a training set of 1471 regions and a
testing dataset containing 736 regions. The training dataset was further divided into sub-training and validation datasets. (a) The (Genetic Algorithm)
GA was run 10,000 times on different sub-training and validation datasets, producing a subset of optimal features for each run (see Methods). We
divided the number of times each feature occurred in an optimal feature subset by the total number of times the GA was run (i.e., 10,000) to calculate
the frequency of observation (FOO). Features that occurred most often in many different optimal subsets across different splits of the training dataset
were ranked higher than features that were selected less often. (b) To obtain the final subset, features were added individually based on their FOO
score from highest to lowest. Then, the corresponding accuracy using the testing dataset was calculated. Features were added until no substantial
improvement in accuracy was observed, indicated in the figure panel (b) by the solid black line. Panels (c) and (d) are identical to (a) and (b) except
random regions were used (i.e., 1179 and 1028 regions randomly selected and labeled as ‘‘hot’’ and ‘‘cold’’, respectively).
doi:10.1371/journal.pone.0029711.g001
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c ið Þ~log
c1,iza

c2,iza

� �

where a is a constant set to 2 to avoid division by zero errors and

to dampen noise.

Results

A dataset consisting of 2207 regions (1179 hot spots, 1028 cold

spots) was first randomly divided such that two-thirds were

analyzed by feature selection (see Materials and Methods) and

one-third was set aside as a testing dataset. The testing dataset was

used to test how accurately the features identified can distinguish

between hot and cold spots. Setting aside a testing dataset ensures

a fair test with the features being tested on data not used to obtain

the features. Hot spots as used in this manuscript refer to regions of

increased meiotic DSBs and cold spots to regions of decreased

meiotic DSBs. Features were first ranked in order of importance

based on the training dataset. The final subset of features was

obtained using a forward selection approach. Features were added

individually based on ranking until no significant improvement in

accuracy was observed. The corresponding accuracy was calcu-

lated using the testing dataset. Thus, accuracy using only highly

ranked features was estimated based on data not used to rank the

features. A subset of five features (i.e., H3K4me3, H3K14ac,

H3K36me3, H3K79me3, and GC content) was identified

(Figure 1) with a classification accuracy of 80.4%, sensitivity of

80.5%, and specificity of 80.3%. Many of the identified features

were found to be associated with recombination, according to

published literature.

Chromatin Structure
All of the histone modifications used in this study were mapped

in vegetatively growing mitotic cells. While the DSB frequency

dataset used to map meiotic hot and cold spots was obtained from

meiotic cells we address this issue in more detail in the discussion

section. The feature selected as having the highest predictive

importance was the degree of H3K4me3 methylation. Published

literature strongly associates this mark with recombination hot

spots. In S. cerevisiae, the methyltransferase Set1 is responsible for

H3K4 methylation. Set1 mutants exhibit dramatically reduced

DSB frequency at well-characterized hot spots [33]. Additionally,

H2B ubiquitination promotes Set1 activity [34], thereby increas-

ing H3K4 methylation. Preventing this mark leads to decreased

DSB frequency [35]. Importantly, Borde et al. [14] demonstrated

that deleting Set1 reduced or eliminated DSBs at 84% of the

hottest sites in S. cerevisiae. In addition, recent work has associated

PRDM9, a sequence-specific DNA binding methyltransferase,

with hot spot activity in mammalian meiosis [36,37,38]. Our

results are consistent with these studies, indicating that H3K4me3

associates positively with areas of high recombination (Figure 2).

H3K14ac is a histone mark associated with active transcription.

Like H3K4me3, H3K14ac is localized primarily to the 59 end and

promoter region of open reading frames and is correlated with the

rate of transcription [39,40,41]. Research has linked histone

acetylation with meiotic DSB frequencies. For instance, Sir2

deacetylates histones H3 and H4 [42]. Mutants deficient in Sir2

exhibit widespread changes in meiotic DSB frequencies with 12%

of yeast genes showing altered DSB frequency [43]. Moreover, the

histone deacetylase Rpd3 represses meiotic recombination at the

well-studied hot spot HIS4 in S. cerevisiae [44]. Finally, deletion of

the histone acetyltransferase GCN5, which preferentially acetylates

H3 histones, leads to decreased recombination at the ade6-M26 hot

spot in S. pombe [15]. Our analysis indicates that H3K14ac is

associated with DSB hot regions, with high levels of this mark

corresponding to hot spots and low levels to cold spots (Figures 2

and 3).

H3K36me3 is a post-translational modification catalyzed by the

methyltransferase Set2, and is found primarily in the coding region

of genes being actively transcribed [39,40]. By recruiting the

repressor Rpd3, H3K36me3 suppresses spurious transcription

initiation [45]. H3K36me3 may also play a role in differentiating

exons from introns [46]. Our results indicate that the presence of

H3K36me3 may play a largely inhibitory role in DSB frequency

as this mark is enriched in cold spots relative to hot spots (Figures 2

and 3). In addition, studies have shown that Set2 the methyl-

transferase responsible for H3K36me3 represses meiotic recom-

bination at the HIS4 hot spot in yeast [44].

Like H3K36me3, H3K79me3 is found primarily within coding

regions. Unlike H3K36me3, however, the degree of H3K79me3

presence is not strongly associated with transcription [40]. The

exact function of this mark is unknown, although some evidence

suggests that H3K79me3 may play a role in histone H3 exchange

[47]. Our results indicate H3K79me3 may play a minor repressive

role in DSB frequency since cold spots appear to be enriched for

H3K79me3 (Figures 2 and 3). Most of the histone modification

features show a strong partitioning with hot spots being either

enriched or depleted for the chromatin mark and vice versa for

cold spots. H3K79me3 is an exception cold spots are enriched for

this mark but hot spots are not depleted instead showing about the

genome average of H3K79me3 (Figure 2 panel a). This trend

could be explained by H3K79me3 having a lesser effect on DSB

frequency or by an indirect effect.

Computational analysis is rarely capable of demonstrating a

causal relationship. Feature selection can identify which biological

features out of a large number of candidate features are associated

with regions of high/low meiotic DSBs. The method cannot

identify the reason behind the association. Once an association is

discovered it is important to identify potential confounding

variables and test whether they may be solely responsible for the

correlation of biological features. Such an analysis cannot prove a

causal relationship but it is helpful in elucidating uninteresting

correlations.

An important confounding variable that arises when working

with recombination hot spots is their tendency to localize to

promoter regions while cold spots localize to coding regions.

Many of the histone marks we studied also have a tendency to

localize either to the 59 end of genes or to coding regions.

Therefore, it is possible that the results of our analysis reflect this

co-localization effect. To explore this, we compared promoter

regions of genes with a hot spot within 500 bp upstream of the

transcription start site (TSS) (N = 218) to those genes whose TSS

is at least 3000 bp away from a hot spot (N = 2491) (Figure 3

panels a and d). Divergent promoters were removed from this

analysis. Gene coordinates were obtained from the UCSC

genome browser.

Both H3K14ac and H3K4me3 exhibit a ‘‘peak’’ of modification

in promoters of genes that contain hot spots. This ‘‘peak’’ is absent

in promoters that lack hot spots. H3K14ac and H3K4me3 are

positively correlated with transcription. It is possible that the

enrichment of H3K14ac and H3K4me3 observed upstream of

genes close to hot spots is due to increased transcriptional rates. To

test this we obtained gene expression data [48] and compared

transcription rates. The set of genes with a hot spot upstream of

the TSS, on average do have a higher transcriptional rate

compared with genes whose TSS is at least 3000 bp away from a

hot spot (2.2 mRNA/h compared to 1.7 mRNA/h, p-val-
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ue = 0.003, Wilcox rank sum test), an association that has

previously been reported [7].

To test whether this difference in transcription could explain the

extra enrichment of H3K14ac and H3K4me3 upstream of the

TSS we plotted these marks for genes with an upstream hot spot

whose transcriptional rate was less than 1 mRNA/h (Figure 3

panels b and e) (N = 43). The peaks of upstream enrichment are

retained even for inactive genes. This analysis indicates that

H3K14ac and H3K4me3 enrichment in areas of high recombi-

nation is likely not due solely to the tendency of hot spots to

localize to promoter regions or to differences in transcriptional

activity. Similarly, we compared coding regions that entirely

contain a cold spot to those that do not overlap to any extent with

cold spots (Figure 3, panels c and f). Genes that contain cold spots

show an increased enrichment for both H3K36me3 and

H3K79me3. Both H3K36me3 and H3K79me3 within gene

bodies are positively correlated with transcriptional activity [40],

H3K36me3 is strongly correlated and H3K79me3 is weakly

correlated. Perhaps the increased enrichment of H3K36me3 and

H3K79me3 in genes containing cold spots compared to genes

without cold spots is due to the fact that cold spots are

preferentially located in active genes. We compared transcriptional

rates for genes with (N = 498) and without cold spots (N = 4516).

Genes with cold spots have lower transcription rates than genes

without cold spots (median transcriptional rate 1.3 mRNA/h

compared to 2.3 mRNA/h, p-value,1e-16 Wilcox rank sum test).

Even though genes containing cold spots have on average lower

transcriptional rates than genes without cold spots they exhibit a

higher degree of H3K36me3 and H3K79me3 methylation

(Figure 3 panels c and f).

Holstege et al. measured gene expression in mitotic cells. The

purpose behind the preceding analysis is to check whether the

observed patterns of histone modifications at hot or cold spots are

due to differences in gene activity and not to the presence or

absence of a hot or cold spot. Given that the histone modifications

were measured in mitotic cells, the appropriate dataset for the

above analysis is gene expression also measured in mitotic cells.

While this manuscript was in preparation, a high resolution map of

DSB hot spots was published [21]. This map was produced by

sequencing and mapping oligos bound by Spo11 where the hot

spots were mapped at much higher resolution than the Buhler et al.

dataset. We obtained the set of hot spots mapped by Pan et al. in

order to check if the association of meiotic DSB frequency with the

histone marks H3K14ac, H3K4me3, H3K36me3 and H3K79me3

observed using the Buhler et al. dataset were also observed using an

independently produced higher resolution hot spot map. The Pan

et al. hot spots, like the Buhler et al. hot spots, strongly localized to

promoter regions [21]. Hence, a positive correlation with

H3K14ac and H3K4me3 and a negative correlation with

H3K36me3 and H3K79me3 would be expected.

We duplicated the analysis described in Figure 3 using the Pan et

al. hot spots, and found similar results to what was seen using the

Buhler et al. hot spots. Additionally, we show that the H3K14ac

and H3K4me3 peaks observed upstream of genes with a hot spot

are in general proportional to the strength of the hot spot (Figure

S1). The comparison of gene expression rates between hot spot

associated genes and non-hot spot associated genes and cold spot

associated genes with non-cold spot associated genes was

performed using gene expression obtained in vegetatively growing

mitotic cells. To check if the same patterns are observed with

meiotic cells we repeated the above comparisons with gene

expression measured at different time points after cells were placed

in sporulation media (Figure S2) gene expression data was taken

from [49]. The expression dataset used measured gene expression

for four yeast strains SK1, non-sporulating SK1 control, W303

and a non-sporulating W303 control. For the non-sporulating

controls which do not enter meiosis the above described patterns

held true for all time points. That is hot spot associated genes are

transcriptionally more active than non-hot spot associated genes

and cold spot associated genes are transcriptionally less active than

non-cold spot associated genes.

Interestingly, this pattern did not hold true in the case of hot

spot genes compared to non-hot spot genes in meiotic cells. Upon

the entrance to meiosis the difference in gene expression between

hot and non-hot genes gradually falls to zero (Figure S2 panel’s b

and d). This could be explained by the observation that hot spot

associated genes have a tendency to be repressed in meiosis [7].

Cold spot associated genes are transcriptionally less active than

non-cold spot genes in both mitotic and meiotic cells (Figure S2

panel’s e, f, g and h).

As discussed above there is ample evidence from multiple

studies that H3K4me3 is involved in hot spot selection. Given that

histone marks are in general correlated with one another [39], is it

possible the association of H3K14ac, H3K79me3, and

H3K36me3 with DSB frequency is simply a consequence of these

marks being correlated with H3K4me3? In the case of H3K36me3

there is previous research linking this mark with hot spot activity at

a well-studied hot spot in yeast [44]. As discussed above multiple

studies have linked histone acetylation with hot spot activity.

H3K4me3 in general is correlated with other histone marks but

it is particularly strongly correlated with H3K14ac (r = 0.85, p-

value,2.2 e-16) compared to its correlation with H3K4me2 which

is the next strongest correlation (r = 0.62, p-value,2.2 e-16). Even

when comparing a large number of histone marks H3K4me3 is

inordinately strongly correlated with H3K14ac [39]. Taken

together with the previous work linking histone actylation with

recombination, the usually strong correlation of H3K4me3 with

H3K14ac combined with our results suggests these marks may act

together at meiotic DSB hot spots. While there is a statistically

significant correlation between H3K4me3 and H3K79me3

(r = 0.09, p-value,2.2 e-16) this correlation is too small and in

the wrong direction to explain the association of H3K79me3 with

meiotic DSB frequency.

AT/CG Content
One of the features selected by the feature selection algorithm

was a sequence based feature AT content. AT content and GC

content measure the same quantity and both were included in the

Figure 2. Selected histone marks are correlated with meiotic DSB frequency. (A) Presence of histone marks at hot or cold spots. The first
row displays histograms of the log ratios for all probes on the microarray. The higher the log ratio, the more enriched is the given mark. The second
row is the enrichment of the histone marks at hot spots. Log ratios were binned in 600-bp windows centered at hot spots and the averages for each
bin plotted. The third row is the enrichment of the histone marks at cold spots. Log ratios were binned in 600-bp windows centered at cold spots and
the averages for each bin plotted. (B) Histone mark enrichment is correlated with DSB frequency. Probes on both microarrays measuring DSB
enrichment and histone modification were paired based on whether they mapped to the same genomic location. Pairs of probes were then grouped
in 100 bins according to their DSB enrichment (x-axis). The corresponding log ratios measuring histone modification for the given mark were then
averaged for the probes in each bin (y-axis). Bins representing extreme DSB enrichment values had a very low number of probes ,1–10 hence the
histone modification averages for these bins was highly variable. Therefore any bin containing less than 50 probes was discarded.
doi:10.1371/journal.pone.0029711.g002
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input feature set as a ‘‘sanity check’’ or control. If our

computational method is working correctly, then these features

should rank similarly. Indeed, this is what was observed AT

content ranks 2nd out of 350 features GC content ranks 7th

(Figure 1) . Our analysis is in agreement with published results [7]

indicating that GC content in hot spots is higher than the overall

average in S. cerevisiae. More specifically, the mean GC content

within a 600-bp window centered on hot spots was 39.6%, while

the GC content of the entire genome was 38.1%. Not surprisingly,

the mean AT content in cold spots (63.8%) is greater than that

across the entire genome (61.9%).

To further explore the relationship between GC content and

recombination cold spots we examined the set of cold spots found

entirely within coding sequences. Coding sequences in yeast have

a GC content of 39.6%, which is GC rich relative to the genome

as a whole. The mean GC content of cold spots found entirely

within coding sequences was 37.0% compared to the genome

average of 38.1% and compared to 36.0% percent GC content

calculated for the entire set of cold regions. Cold spots found

within otherwise GC-rich regions (i.e., coding sequences) still

showed reduced GC content contrary to the overall trend of

coding regions as a whole. Studies have shown that hot spots are

Figure 3. Plots of average modification level around transcription start sites (TSS). The x-axis represents- position relative to the TSS set at
zero. Positive numbers represent positions downstream of the TSS, while negative numbers are upstream. The y-axis indicates the average histone
modification enrichment log ratios. Black dots represent points statistically significantly different (p-value,0.01 wilcox rank sum test) than the
corresponding point in the other curve. Forpanels (a, b, d and e) the blue line represents TSS at least 3000 bps away from the center of a hot spot, log
ratios were binned in 200-bp windows and the average for each bin plotted. The black line represents genes with the center of a hot spot located
within 500 bp upstream of the TSS,log ratios were binned in 200-bp windows and the average for each bin plotted. For panels (c and f) the black line
represents the average histone modification in genes which entirely contain a cold spot (for definition of cold spot see Methods). The blue line
represents the average histone modification in genes which do not overlap to any extent a cold spot. Plots were produced by binning histone
modification log ratios in bins proportional to gene size (each bin was 1/10 the size of the given gene) the average for each bin is plotted.
doi:10.1371/journal.pone.0029711.g003
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generally absent from protein coding sequences despite their high

GC content [50,51]. Our results suggest that cold spots may be

associated with regions of low GC and high AT content within

coding sequences.

Nucleosome Occupancy
Of the four biological features included in our analysis with

previous evidence from the literature associating them with

meiotic DSBs (H3K4me3, H4K36me3, GC content and nucleo-

some occupancy) three were selected by our method (H3K4me3,

H3K36me3, GC content). Our method did not identify nucleo-

some occupancy as an important feature distinguishing hot from

cold spots. This is surprising since multiple studies [11,12,52] have

suggested that recombination hot spots are typically found in

regions of increased sensitivity to nucleases, presumably reflecting

a local open chromatin structure. The dataset we used to test

nucleosome occupancy was produced by Kaplan et al. [23] and

based on high throughput sequencing technology.

One possible explanation for our results is that chromatin

remodeling may be occurring after cells have entered meiosis.

Kaplan et al. measured nucleosome occupancy using data derived

from vegetatively growing mitotic cells. There are examples of hot

spots showing a closed chromatin structure during mitosis but an

open one in meiosis [53]. However, a recent study that measured

nucleosome occupancy using formaldehyde-assisted isolation of

regulatory elements (FAIRE) showed that meiotic DSB hot spots

genome-wide overlapped with nucleosome-free regions in mitotic

cells greater than would be expected by random chance [54]

which greatly weakens the above hypothesis. To investigate this

further, we obtained a set of nine different nucleosome occupancy

maps from three microarray-based and six high throughput

sequencing-based studies and examined nucleosome occupancy

around hot spots in each dataset. All six sequencing-based datasets

are plotted together in Figure S3. All of the sequencing based

datasets fragmented DNA using nuclease digestion. Two of the

microarray based nucleosome positioning maps used sonication.

One of them, (Figure 4 (c)) similar to the sequencing based datasets

used micrococcal nuclease digestion [55]. The Lee et al. dataset

also mapped nucleosome positions at a high resolution ,4 bp

similar to the 1 bp resolution of the sequencing based studies. Our

analysis yielded a discrepancy in the results comparing micro-

array- and sequencing-based nucleosome occupancy maps. The

microarray-based results all show a well-defined valley represent-

ing nucleosome depletion centered at hot spots. Based on these

results and previously referenced studies, we conclude that the

microarray results best approximate what occurs in vivo. On

average, nucleosomes are depleted at hot spots for mitotically

dividing cells. Contrary to these results, the sequencing-based

datasets yielded a small peak of nucleosome occupancy at hot spots

(Figure 4). Some datasets exhibited a variable amount of bias

(compare peak to baseline differences Figure 4 panels d and e to

Figure 4 panel f).

Figure 4. Nucleosome occupancy at hot spots. Multiple nucleosome occupancy maps produced using three different technologies (i.e., FAIRE,
Chip-Chip, Chip-Seq) were obtained. Hot spots were aligned Z-score standardized nucleosome occupancy as is shown in 100 bp bins (y-axis). The
center of the aligned hot spots is zero on the x-axis. (a–c) Nuclesome occupancy maps based on microarray technology. The sign was reversed in
panel a to be consistent with how nuclesome depeletion is represented in the other microarry-based techniques. (d–f) Nuclesome occupancy maps
based on high throughput sequencing. The green line plots the mean GC content around hot spots as calcuated by averaging the GC content in 100-
bp bins. The y-axis scale on the right is for the GC content plot. The first word in each plot title is the last author on the paper in which the given
dataset was described. (references for datasets: a [54] , b [14], c [55], d [23], e [76], and f [77]). Nucleosome occupancy scores were used as calculated
by the authors.
doi:10.1371/journal.pone.0029711.g004
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We obtained and plotted read density at and around hot spots

using two publicly available control datasets (Figure 5). Control

dataset ‘‘a’’ was produced by micrococcal nuclease (MNase)

digestion of purified DNA followed by size selection for

nucleosome-sized fragments and subsequent sequencing using

the Solexa platform [56]. Control dataset ‘‘b’’ was the product of

sonicated purified DNA followed by size selection for nucleosome-

sized fragments and sequenced using the Solexa platform [57].

Both control datasets showed a peak of read density at hot spots

very similar to the peak of nucleosome occupancy observed in the

six sequencing-based nucleosome occupancy maps implying

nucleosome occupancy at hot spots, as measured by high

throughput sequencing, is likely dominated by experimental

artifacts. Because the read density peak was observed in both

controls, this bias was most likely not introduced by a MNase

sequence preference.

The nucleosome occupancy maps produced using high

throughput sequencing show a split peak with a small valley of

occupancy centered at hot spots. The low point of this valley is still

higher than or equal to the baseline nucleosome occupancy

(Figure 4 panels d, e and f). This split peak is likely due to the

competing influences of depleted nucleosome density at hot spots

with the peak of control read density also centered at hot spots.

Thus the trend observed with the sequencing datasets at hot spots

is the result of experimental bias as seen in the control datasets

combined with nucleosome depletion as seen in the microarray

results.

A recent study [21] mapped hot spots and nucleosome

occupancy in yeast at high resolution using high throughput

sequencing, showing nucleosome depletion at hot spots. Using this

dataset we plotted read density at and around hot spots for the

MNase and the sonication controls. Similar to the results seen for

the Buhler et al. hot spots, there is a spurious peak of read density

at the Pan et al. hot spots (Figure S4). This is likely due to GC

content bias, Pan et al. hot spots correlate with a higher GC

content similar to the Buhler et al. hot spots [21]. However, when

we plotted nucleosome occupancy at the Pan et al. hot spots using

the same six sequencing based nucleosome occupancy maps we

plotted at the Buhler et al. hot spots we observed a valley of

nucleosome occupancy centered at hot spots contrary to the peak

seen with the Buhler et al. hot spots (compare Figure S3 with

Figure S5). There is wide variability in the level of bias within the

sequencing based nucleosome occupancy datasets examined. This

can be seen comparing the distance of the peak height to the

baseline in Figure 4 panels d, e and f and Figure S3. The effects of

this variability in bias can also be seen when plotting nucleosome

occupancy at the Pan et al. hot spots (Figure S5). Those datasets

with the strongest bias exhibit a strong split peak with depletion

centered in the middle of a peak (Figure S5 panel a). Those

datasets with a weaker bias show a much smaller split peak (Figure

S5 panels c and f).

The Pan et al. hot spots are mapped with much higher resolution

than the Buhler et al. hotspots. A higher fraction of the mapped

Pan et al. hot spots will be located close to or at the real hot spot,

which is likely to be nucleosome depleted; therefore the Pan et al.

hot spots will have a higher signal to noise ratio than the Buhler et

al. hot spots. The lower signal to noise ratio of the Buhler et al. hot

spots is sufficient using microarray based nucleosome occupancy

maps, such that the correct biological conclusion can be obtained

(Figure 4 panels a, b and c). Using biased nucleosome occupancy

Figure 5. Read density for sequencing controls at hot spots. (a) Purified DNA digested with micrococcal nuclease (MNase) and sequenced
using the Solexa platform. (b) Purified DNA following sonication and sequencing using the Solexa platform. The black line indicates the z-score
standardized mapped read density, while the green line depicts GC content as calculated in Figure 4. Data was smoothed using loess smoothing.
doi:10.1371/journal.pone.0029711.g005

Recombination Hot and Cold Spots in Yeast

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e29711



maps the lower signal to noise ratio of the Buhler et al. hot spots is

not sufficient and an incorrect biological conclusions is drawn

(Figure 4 panels d, e and f). These same nucleosome occupancy

maps, when used with hot spots mapped with much higher

resolution and a corresponding greater signal to noise ratio like the

Pan et al. hot spots can qualitatively produce the correct biological

picture (Figure S5).

To further examine this issue using a single sequencing based

nucleosome occupancy map, we plotted nucleosome occupancy at

three different hot spot datasets: Buhler et al. [5], Borde et al. [14]

and Pan et al. [21]. Depending on which hot spot maps were used,

nucleosomes were either depleted at hot spots or nucleosome

occupancy at hot spots was more difficult to distinguish from

baseline (Figure S6 panels d, e and f). Also plotted is a single

nucleosome occupancy as mapped by ChIP-chip [55] for the three

different sets of hot spots. Contrary to the sequencing based

nucleosome occupancy maps, the ChIP-chip based map showed

clear nucleosome depletion regardless of which hot spot datasets

were used (Figure S6 panels a, b and c). Using high-resolution hot

spot datasets coupled with sequencing based nucleosome occu-

pancy maps supports an accurate qualitative interpretation.

However, it is quantitatively difficult to determine nucleosome

occupancy due to the bias imposed by the sequencing technolo-

gies.

It is tempting to conclude that the bias observed at hot spots is

due to a GC content bias in next generation sequencing. Our

results, in agreement with others [7] demonstrate that hot spots

have a tendency to be GC-rich. Several studies have reported

evidence of significant GC content bias in next generation

sequencing [58,59,60,61]. In support of this hypothesis, plots of

nucleosome occupancy near the center of hot spots closely mirror

those of GC content (Figure 4, panels d, e and f, and Figure S3).

To further explore this question, read libraries for all six

sequencing-based nucleosome occupancy maps plus two control

datasets were aligned against the yeast genome, and the GC

content of reads that aligned with at least 95% identity (alignment

length divided by read length) was calculated. This set was further

divided according to whether the reads mapped to intergenic or

coding regions (Table 1). An obvious GC bias was discovered in

mappable reads (Table 1, column 4). Studies have shown

intergenic regions are nucleosome poor compared to coding

regions [55,62]. Since nucleosomes are concentrated to some

extent in GC rich coding regions and coding regions are GC-rich

a genome-wide examination of sequence bound by nucleosomes

would be expected to find a high GC content relative to the

genome average. However, it is unlikely that this effect can

completely explain the GC bias shown by the six sequencing-based

datasets. The GC content in coding regions of the yeast genome is

39.6% whereas that shown by reads mapped to coding regions is

,42.0%. At 41.3%, the GC content of reads mapped to intergenic

regions is much higher than the GC content of intergenic regions

(34.8%).

Comparison of the GC bias between the two control datasets

was particularly interesting. The MNase control showed a strong

GC bias in mappable reads of 47.6%, which was nearly 10.0%

higher than the overall yeast GC content. The sonication control

displayed a much lower GC content bias (39.2%) for mappable

reads. All of the sequencing-based nucleosome occupancy maps

were produced using MNase digestion. Given the clear GC bias

calculated for the MNase control, it is possible that much of the

GC bias shown by these maps is a product of MNase cleavage

bias. Furthermore, our analysis indicates that the bias seen at hot

spots occurs regardless of sequencing platform. Nucleosome

occupancy maps produced using both Solexa and 454 sequencing

exhibited a bias at recombination hot spots. Given the differing

nature of these sequencing platforms, the bias may be introduced

during sample preparation and not by the sequencing technologies

themselves.

Not surprisingly, read mapping methodology can also

influence downstream analysis. Five of the six sequencing-based

datasets and all of the control datasets used only unique aligned

reads. However, Mavrich et al. [63] used a more lenient

mapping approach whereby any alignment yielding an identity

less than 90% was discarded and, for alignments between 90%

and 95%, only the maximum score was retained [31]. All

alignments with greater than 95% identity were kept. The key

difference is that their method retained reads that mapped with

high confidence to multiple areas along the genome. Using this

mapping strategy, a broad shallow valley of read density was

observed at hot spots (Figure 6, panel a). When only unique

aligned reads from the same dataset were used, a peak of read

density similar to that seen with other sequencing-based datasets

was seen (Figure 6, panel b). When the control datasets were

examined using the Mavrich et al. mapping approach, a similar

shallow depletion of read density was observed for the

sonication control (Figure S7, panel a). The MNase control

showed a similar shallow depletion, with the exception of a small

peak of read density centered at hot spots. This peak closely

mirrors the increase in GC content also centered on hot spots

and is likely due to the increased GC bias seen in the MNase

control (Table 1). Hence, depending on the mapping approach,

opposing biases can be introduced.

Table 1. Average GC content for reads mapped to the yeast genome.

Dataset Intergenic GC content Coding GC content Total GC content

Yeast Genome 34.84% 39.62% 38.15%

Segal 454 42.35% 42.60% 42.40%

Segal Solexa 41.69% 42.20% 41.97%

Pugh 454 41.49% 42.60% 41.81%

Rando Solexa 39.66% 42.26% 41.52%

Friedman Solexa 41.20% 42.99% 42.46%

MacAlpine Solexa 41.71% 42.96% 42.54%

MNase Control 47.84% 47.37% 47.51%

Sonicated Control 38.58% 39.66% 39.19%

doi:10.1371/journal.pone.0029711.t001
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Using uniquely aligned reads will bias mapped read density

towards unique sequence; including multimapping reads will bias

read density towards repetitive sequences. The broad shallow

depletion in read density observed at hot spots when allowing

multi mapping of reads may reflect the fact that hot spots have a

tendency to be located in unique sequences.

Next, we plotted the read density for the six sequencing-based

nucleosome occupancy maps following subtraction of the MNase

control (see Materials and Methods). When the MNase control

was subtracted from the nucleosome occupancy maps, the read

density at hot spots is qualitatively in agreement with the

microarray-based results, displaying a valley of nucleosome

occupancy at hot spots (see Figure S8).

Discussion

It is difficult using in silico analysis alone to demonstrate the

existence of a causal relationship between two biological features.

What it can do is to identify promising relationships to explore

further in vivo. Here we have shown that feature selection using

machine learning techniques can usefully be applied to a complex

biological process. While this manuscript was in preparation a

high resolution map of DSB hot spots was published [21].

Sequencing and mapping oligos bound by Spo11 produced this

map. Spo11 hot spots compared with hot spots identified by

ssDNA hybridization studies such as Buhler et al. show a strong

degree of concordance with Spo11 hot spots accounting for nearly

all hot spots mapped by ssDNA techniques [21].

Resolution of Hot Spots
The set of DSB hot and cold spots used in this study were

derived by mapping single stranded DNA produced by nucleolytic

processing of DSBs [5]. These ssDNA fragments may be quite

large, 1 to 2 kb. Hence the locations of hot spots as reported by

Buhler et al. are mapped with some imprecision. This will certainly

affect any study that attempts to use this data to elucidate genomic

features associated with DSB hot/cold spots.

It is not necessary in this computational analysis for the sites

defined as hot spots to exactly overlap the ‘‘true’’ hot spots. It is

only necessary that an appropriately sized window centered at the

sites defined as hot spots overlap to some degree with the genomic

features that are associated with true hot spots. A recent paper

studying the association of H3K4me3 with meiotic DSB found

enrichment of this mark in a broad region ,1–2 kb around DSBs

[14]. This indicates that regions of high DSB frequency mapped

by Buhler et al. are likely sufficiently precise to identify at least

some chromatin features associated with regions of high meiotic

DSBs. Our results strengthen this conclusion of the five features we

associated with meiotic DSBs. Three of them H3K4me3,

H3K36me3 and GC content have previously been associated

with meiotic DSBs. Additionally we obtained a set of recently

produced hot spots mapped at high resolution [21] and tested

whether the same patterns identified using the low resolution

Buhler et al. dataset are present using higher resolution data. The

same patterns were present using either dataset compare (Figure 3

with Figure S1).

Mitotic Histone Marks
All of the histone marks associated with recombination in this

study were obtained in vegetatively growing mitotic cells. The

DSB set we used was mapped in meiotic cells. How can we be sure

the histone marks do not change dramatically between these two

cell states? There are two major reasons suggesting patterns in

Figure 6. Effect of including multimapping reads. (a) Plot of nucleosome occupancy at hot spots using data produced by the Mavrich et al.
mapping approach. (b) Plot of nucleosome occupancy of the same dataset at hot spots using uniquely aligned reads only. Green line represents GC
content as calculated in Fig. 4.
doi:10.1371/journal.pone.0029711.g006
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histone modifications found at hot spots in mitotic cells may hold

true for meiotic cells. First, it has previously been shown that a

number of chromatin features present at hot spots in meiotic cells

are also present at hot spots in mitotic cells [14,54]. For example,

H3K4me3 does not change dramatically in mitotic compared to

meiotic cells [14]. The set of hot spots mapped in meiotic cells by

Buhler et al. have been shown to be on average nucleosome

depleted in mitotic cells [54] indicating that at least two chromatin

features associated with recombination hot spots in meiotic cells

are also present to some degree at those same sites in mitotic cells.

Additionally, a recent study examined the changes in chromatin

states from mitotic to meiotic cells for a number of nucleosome

associated biological features including H3K9ac, H3K4, H3K36

and H3K79 tri-methylation. The conclusion reached was that

histone modification states were remarkably stable changing little

between mitotic and meiotic cells [64]. These authors also

examined the distribution of H3K36me3, H3K4me3 and

H3K79me3 at hot and cold spots in meiotic cells. Their results

mirror our own obtained in mitotic cells. In addition, Zhang et al.

showed that in general the distribution of these marks change little

between mitotic to meiotic cell states suggesting that the chromatin

features associated with hot or cold spots are present in both

mitotic and meiotic cells.

Second, we show that, in general, histone modifications peak

heights for H3K14ac and H3K4me3 found in promoter regions of

genes with hot spots are proportional to the strength of the

corresponding hot spots and not dependent on transcriptional

rates. The fact that this pattern is present in mitotic cells is strongly

suggestive it will be present in meiotic cells. Our results showing an

association between DSB frequencies measured in meiotic cells

and enrichment for histone modifications measured in mitotic cells

suggests that nucleosome occupancy and H3K4me3 may not be

the only chromatin features that mark sites of meiotic DSBs in

mitotic cells before the entrance to meiosis. Although, this is a

question that cannot be answered by in silico analysis because it

requires further experimentation measuring the distribution of

these marks for both meiotic and mitotic cells.

Role of Histone Modifications
The role of histone modifications in specifying sites of Spo11-

catalyzed DSBs is unclear. Specific marks could serve to directly

recruit proteins involved in recombination. Alternatively, histone

modifications, such as acetylation, may act indirectly by modifying

the local chromatin structure. Histone acetyltransferases and ATP-

dependent chromatin remodeling factors have been shown to

regulate recombination at the ade6-M26 hotspot in S. pombe

[15,65]. Deletion of the histone acetyltransferase GCN5 gene

causes a significant delay in chromatin remodeling, leading to a

partial reduction in recombination frequency. Double deletion of

SNF22, a component of a chromatin remodeling complex, and

GCN5 leads to a complete loss of meiotic recombination. RSC4p,

a component of the chromatin remodeling complex RSC, contains

tandem bromodomains that recognize H3K14ac, suggesting that

this mark may recruit chromatin remodeling factors directly [66].

In addition, acetylation leads to a more open and less condensed

chromatin structure, allowing easier access for recombination

proteins or chromatin remodeling complexes.

Dot1p the methyltransferase responsible for lysine 79 methyl-

ation has been linked with DNA repair [67]. Deletion of Dot1p

confers increased sensitivity to radiation in yeast [68]. Additionally

the correct function of the DNA checkpoint response requires H3

methylation by Dot1p [69] . The presence of Dot1p is necessary

for efficient repair of DSB by sister chromatid repair [70]. This

suggests H3K79me3 may be associated with regions of low meiotic

DSBs frequency because it is a marker for DNA repair.

Another possibility is that specific histone modifications may

affect DSB frequencies indirectly by inhibiting or enhancing other

histone modifications that play a more direct role. For instance,

preventing H2B ubiquitination leads to decreased meiotic

DSBs[35]. By promoting H3K4me3, H2B ubiquitination may

be enhancing DSB formation [71]. Another possible example of

similar ‘‘cross-talk’’ between histone modifications is H3K36me3-

mediated repression of DSB formation at the well-studied HIS4

recombination hot spot in budding yeast [44]. H3K36me3 recruits

the Rpd3 histone deacetylase [45], suggesting that this mark may

have an indirect negative effect on DSB frequency by preventing

or reducing histone acetylation since there appears to be a positive

correlation between histone acetylation and DSB frequency at

some hot spots [15].

Nucleosome mapping
Locke et al. [56] were able to predict nucleosome positions using

nuclesome free control data they suggest this could be because

MNase sequence preference or sonication fragmentation coincides

with nucleosome excluding sequence. If this were the case any

‘‘peaks’’ of read density in the MNase or sonication control

datasets at hot spots may well reflect true nucleosome occupancy.

In support of this hypothesis a recent study in mice found evidence

of increased nucleosome binding at hot spots [72].

We do not think this is the case for the genomic loci in question

for a number of reasons. One the same set of genomic loci used in

our study i.e.(Buhler et al. Hot spots) were recently shown to be on

average nucleosome depleted using FAIRE [54]. This directly

contradicts the sequencing based results at these same loci (Figure 4

panels d, e and f). Two microarray based nucleosome occupancy

maps are in agreement with one another but disagree with the

results of the uncorrected sequencing based studies (Figure 4).

Finally a number of individual hot spots have been examined (see

above) and in general they are nucleosome depleted.

The extent to which nucleosome binding is based on sequence

preferences is currently an active area of research [23,57]. One

approach to answering this question is comparing nucleosome

maps produced in vitro and in vivo [23]. Our results, along with

others [73,74], indicate that a systematic bias can dominate at

certain genomic loci, thereby obscuring the true biological

representation. It is unknown to what extent this influences the

genome wide similarity observed between in vivo and in vitro

produced nucleosome occupancy maps.

Using control experiments to remove the systematic bias is an

obvious approach in dealing with experimental artifacts. Unfor-

tunately, producing suitable controls is not necessarily straightfor-

ward [75]. Previously, controls have rarely been used in

nucleosome mapping with high throughput sequencing methods.

When experimental bias is not controlled for, the opposite of the

most likely correct biological picture is observed at yeast meiotic

hot spots mapped at low resolution. However, when we subtract a

MNase control experiment from the nucleosome occupancy maps,

the correct biological interpretation can be derived indicating the

suitability of this control for the loci under investigation in this

study. Furthermore, our results underscore the importance of

addressing experimental bias in nucleosome mapping high

throughput sequencing experiments. Our analysis is not intended

to be a comprehensive examination of all possible biological

features potentially associated with meiotic DSB frequency Future

work could expand the set of genome wide features being

examined at sites of high/low meiotic DSB frequencies. Here we

have shown feature selection can productively be used to identify
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promising biological associations. Our approach successfully

identified previously known correlations while making several

novel predictions.

Supporting Information

Figure S1 Plots of average modification level around
transcription start sites (TSS) using Pan et al. hot spots.
Figure is produced as described for Figure 3 with one difference.

For panels a, b, d and e genes with a hotspot in their promoter

regions were further divided based on the strength of the hot spot.

The blue line is the given histone modification plotted upstream of

genes whose hot spot is below the first quartile. The red line is

genes whose hot spot strength falls between the first and second

quartile. The purple line is genes whose hot spots falls betweeen

the second and third quartile. The green line is genes whose hot

spots strength is greater than the third quartile.

(TIF)

Figure S2 Gene expression comparison in meiotic cells.
Panels a-d is comparing gene expression between genes associated

with hot spots to genes not associated with hot spots. Height of

bars represents the difference in median gene expression for genes

associated with hot spots to genes not associated with hot spots (i.e.

Median hot gene expression – Median not hot gene expression).

Time points represent time after yeast culture is placed in

sporulating media. Panels (a) an (c) represent gene expression

measured at the given time points for sporulation deficient SK1

and W303 strains these strains do not enter meiosis. Panels (b) and

(d) represent gene expression for sporulation-proficient SK1 and

W303 strains. An asterisk represents the difference in medians is

significant with p-value,0.05, p-value calculated using the Wilcox

rank sum test. Panels c-h is as described above except height of

bars represents the difference in median gene expression for genes

associated with cold spots to genes not associated with cold spots

(i.e. Median cold gene expression – Median not cold gene

expression). Gene expression is represented by hybridization

fluorescence intensities.

(TIF)

Figure S3 Nuclesome occupancy at Buhler et al. hot
spots for all sequencing-based datasets. For all datasets,

reads were mapped to the yeast genome. Only uniquely aligned

reads were retained and the count mapped to each base pair was

calculated. The z-score standardized count of reads is plotted using

the same procedure as described for Figure 4 with the green line

representing GC content. (references for datasets: a [76], b [23], c

[77] , d [78], e [63] and f [79].

(TIF)

Figure S4 Read density for sequencing controls at Pugh
et al. hot spots. (a) Purified DNA digested with micrococcal

nuclease (MNase) and sequenced using the Solexa platform. (b)

Purified DNA following sonication and sequencing using the

Solexa platform. The black line indicates the z-score standardized

mapped read density. Data was smoothed using loess smoothing.

(TIF)

Figure S5 Nucleosome occupancy at Pugh et al. hot
spots for all sequencing-based datasets. For all datasets,

reads were mapped to the yeast genome. Only uniquely aligned

reads were retained and the count mapped to each base pair was

calculated. The z-score standardized count of reads is plotted at

centered Pugh et al hot spots. Plot is produced similar to Figure 4

and Figure S3. (References for datasets: a [76], b [23], c [77] , d

[78], e [63] and f [79].

(TIF)

Figure S6 Nucleosome occupancy at recombination hot
spots obtained at various resolutions. Z-score standardized

nucleosome occupancy is shown in 100 bp bins (y-axis). The

center of the aligned hot spots is zero on the x-axis. Panels a, b and

c represent nucleosome occupancy data measured by ChIP-chip

produced by Lee et al. [55] at three different hot spot datasets from

left to right [5], [14], and [21]. Panels d, e and f represent

nucleosome occupancy in the same three datasets but now using a

nucleosome occupancy map produced by ChIP-seq [64]. This

sequencing based nucleosome occupancy map has previously been

used in analyzing nucleosome occupancy at hot spots as defined by

Borde et al. [14].

(TIF)

Figure S7 Sonication and MNase control plotted at
Buhler et al. hot spots allowing multimapping reads.
Reads for sonicated (a) and MNase-digested controls (b) were

mapped allowing multimapping of reads. Read density centered at

hot spots is plotted. Data was smoothed using loess smoothing.

(TIF)

Figure S8 Nuclesome occupancy at Buhler et al. hot
spots for all sequencing-based datasets following sub-
traction of the MNase control. Nucleosome occupancy was

plotted at hot spots for all sequencing-based nucleosome mapping

datasets following subtraction of the MNase control as described in

the text. Data plotted similarly to Figure 4.

(TIF)
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