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Abstract

MicroRNAs are a class of small non-protein coding RNAs that play an important role in the regulation of gene expression.
Most studies on the identification of microRNA-mRNA pairs utilize the correlation coefficient as a measure of association.
The use of correlation coefficient is appropriate if the expression data are available for several conditions and, for a given
condition, both microRNA and mRNA expression profiles are obtained from the same set of individuals. However, there are
many instances where one of the requirements is not satisfied. Therefore, there is a need for new measures of association to
identify the microRNA-mRNA pairs of interest and we present two such measures. The first measure requires expression
data for multiple conditions but, for a given condition, the microRNA and mRNA expression may be obtained from different
individuals. The new measure, unlike the correlation coefficient, is suitable for analyzing large data sets which are obtained
by combining several independent studies on microRNAs and mRNAs. Our second measure is able to handle expression
data that correspond to just two conditions but, for a given condition, the microRNA and mRNA expression must be
obtained from the same set of individuals. This measure, unlike the correlation coefficient, is appropriate for analyzing data
sets with a small number of conditions. We apply our new measures of association to multiple myeloma data sets, which
cannot be analyzed using the correlation coefficient, and identify several microRNA-mRNA pairs involved in apoptosis and
cell proliferation.
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Introduction

MicroRNAs (miRNAs) are small (,22 nt) non-protein coding

RNAs that are involved in the post-transcriptional regulation of

mRNA expression. The miRNAs are of immense biological

significance, e.g. changes in miRNA expression have been linked

to cancer [1–4], and, over the past two decades, numerous studies

have focused on miRNAs. The studies on miRNAs can be broadly

grouped into two categories – identification of miRNAs as

molecular markers for better prognosis/diagnosis [5,6] and under-

standing the role of miRNAs in transcription regulation [7–11]. In

this paper, we focus on the latter category and introduce new

methods for obtaining insights into a miRNA’s regulatory role.

The identification and validation of a regulatory miRNA

requires a knowledge of its target mRNAs and, initially,

computational algorithms such as TargetScanS [12], PicTar [13]

and miRanda [14] were used to obtain the putative miRNA-mRNA

pairs based on sequence data. Although, for every miRNA, these

algorithms suggested a potential pairing with several hundred

mRNAs, the number of genuine pairs was much lower (<50%)

[15]. Even if a pair is genuine, it may not be of interest in a

particular biological condition because the regulatory miRNAs vary

from one condition to another. For example, the miRNAs that are

regulatory in lung cancer may not be regulatory in pancreatic

cancer. Therefore, the computational algorithms are not sufficient

to obtain the pairs of interest under different biological conditions.

Over the past decade, several methods [16–19] have been

developed that combine the results of computational algorithms

with mRNA expression data. While these methods are suitable for

identifying the potentially regulatory miRNAs, they cannot be

used to obtain the miRNA-mRNA pairs for experimental

validation. This is because a miRNA-mRNA pair is of potential

biological interest only if there is an association between the

expression levels of the relevant miRNA and mRNA. Conse-

quently, integrative methods that combine the results of target-

prediction algorithms with both mRNA and miRNA expression

data have become popular. While some of these integrative

methods focus on the identification of miRNA-mRNA pairs

[20–25], others focus on the identification of miRNA-mRNA

modules, i.e. groups of miRNAs that co-regulate groups of

mRNAs [26–30]. Broadly speaking, the integrative methods

employ a three step procedure as described below:

1. Identification of differentially expressed (DE) miRNAs and

mRNAs: An expression data set corresponds to multiple

conditions and one of these, e.g. healthy state, is selected as the

reference. Next, the miRNAs and mRNAs that are DE, with

respect to reference, in at least one of the conditions are

identified.

2. Selection of putative miRNA-mRNA pairs: A miRNA-target

prediction algorithm is used to obtain the DE mRNAs that are

putative targets of one or more of the DE miRNAs.
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3. Identification of statistically significant miRNA-mRNA pairs:

The miRNA and mRNA expression profiles are used to obtain

the statistical significance of the pairs identified in Step 2.The

statistically significant pairs are considered to be of potential

biological interest and are usually selected for further

experimental studies or validation. Unless specified otherwise,

in the rest of this paper, significance implies statistical

significance.

The identification of statistically significant pairs (Step 3) is a

challenging task and has two components – the selection of an

appropriate association measure and the determination of its

significance. Most studies on the identification of miRNA-mRNA

pairs of interest utilize the correlation coefficient [20,22–25,27] as

a measure of association and several methods have been proposed

to obtain its significance. Lionetti et al. [20] used the correlation

coefficient to rank the miRNA-mRNA pairs such that the pair

with the strongest negative correlation was ranked one. Next, the

authors chose an arbitrary cut-off of 3% and considered the top

3% of the pairs (in terms of rank) to be of potential biological

significance. A more formal approach for identifying the miRNA-

mRNA pairs of biological interest is based on a test of significance.

If the distribution of correlation coefficients is known, then this

distribution can be used to perform the significance test, e.g.

Gutierrez et al. [24] performed a test of significance under the

assumption that the distribution was bivariate normal. If the

distribution is unknown, then a permutation test [25,27] is more

appropriate for obtaining the significance of association.

The use of correlation coefficient as an association measure is

appropriate only if every individual in the study is used to obtain

both miRNA and mRNA expression profiles. In other words, the

use of correlation coefficient requires the miRNA and mRNA

expression data to be matched. Moreover, the matched data have

to be available for several biological conditions. For a small

number of conditions, the correlation coefficient-based measure

can be very noisy and for the extreme case where the number of

conditions is just two, this measure is not meaningful. Therefore,

there is a need for new measures of association to identify the

miRNA-mRNA pairs of interest using a small number of

biological conditions. To this end, we introduce an association

measure that enables the identification of significant miRNA-

mRNA pairs using matched expression data for just two

conditions.

The number of biological conditions can be increased by

combining multiple miRNA and mRNA studies. In theory, the

integration of data from multiple studies increases the number of

samples per condition and the total number of conditions, thereby

adding power to the miRNA-mRNA association measure. Many

of the microarray data sets in the Gene Expression Omnibus [31]

repository correspond to either miRNA or mRNA expression.

Consequently, the miRNA and mRNA data are unmatched and,

even for a large number of biological conditions, the correlation

coefficient cannot be used for measuring association. We present a

novel association measure for analyzing unmatched data that

correspond to a large number of conditions. In the next section, we

apply the new association measures to two multiple myeloma

(MM) data sets and identify several miRNA-mRNA pairs involved

in apoptosis and cell proliferation.

Results

We illustrate the applicability of the new association measures

using two independently generated MM data sets. The first data

set, henceforth referred to as the Lionetti data set [20], comprised

healthy donors and MM patients stratified into five groups – TC1

to TC5 – based on TC [32] classification. The second data set,

henceforth referred to as the Gutierrez data set [24], comprised

healthy donors and MM patients with the following cytogenetic

characteristics – normal FISH, t(11;14) (with or without RB

deletion), t(4;14) (with or without RB deletion), and RB deletion as

a unique abnormality. The two data sets were normalized as

described in the Materials and Methods section. In the rest of this

paper, RB deletion implies ‘‘RB deletion as a unique abnormality’’

and every MM group represents a biological condition of interest.

Differentially expressed miRNAs and mRNAs
We considered a miRNA or mRNA to be DE in a biological

condition of interest if the difference in average expression

between the MM group and healthy individuals was statistically

significant (refer Materials and Methods section).The Lionetti data

set had five MM groups (i.e. TC1 to TC5) and the number of

miRNAs and mRNAs that were DE in at least one of the five MM

groups was 75 and 1024, respectively. Similarly, for the Gutierrez

data set, the number of miRNAs and mRNAs that were DE in at

least one of the four MM groups was 133 and 3486, respectively.

The correlation coefficient is an appropriate measure of

association between miRNAs and mRNAs when the number of

biological conditions is large. Since the Lionetti and Gutierrez data

sets comprised fewer than six conditions, an identification of the

significant miRNA-mRNA pairs using these data sets required the

use of new association measures (Figure 1).

Unmatched data association measure
The unmatched data (UD) association measure requires

miRNA and mRNA expression profiles for several biological

conditions and these conditions can be obtained by combining

multiple data sets. We merged the Lionetti and Gutierrez data sets

to obtain a ‘‘Master’’ data set comprising nine MM groups. The

Master data set contained miRNAs and mRNAs that were DE in

at least one of the groups (with respect to healthy individuals) and

common to both Lionetti and Gutierrez data sets. Thus, we

obtained a total of 120 miRNAs and 3260 mRNAs.

We use the notation ‘‘FC-value’’ to denote the difference

between the average expression (miRNA or mRNA expression) in

healthy donors and a MM group. We transformed the FC-values

into +1, 21, or 0 using a discretization step (refer Materials and

Methods section) and these transformed values are henceforth

referred to as ‘‘discretized FC-values’’. The discretized FC-value of

21 corresponds to an overexpression of miRNA/mRNA in

healthy donors with respect to MM patients. Similarly, the

discretized FC-value of +1 corresponds to an overexpression in

MM patients with respect to healthy donors.

Once the discretized FC-values were obtained for the miRNAs

and mRNAs in the Master data set, we determined the putative

miRNA-mRNA pairs using TargetScanS. Although there are

numerous miRNA-target prediction algorithms, they have similar

sensitivity values [15] and we chose one of the commonly used

algorithms for downstream analysis (refer Appendix S1 for an

analysis based on miRBase). Of the 391,200 (120 miRNAs63260

mRNAs) possible pairs, 6142 were predicted by TargetScanS. For

each of the 6142 pairs, we used the discretized FC-values to test

the null hypothesis that a change in mRNA expression is

independent of a change in miRNA expression. We adjusted the

p-values for multiple comparison using the Benjamini-Hochberg

(BH) correction [33]. If the adjusted p-value was less than 0.05,

then we rejected the null hypothesis and considered the association

between the miRNA-mRNA pair to be of potential biological

significance. We identified 40 of the 6142 pairs as significant and

Association Measure for Unmatched and Matched Data
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these pairs corresponded to 27 unique miRNAs and 18 unique

mRNAs (Table S1).

We have previously shown using luciferase reporter assays that

miRNAs can negatively regulate the translation of mRNA to

protein [34] and similar results have been reported in other studies

[9,35]. Therefore, if the FC-value for a miRNA is positive (resp.,

negative), then the FC-value for the target mRNA must be

negative (resp., positive). While the UD association measure can

be used to identify miRNA-mRNA pairs with FC-values in the

opposite direction or the same direction, in this paper we consider

a pair to be significant only if the miRNA and mRNA FC-values

are in the opposite direction for at least one of the biological

conditions. In fact, for the master data set, some of the significant

pairs had miRNA and mRNA FC-values in the opposite direction

for more that one condition (Figure 2). For example, the pair hsa-

miR-191:CCND2 had FC-values in the opposite direction for

TC4 and RB deletion. Similarly, the pair hsa-miR-205:ESRRG

had FC-values in the opposite direction for TC1 and TC4.

For a given condition, the calculation of miRNA and mRNA

FC-values and, hence, the discretized FC-values, does not require

the miRNA and mRNA expression to be obtained from the same

set of individuals. Since the UD association measure only requires

discretized FC-values as input, it is not dependent on the miRNA

and mRNA data being matched.

Matched data association measure
Instead of evaluating multiple MM groups to identify the

significant miRNA-mRNA pairs, we could compare a MM group

to healthy individuals and determine the miRNA-mRNA pairs of

interest in the relevant MM group (Figure 1). Since the UD

Figure 1. Identification of significant miRNA-mRNA pairs using association measures based on unmatched and matched data.
doi:10.1371/journal.pone.0029612.g001

Association Measure for Unmatched and Matched Data
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association measure is inappropriate for the latter analysis (refer to

Appendix S2 for an explanation), we utilized the matched data

(MD) association measure.

The MD association measure considers a miRNA-mRNA pair to

be of potential biological significance if the change in miRNA

expression produces a change in mRNA expression in the opposite

direction and the magnitude of change is higher than that by chance.

The MD association measure requires the changes in miRNA and

mRNA expression for the same set of individuals and is not applicable

to unmatched data. Therefore, we analyzed the MM groups

corresponding to Lionetti and Gutierrez data sets separately (Figure 1).

For the purpose of illustration, instead of analyzing all the nine

MM groups, we focused on the two MM groups corresponding to

the largest number of samples (or patients). For the Lionetti data

set, the maximum number of samples was 10, which corresponded

to patients with TC2 classification. For the Gutierrez data set, the

maximum number of samples was 14, which corresponded to

patients with RB deletion.

We use the notation ‘‘CE-value’’ to denote the change in

miRNA/mRNA expression of a MM patient with respect to

healthy donor. To identify the miRNA-mRNA pairs of potential

biological significance in the RB deletion MM group, we first

obtained the miRNA and mRNA CE-values for each of the

10 MM patients. Next, we provided these CE-values as input to

the MD association measure and tested the null hypothesis that the

change in mRNA expression is independent of a change in

miRNA expression. We adjusted the p-values for multiple

comparisons using the BH correction. If the adjusted p-value

was less than 0.05 we rejected the null hypothesis and considered

the miRNA-mRNA pair to be significant. Of the 6142 putative

miRNA-mRNA pairs returned by TargetScanS, we identified 406

pairs as significant. These pairs corresponded to 47 unique

miRNAs and 131 unique mRNAs (Table S2). Similarly, for an

analysis involving TC2 patients, 187 of the 6142 pairs were

observed to be significant. These pairs corresponded to 18 unique

miRNAs and 85 unique mRNAs.

Figure 2. Significant miRNA-mRNA pairs obtained using unmatched data. The labels on the X-axis correspond to biological conditions and
the labels on the Y-axis correspond to miRNA-mRNA pairs. Blue indicates that the miRNA-mRNA pair was statistically significant in the relevant
condition.
doi:10.1371/journal.pone.0029612.g002

Association Measure for Unmatched and Matched Data
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To compare the results obtained using the MD association

measure with those obtained using correlation coefficient, we

focused on patients with RB deletion. For every miRNA-mRNA

pair that was predicted by TargetScanS, we used the miRNA and

mRNA CE-values to obtain the correlation. Next, we performed a

permutation test (refer Materials and Methods section) for the null

hypothesis that the association between a miRNA and mRNA was

not higher than that by chance. We adjusted the p-value for multiple

comparisons using the BH correction and identified 19 of the 6142

miRNA-mRNA pairs as significant (adjusted p-value,0.05). The

number of miRNA-mRNA pairs that were identified as significant

using both correlation coefficient and MD association measure was

just 3. For a miRNA-mRNA pair to be genuine, the average change

in mRNA expression must be in the opposite direction to that of the

miRNA. For example, if the average CE-value is positive for a

miRNA, then the average CE-value must be negative for the target

mRNA. Figure 3 shows the relationship between miRNA hsa-miR-

320 and two of its putative targets, ATRX and CAMSAP1L1; the

average CE-values were 22.53, 21.53, and 1.26, respectively.

Though the pair hsa-miR-320:ATRX was identified as

significant using the correlation coefficient, the average CE-value

was negative for both miRNA and mRNA. Therefore, ATRX

cannot be considered a genuine target of hsa-miR-320. In

contrast, the directions of average CE-values for hsa-miR-320

and CAMSAP1L1 were opposite, suggesting a potential targeting

of CAMSAP1L1 by hsa-miR-320. In fact, the pair hsa-miR-

320:CAMSAP1L1 was identified as significant using the correla-

tion coefficient as well as the MD association measure.

Concordance in results obtained using MD and UD
association measures

While the MD association measure is suitable for analyzing one

MM group at a time, the UD association measure is appropriate

for analyzing several MM groups simultaneously. We analyzed

nine MM groups using the UD association measure and two of

these (RB deletion and TC2) were also analyzed using the MD

association measure. For these two MM groups, we determined

the overlap between the significant pairs identified using the two

measures. As mentioned earlier, the UD association measure

returned 40 significant pairs and each of these pairs corresponded

to miRNA and mRNA FC-values in the opposite direction for at

least one of the nine MM groups. We observed that 28 of the 40

pairs had RB deletion as one of the biological groups with FC-

values in the opposite direction. The MD association measure

returned 406 significant miRNA-mRNA pairs for RB deletion and

these included the 28 pairs obtained using UD. Similarly, eight of

the 40 significant pairs obtained using UD were associated with

TC2 and these eight pairs were also identified using MD.

Figure 3. Relative expression levels of hsa-miR-320 and two of its predicted targets in samples with RB deletion.
doi:10.1371/journal.pone.0029612.g003

Association Measure for Unmatched and Matched Data
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Biological significance of miRNA-mRNA pairs
To illustrate the biological significance of the results obtained

using UD and MD association measures, we focused on the MM

group with the largest sample size, i.e. patients with RB deletion.

Of the 406 significant miRNA-mRNA pairs obtained using the

MD association measure, some were identified as significant in the

Gutierrez study as well. These included hsa-miR-320a:MLLT3,

hsa-miR-20a:CDKN1A, hsa-miR-20a:FURIN, hsa-miR-19b:IGF1,

hsa-miR-15a:CCND2, hsa-miR-10b:KLF11, hsa-miR-19a:IGF1,

and hsa-miR-19a:CCND2.

Among the miRNAs identified as significant many have

previously been shown to be dysregulated in MM, e.g. hsa-miR-

135b, -196a, -19a, -19b, -205, -214, -223, -320, -373, -375, -485-

5p and -520b [24,36–38]. Of significance is the identification of

miR-19 family and in particular hsa-miR-19a and -19b; these two

miRNAs have been linked to B cell neoplasms, including MM and

have recently been directly implicated in MM pathogenesis

[39,40].

The 406 significant pairs corresponded to 131 unique mRNAs

and a gene ontology (GO) analysis showed that many of these

mRNAs were associated with apoptosis, cell proliferation and

transcription regulation (Table 1). Overall, 57 miRNA-mRNA

pairs were associated with apoptosis, 75 pairs were associated with

transcription regulation, and 82 pairs were associated with cell

proliferation (Table S3).

Some of the genes of interest were SOCS3, JUND, and Pellino

homolog 1 (PELI1) (Figure 4). Our MD association measure

suggested that the anti-apoptotic gene SOCS3 was regulated by

four miRNAs, including hsa-mir-19a and -19b. This gene is

involved in the IL-6 signaling pathway which is important in

myeloma cell survival [41]. The gene JUND has been shown to

modulate the development of drug resistance in a majority of

patients on Bortezomib-based anti-myeloma therapy [42]; three of

the miRNAs identified in the original study as regulators of JUND

were predicted using our MD model. The gene PELI1 has recently

been shown to be involved in hsa-mir-21 mediated control of NF-

kB signaling [43].

Among the 28 miRNA-mRNA pairs that were identified using

both MD and UD, one of the genes of interest was cyclin D2

(CCND2). The 28 pairs corresponded to 22 unique miRNAs and

16 of these targeted CCND2. The cyclin D genes are regularly

involved in chromosomal translocations in MM and the expression

levels of these cyclins in myeloma tumors is extremely high in

relation to normal proliferating peripheral blood cells [44]. A

suppression of the expression of CCND2 using RNA interference

(a method similar to miRNA inhibition) in myeloma cells inhibited

proliferation and was progressively cytotoxic [45].

Discussion

The new association measures enable the identification of

miRNA-mRNA pairs of potential biological interest using

microarray data sets that cannot be analyzed using the correlation

coefficient (Table 2). Thus, our association measures extend the

scope of data sets that can be used to generate new hypotheses

and/or design new experiments.

The MD association measure requires data for just two

conditions and is suitable for analyzing pilot studies, where a

small number of conditions are evaluated. The results obtained

using the pilot studies can be used to design experiments for a

comprehensive miRNA-mRNA analysis without having to effec-

tively repeat the profiling experiments. Instead of a pilot study, one

may utilize the previously published microarray profiling studies to

identify the miRNA-mRNA pairs for further experimentation.

However, many published studies comprise a small number of

biological conditions (#5) and do not include the expression levels

of both miRNAs and mRNAs, e.g. [46–48]. The UD association

measure, unlike the existing measures of association, can be used

to co-analyze the independent miRNA and mRNA studies and

identify the miRNA-mRNA pairs of potential interest. Thus, our

UD and MD association measures allow researchers to obtain

greater confidence in candidate miRNA-mRNA pairs before

embarking on time-consuming and costly downstream experi-

ments. For example, our analysis of the MM data sets supports a

downstream experiment centered around the control of SOCS3

by the hsa-miR-19 family.

The discretization of expression data, prior to the calculation of

UD-based association measure, enables us to focus on the

directions of change in miRNA and mRNA expression (with

respect to a reference) rather than the magnitudes of change. An

advantage of this approach is that the discretized expression

profiles are comparable across all microarray platforms. For

example, the range of expression values obtained using Taqman

low density arrays is very different from that measured using

Agilent microarrays. Also, under different conditions the quanti-

tative level of a miRNA’s regulatory effect may vary. Therefore, if

the actual expression values are used, then a UD-based method

that adjusts for platform-specific and condition-specific differences

will be needed; to the best of our knowledge, such methods are not

Table 1. Number of mRNAs associated with different
biological processes in the RB deletion group.

Process Number

Apoptosis 24

Signaling pathway 23

Transcription regulation 22

Cell proliferation 17

Cell cycle 8

Cell differentiation 5

doi:10.1371/journal.pone.0029612.t001

Figure 4. Network diagram comprising miRNAs that potentially
regulate genes SOCS3, JUND, and PELI1.
doi:10.1371/journal.pone.0029612.g004

Association Measure for Unmatched and Matched Data
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available. The UD association measure is applicable to data sets

where multiple conditions are evaluated. If the number of

conditions is just two, then this association measure is inappro-

priate. However, there is no known solution for this limitation of

the UD association measure.

While the UD association measure does not require miRNA

and mRNA data from the same individual, the data must

correspond to the same set of biological conditions. If there are

multiple miRNA/mRNA data sets that correspond to the same set

of biological conditions, then a representative data set may be

selected prior to the estimation of association. This selection could

be based on a measure of agreement, such as Cohen’s kappa [49],

between the data sets. Once all the pairwise agreements between

the miRNA/mRNA data sets have been obtained, the data set

with the highest average agreement can be selected as the

representative data set.

Our measures of association can be used to identify miRNA-

mRNA modules, i.e. clusters of miRNAs that regulate clusters of

mRNAs. There are instances where two or more miRNAs

collectively regulate multiple mRNAs and, in recent times, some

methods have been proposed for obtaining such modules

[27,28,30]. Since these module-identification methods utilize the

correlation coefficient as the measure of association, they require

matched miRNA-mRNA data for multiple conditions. Our UD

association measure, unlike the correlation coefficient, enables an

analysis of unmatched miRNA and mRNA data sets. Conse-

quently, the UD association measure extends the scope of data sets

that can be analyzed using the module-identification methods.

We showed that even when the miRNA and mRNA expression

data are matched, the use of correlation coefficient may not be

appropriate. Though the correlation coefficient is a measure of

association between miRNA and mRNA expression, it is

independent of the average CE-values. Consequently, the

correlation coefficient may identify a miRNA-mRNA pair as

significant even when the average CE-value is negative (or

positive) for both miRNA and mRNA. In our analysis of MM

patients with RB deletion, hsa-miR-320:ATRX was identified as

significant using the correlation coefficient even though the

average CE-value was negative for both miRNA and mRNA.

Our MD association measure assumes that if a miRNA targets

an mRNA, then the change in mRNA expression due to a change

in miRNA expression must be significant. However, there may be

instances where several miRNAs cooperatively regulate an mRNA

and the individual effect of a miRNA on mRNA expression is low.

Our model can be extended to consider the coregulation of an

mRNA by multiple miRNAs. Such a model may provide new

insights into the miRNA-based regulatory mechanism.

Materials and Methods

Unmatched data
We first describe the method for identifying significant miRNA-

mRNA pairs under the assumption that the miRNA and mRNA

expression profiles are not matched. Even though we do not

assume the expression profiles to be matched, we require the

expression profiles to correspond to the same biological groups,

e.g. the same MM groups. First, we select one of the biological

groups in the data set, e.g. healthy donors, as the reference. Next,

we test the null hypothesis that the average expression of a

miRNA/mRNA in a MM group is the same as that for reference.

If the p-value for the hypothesis, after adjusting for multiple

comparisons, is less than 0.05, then we consider the miRNA/

mRNA to be DE in the relevant MM group.

(i) Measure of association. For a given biological group, if

the miRNA/mRNA is DE and overexpressed (with respect to

reference), then it is assigned the value 1. Similarly, if the miRNA/

mRNA is DE and underexpressed, then it is assigned the value

21. Finally, if the miRNA/mRNA is not DE, then it is assigned

the value 0. We denote the total number of biological groups

(excluding the reference) as C. Therefore, for every miRNA/

mRNA, we obtain a vector of C discrete values. The discretized

data are used to populate the 363 contingency table (Table 3)

shown below.

Here, a11 corresponds to the number of biological groups where

both miRNA and mRNA are underexpressed with respect to

reference. We use a and b to denote the miRNA and mRNA of

interest, respectively, and a:b to denote the miRNA-

mRNA pair. Therefore, for miRNA a and mRNA b,

a11~
PC

i~1

I(ai~{1)|I(bi~{1), where I is an indicator function

that takes the values 1 if the condition is satisfied and 0, otherwise.

Similarly, we obtain a12–a33.

(ii) Significance of association. Once the 363 contingency

table has been populated for a given miRNA-mRNA pair, we

calculate the probability of obtaining the observed set of nine

values (a11,…,a33) by chance. To determine this probability, we

assume that the nine values are obtained from a multinomial

distribution and that there is no biological association between a
and b.

Given that every mRNA has C discrete values (corresponding to

the C biological groups), firstly, we obtain a matrix W1 comprising

Z rows and C columns, where Z denotes the number of mRNAs.

Secondly, we jumble the rows and columns of W1 to obtain a new

Table 2. Association measures for co-analysis of miRNA and mRNA expression profiles.

Number of conditions

Two Large

Expression profiles Matched MD association measure Correlation coefficient

Unmatched 2 UD association measure

doi:10.1371/journal.pone.0029612.t002

Table 3. Generic table for measuring association between a
miRNA-mRNA pair using unmatched data.

mRNA

21 0 1

miRNA 21 a11 a12 a13

0 a21 a22 a23

1 a31 a32 a33

doi:10.1371/journal.pone.0029612.t003

Association Measure for Unmatched and Matched Data

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29612



matrix W2. Specifically, each row of W2 has C values and these are

selected at random from the Z6C values in W1. Thirdly, we

sample with replacement the rows from matrix W2 and obtain the

matrix W3. The number of times the sampling is performed, i.e.

Nrep, is user-defined and, in this paper, all results were obtained

using Nrep = 10000. The matrix W3 comprises 10000 pseudo-

mRNAs that have no genuine association to the miRNA a.

Finally, we populate the 363 contingency table (Table 2) using the

discretized values for miRNA a and the Nrep pseudo-mRNAs. We

obtain the average values for the 9 elements a11,…,a33 by dividing

the values in the contingency table by Nrep. These average values

represent the probabilities for the nine elements under the

assumption that there is no biological association between the

miRNA a and an mRNA. We provide these probabilities as input

to the R [50] package EMT and determine the p-value, for the

observed association between miRNA a and its putative target b,

using a multinomial distribution. Instead of a test based on

multinomial distribution, a x2-test can be performed if the number

of conditions is large (.15).

(iii) miRNA-mRNA pairs of interest. A miRNA a is

predicted to target several mRNAs and the test of significance

described above has to be performed for all the targets of a. Since

miRNAs are negative regulators of mRNA expression, the change

in the expression of a genuine target must be in the opposite

direction to that for the miRNA. Therefore, instead of evaluating

all the predicted targets of a, we only consider those targets which

have an opposite direction of change (with respect to a) in at least

one of the C biological groups. We adjust the p-values (returned by

the test of significance) for multiple comparisons using the

Benjamini-Hochberg (BH) correction [33]. We consider a

miRNA-mRNA pair to be significant if the adjusted p-value is

less than 0.05.

Matched data
We now describe the method for the identification of significant

miRNA-mRNA pairs using expression data that are matched but

correspond to just two conditions. Firstly, we select the samples

corresponding to one of the conditions as the reference, e.g. in an

analysis involving a MM group and healthy donors, the latter may

be selected as the reference. Secondly, we model the change in

mRNA expression as a function of the change in miRNA

expression and obtain the statistical significance of association

for the miRNA-mRNA pair. The actual steps are described in

detail below:

(i) Measure of associatio. Let the number of healthy donors

and MM samples be Nref and Nbiol, respectively. Typically,

Nref%Nbiol, e.g. the Gutierrez data set had 14 MM samples with

RB deletion and just three healthy donors, and our measure of

association focuses on such cases. Let m and u denote the median

mRNA and miRNA expression values, respectively, for the

healthy donors. We consider the median values instead of

average values because the former are not sensitive to the

presence of outliers. Let l denote the change in mRNA expression

owing to a unit change in miRNA expression. Let xi and yi denote

the miRNA and mRNA expressions, respectively, for the ith MM

sample. Now, we model the relationship between miRNA and

mRNA expression in MM samples as follows:

yi~mzl(xi{u),

where 1#i#Nbiol

or

yi{m~l(xi{u): ð1Þ

For two-channel experiments, every microarray slide contains the

expression profile of a MM sample and healthy donor. Therefore,

we directly obtain the CE-values, i.e. yi2m for mRNAs and xi2u
for miRNAs. In contrast, for single-channel experiments, a

microarray slide corresponds to the expression profile of a healthy

donor or MM sample and the CE-values have to be obtained

explicitly.

(ii) Significance of association. Once the value of l has

been estimated using Equation (1), the next step is to ascertain its

statistical significance. Specifically, if a miRNA-mRNA pair is

genuine, then the change in miRNA expression must produce a

change in mRNA expression which is higher than that obtained by

chance. We achieve this by performing a permutation test similar

to that described earlier for the identification of significant

miRNA-mRNA pairs using unmatched data.

Let Q1 denote the matrix of Z rows (corresponding to Z

mRNAs) and Nbiol columns. Next, we jumble the rows and

columns of Q1, in a manner similar to that described for UD, and

obtain a new matrix Q2. We sample with replacement the rows

from matrix Q2 and obtain the matrix Q3. The sampling is

performed Nrep times and each sample represents a pseudo-

mRNA with no genuine association to miRNA a.

We use Equation (1) to estimate l for the association between

miRNA a and every pseudo-mRNA in Q3. These values of l
represent the null distribution, i.e. the distribution when miRNA a
and an mRNA do not have a biological association. If the a:b pair

is biologically important, then the observed value of l (i.e. lobs)

must be negative (implying a negative regulation of the mRNA by

a) and smaller than the values in the null distribution. Therefore,

the p-value is obtained as Pr(l#lobs).

(iii) miRNA-mRNA pairs of interest. For a given miRNA

a, we first identify all the predicted targets that have an average

CE-value in the opposite direction to that for the miRNA. Next,

we obtain the p-values using the test of significance described

above. Finally, we adjust the p-values for multiple comparisons

using the BH correction. We consider a miRNA-mRNA pair to be

significant if lobs is negative and the adjusted p-value is less than

0.05.

Biological data sets
We considered two publicly available data sets – Gutierrez data

set [24] and Lionetti data set [20]. The Gutierrez data set

comprised five healthy donors and 55 MM patients that were

stratified into four groups – normal FISH, t(11:14), t(4;14) and RB

deletion. The raw miRNA and mRNA expression values were

downloaded from Gene Expresssion Omnibus (GEO) accession

number GSE16558. The miRNA expression profiles were

obtained using TaqMan low-density arrays and normalized using

the mean of RNU44 and RNU48, as suggested by the authors

[24]. The mRNA expression profiles were obtained using

Affymetrix Human Gene 1.0 ST arrays and the preprocessing

steps included RMA background correction [51], quantile

normalization [52] and summarization of mRNA expression

using the median polish algorithm. The Lionetti data set contained

40 MM patients (stratified into five groups based on TC

classification), three healthy donors for miRNAs, and four healthy

donors for mRNAs. The normalized miRNA and mRNA

expression values (Figure S1) were downloaded from GEO

accession numbers GSE17498 and GSE13591, respectively.

For each data set, we tested the null hypothesis that the average

expression of a miRNA/mRNA in a MM group was the same as

that for healthy donors. We adjusted the p-values (corresponding

to the tests of hypotheses) for multiple comparisons using the BH

method. We considered a miRNA/mRNA to be DE if the

Association Measure for Unmatched and Matched Data
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difference in average expression was greater than 1.5 and the

adjusted p-value was less than 0.05.
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