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Abstract

Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite
recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive
groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the
amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of
microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing
evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited
resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel
in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design
degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this
approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in
mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of
,1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic
fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that
diverged from other mammals 120–160 million years ago. Using our method, many more cross-clade microsatellite loci can
be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes
are sequenced.
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Introduction

Microsatellites, also called simple sequence repeats, consist of

short (1–6 bp), tandemly repeated DNA motifs dispersed through-

out genomes. Microsatellite sequences mutate through motif

insertions and deletions along the repeat array, often at rates

several orders of magnitude higher than the average genomic

mutation rate [1]. Increasing numbers of polymorphic microsat-

ellites are being associated with genetic disorders and variation in

gene expression [2], but the high mutation rate at microsatellite

loci also offers an abundant and readily available polymorphism

that has been the foundation for the wide use of microsatellites as

neutral molecular markers, especially in applications requiring fine

temporal and/or spatial resolution, e.g. population genetics and

forensics.

Despite a number of recognized advantages of microsatellites

over other genetic markers, such as easy sample preparation and

high information content [3,4], the costs and time required to

develop new polymorphic microsatellite markers can be prohib-

itive [5]. The recent decline in sequencing costs has paved the way

for more efficient methods of de novo microsatellite isolation, but

only when whole genome sequences [6] or large amounts of

sequences are already available [7,8] or purposely produced for

the species of interest [9]; conditions that still imply a significant

upstream investment.

Seeking to yield large amounts of genetic information with the

least initial effort and cost, investigators commonly make attempts

at transferring known microsatellite markers between species,

typically from previously examined focal species to related non-

focal species (e.g. [10,11]; see [12] for a recent review). Successful

transfer of microsatellite markers therefore requires (i) 1:1

orthology of microsatellite loci, (ii) flanking sequences which are

sufficiently conserved between species to provide PCR priming

sites for cross-species amplification, and (iii) a microsatellite

sequence which exhibits an appropriate level of polymorphism

in the non-focal species. All three aspects are typically unknown at

the onset of a project. Because there is a strong positive

relationship between time of divergence and the accumulation of

sequence differences along lineages [13], the consensus found in

the literature that microsatellite transferability rapidly decreases

with increasing distance between focal and non-focal species is not

surprising [11,12,14–16].

With no prior focus on reducing the impact of these limitations,

the traditional cross-species microsatellite transfer approach has

had varying, generally disappointing, levels of success [12]. The

use of databases of microsatellites located in expressed, thus
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putatively conserved genomic regions, have improved the

expected and observed rate of cross-species transferability (e.g.

[17–21]), especially with the complementary use of genome

sequences from related species [22,23]. However, multiple whole-

genome alignments have not yet been exploited to date to explore

and maximize the limits of microsatellite marker transferability.

Here, we present a novel and economic strategy that exploits

our recent advances in building comprehensive datasets of

microsatellites conserved across the mammalian clade [24–26].

We created a reproducible and adaptable framework that has

allowed us to develop mammal-wide degenerate primers for nine

dinucleotide microsatellites, five of which were successfully

genotyped across most of a panel comprising 18 divergent species

that represent the major mammalian orders, and three of which

displayed high intraspecies polymorphism throughout the mam-

mals tested. We conclude from this successful initial trial that this

approach has much promise and paves the way for equivalent

studies in other genera as the push towards obtaining genome

sequences from multiple animal, predominantly vertebrate, species

becomes a reality [27]. In addition, it provides a significant starting

resource for those wishing to focus on specific mammalian species

or groups of species where large numbers of microsatellite markers

with robust cross-species utility are required.

Materials and Methods

Our overall strategy is presented in Figure 1.

Ethics Statement
Information S1 shows the origin of our samples for each species

included in this study. Restricted and general biological products

(tissue or DNA) were imported with the New Zealand Ministry of

Figure 1. Schematic representation of the pipeline developed to design and implement degenerate cross-species primers for
mammal-wide microsatellite loci. The University of California, Santa Cruz (UCSC) Genome Brower can be found at http://genome.ucsc.edu/.
doi:10.1371/journal.pone.0029582.g001
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Agriculture and Forestry (MAF) import permits No 2007031396

and 2007032360, respectively, issued for the University of

Canterbury. Human DNA was sent from the National Cell Bank

of Iran. Chimpanzee samples Pt163, Pt180, Pt203, and Pt254

were obtained as blood samples from the Iberia Research Center

during routine veterinary care, and were processed in A. Stone’s

laboratory in Arizona State University, USA.

Sample collection and DNA extraction
Mammalian species were chosen to include nine sister species

pairs (n = 18) representing three of the four superorders of

eutherians (Laurasatheria, Euarchontoglires and Afrotheria), as

well the too often neglected marsupials and monotremes. We

collected DNA, blood or tissue samples from 20 presumably

unrelated individuals per species (Information S1). Total DNA was

extracted using slight variations of the Chelex method [28], and

quantified using an ND-1000 spectrophotometer (NanoDrop).

In silico identification of conserved mammalian
microsatellites

Orthologous mammalian microsatellites were identified using

the UCSC vertebrate 17-WA [29] and a variation of an approach

detailed elsewhere [26]. Briefly, FASTA-formatted sequences were

extracted from the alignment in a pairwise fashion (human-other

species) using Gmaj (http://globin.cse.psu.edu/dist/gmaj/), and

the microsatellite search was carried out with a modified version of

Sputnik [30], using the following parameters: –v 1 –u 5 –n -4 –s 8

–L 15 (motif length: 1–5 bp; mismatch penalty: -4; min score: 8,

min array length: 15 bp). Each dataset was filtered for single-copy

and repeat-free loci, and classified according to motif type, length,

purity and complexity. Genomic positions of non-human micro-

satellites were converted to homologous positions in the human

genome using a stand-alone version of Galaxy [31] and resources

available at the UCSC Genome Browser (i.e. liftOver tool and

conversion files). Conservation was assigned when genomic

positions of human microsatellites overlapped with converted

positions of non-human microsatellites.

In silico isolation of potential cross-species microsatellite
loci

An initial subset of ,1,000 human dinucleotide microsatellites

(length $14 bp) was randomly selected from a pool of broadly

conserved microsatellites in the mammalian clade, i.e. present in at

least in five mammals, or in comparisons including at least human,

opossum and either dog or mouse. Mammalian species included in

this study shared a common ancestor 160 MYA, and thus the

chances of finding conserved and polymorphic were expected to be

low. Although microsatellites composed of larger motifs, e.g. tri-

and tetranucleotide repeats, are known to be less prone to

genotyping errors than dinucleotide repeats, we chose to look and

test the latter over the former because they tend to be longer and

thus more polymorphic [32]. We did not require that microsat-

ellites in this initial subset be conserved in all nine non-primate

species for two reasons. First, most genome sequences in the 17-

WA are incomplete, thus there is a non-negligible possibility for

false negatives. Second, otherwise conserved microsatellites may

be too short or overly interrupted to be detected using our in silico

strategy in some genomes.

In order to optimize the identification of cross-species microsat-

ellites with flanking sequences conserved across the entire

mammalian clade, including monotremes (platypus), we reviewed

by eye each microsatellite locus in the 28-way conservation track

[33], an updated and enlarged version of the 17-WA (Information

S2). Criteria for selection were: (i) presence of a dinucleotide repeat

in all taxa included in our sample collection; although exceptions

were tolerated for low-coverage (26) genomes (cat, armadillo,

elephant and tenrec), (ii) a relative extent of interspecies length

variation in the repeat array, i.e. microsatellites with no or very

limited length variation between species were discarded, (iii) ,20 or

more near-identical contiguous base pairs on both sides of the

microsatellite sequence across all mammalian species, and (iv) total

length of the potential amplicon not exceeding ,400 bp. The

purpose of this process, which by nature was relaxed because it was

carried out by eye, was to filter out those microsatellites that did not

meet the general requirements for cross-species markers, i.e. no

variation in motif, but variation in length across species, conserved

potential primer sites on both sides of the microsatellite and length

of the amplicon compatible with current genotyping technology.

We removed from these alignments any sequence derived from

species not included in our sample collection, with the exception of

sequences from armadillo (Xenarthra), elephant (Afrotheria) and

opossum (Marsupialia), ensuring that each alignment covered the

entire breadth of the Mammalia. When necessary, microsatellite

flanking sequences were re-aligned manually using BioEdit [34].

In silico comparative primer design
Alignments were submitted to PrimaClade [35]; this web

application runs Primer3 [36] independently for each sequence,

collating the results to identify primers that bind across the

alignment, while allowing for base degeneracy. A maximum of

three degenerate sites per primer were allowed. Primers that

overlapped gaps (indels) in the alignment were excluded, and only

primers generating fragments smaller than 350 bp were kept for

further study. Using the Java web-application NetPrimer and the

developer’s recommendations (PREMIER Biosoft International,

http://www.premierbiosoft.com/netprimer/), potential primer

pairs were tested for the presence of secondary structures (hairpins,

self- and cross-dimerization), palindromes and repeats that could

affect the amplification reaction through intra- and intermolecular

interactions and non-specific annealing. Table 1 summarizes the

overall set of unambiguous criteria that were applied to increase

chances of successful amplification and select the optimal cross-

species primer pair at each locus. In addition, the same criteria

were used to design primers for a locus containing the non-coding

microsatellite with the widest range of conservation in mammals

described to date, and located in the 39-UTR of the NCAM1 gene

[37]. A list of all degenerate cross-species primers and their

characteristics is displayed in Information S3.

DNA amplification, genotyping and sequencing
We followed the M13-tail PCR method of [38] and optimized it

for cross-species investigation. Amplifications were performed on a

Master Cycler Gradient (Eppendorf), in 15 ml of reactions

containing 0.66 mM of reverse-specific primer, 0.66 mM of

fluorescent dye-labelled M13 primer, 0.33 mM of forward-specific

primer with M13-tail, 2.5 mM of MgCl2, 0.2 mM of each dNTP,

4 mM of tetramethylammonium chloride (TMAC), 0.75 U of

BioTaq DNA polymerase (Bioline), and 20–100 ng of genomic

DNA template. A touch-down PCR was undertaken in which the

initial annealing temperature Tinit (generally 59uC, but see

exceptions in Information S3) was reduced at the rate of 2uC every

two PCR cycles until the target temperature (Ttarg = Tinit210uC)

was reached; 26 regular cycles were then performed at Ttarg. The

general thermocycling profile was as follows: initial denaturation at

94uC for 3 minutes; denaturation at 94uC for 15 s, annealing for

30 s, extension at 72uC for 20 s; final extension at 72uC for

20 minutes. PCR efficiency was assessed through electrophoresis of

Mammalian Cross-Species Microsatellite Markers
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3 ml of amplified products loaded on 1.5% agarose gel stained with

BET. Primer pairs resulting in multiple bands or no amplification in

all or most species were discarded. Fragment analysis was

performed in an ABI3100 Genetic Analyzer (Applied Biosystems)

following instructions from the manufacturer. Fragment sizes were

scored with GeneMarker (Soft Genetics LLC). Expected and

observed heterozygosities and polymorphic information content

(PIC) were measured for all genotyped loci in each species with

CERVUS 3.0.3 [39,40]. We restricted sequencing to the loci where

genotyping was successful in a broad range of species. Four

individuals per species per locus were selected for direct sequencing

on a locus per locus basis based on homozygozity and, where

possible, polymorphism. The sequencing PCR was run using a

standard protocol (Big Dye Terminator Cycle Sequencing Kit,

Applied Biosystems), and products were prepared for sequencing in

both directions in an ABI3100 Genetic Analyzer (Applied

Biosystems) following manufacturer’s instructions. Sequences ob-

tained for each locus were aligned with ClustalW [41], and edited

manually using BioEdit [34].

Results

Candidate cross-species microsatellite markers for the
mammalian clade

A total of 126,306 human microsatellites were found conserved

in at least one of the non-primate mammalian species, i.e. in

mouse, rat, rabbit, dog, cow, elephant, armadillo, tenrec and/or

opossum (Information S4). An initial subset of ,1,000 human

dinucleotide microsatellites (length $14 bp) was randomly selected

from a total pool of 5,596 microsatellites (including 2,756

dinucleotide repeats) that were broadly conserved across aligned

genomes. Furthermore, a total of 73 28-WA intervals, each

comprising a potential mammal-wide microsatellite locus, were

selected for the presence of a polymorphic dinucleotide microsat-

ellite flanked by stretches of ultra-conserved sequences potentially

suitable for cross-species primer design (Information S2).

Degenerate primer pairs were then successfully designed for 19

microsatellite loci. Of those 19 primer pairs tested using a unique,

optimized set of PCR conditions, nine pairs yielded a scorable

band pattern in all tested mammalian samples (Information S5).

There was no significant difference in amplification success

between highly and slightly degenerate primer pairs, nor did

primer G+C content of sequence affect amplification success

(Information S3).

Intraspecies polymorphism
To test our set of mammal-wide microsatellite loci for length

polymorphism at the population level, amplicons were produced

and genotyped in each 20-sample set. Of nine primer pairs

developed for cross-species genotyping, five were successful in

providing allele length data at the population level across most

species. Table 2 shows allelic richness and estimates of

heterozygosities (expected and observed) for each locus in each

species, whenever genotyping was successful; Information S6

shows polymorphic information content (PIC). Although these

values should be considered rough guides given the limited sample

sizes, three microsatellite loci showed significantly more intraspe-

cies polymorphism (C2-6868, C2-1915 and C2-1218), indicating

potential suitability for marker-based applications across the

mammalian clade.

It is interesting to weigh the extent of polymorphism at each

locus against the sequence data that is available from the 28-way

alignments. Indeed, intraspecies polymorphism is largely influ-

enced by the length of pure repeat segments within the

microsatellite sequence, with long pure microsatellite tracts

tending to be more polymorphic than short and/or degenerated

microsatellites [1]. Accordingly, the highly polymorphic C2-1218

locus contained long pure tracts of (CA) motifs in most species used

for genotyping (Information S7). The C2-6868 locus showed less

variability and contained many sub-units of short size (,8 repeats),

with the exception of a long and extensively polymorphic tract in

mouse (Information S7). Despite imperfections in the microsatel-

lite sequence, the widely polymorphic C2-1915 locus generally

contained at least one long pure sub-unit, i.e. .8 repeats

(Information S7). The two other loci, C2-1514 and C17-4243,

showed less polymorphism and generally contained short tracts

(Information S7). Against expectations, we observed a few

exceptionally long tracts with no intraspecies variability in allele

length, for example the C17-4243 locus in rat. This may be

explained by unintended close relatedness of individuals among

some sample sets, e.g. rats and pilot whales (discussed below).

Relationship between changes in flanking sequences and
locus length

Although sequencing is not standard practice in most

applications of microsatellite markers, we sought to examine in

detail the relationship between DNA sequence and the nature and

extent of polymorphism of our most successful cross-species

microsatellite loci across the studied species. Sequence-level

information is indeed essential to inspect (i) whether allele length

variations are attributable to additions/deletions of motifs within

microsatellite sequences rather than indels in the flanking

sequences, (ii) what is the extent of size homoplasy, if any, among

alleles (homoplastic alleles have identical length but different

sequence), (iii) the relationship between microsatellite structure

and polymorphism [42–44]. Ideally, a microsatellite marker

Table 1. Selection criteria for designing comparative microsatellite primers.

Repeats Stability of primer secondary structures (DG*)

Lexpected Lprimer
{ Tm

{ DTm %GC1 2-66 16 39 HP Int HP 39 SD Int SD 39 CD Int CD

,350 18–22 58–62 ,1 45–60 ,3 ,6 .22.00 .23.00 .25.00 .26.00 .25.00 .26.00

Lexpected: expected length of PCR products (bp); Lprimer: primer length (bp); Tm: melting temperature (uC); DTm: Tm difference between both primers; %GC: G+C content;
2-66: number of tandemly repeated non-mononucleotide motifs (2–6 bp); 16: length of mononucleotide runs; DG: Gibbs free energy required to break the secondary
structure (kcal/mol); 39: 39-end of primers; Int: Internal; HP: hairpin, SD: self-dimer, CD: cross-dimer.
*Output from NetPrimer; criteria as recommended in the application’s manual.
{Exceptionally up to 26 bp.
{Output from PrimaClade.
1A 30–62% range was tolerated for primers .22 bp.
doi:10.1371/journal.pone.0029582.t001
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exhibits polymorphism through addition/removal of repeats only,

has no or a non-significant fraction of homoplastic alleles, and has

a simple repeat structure with mutational dynamics in line with

current models of microsatellite evolution [45,46].

We carried out cross-species direct PCR sequencing of the five

most successfully genotyped microsatellite loci, namely C2-1218,

C2-1915, C4-1514, C9-1918 and C17-4243 (Table 2). Four

homozygous allele variants (where available) were sequenced for

each species. Information S8 presents an overview of these results,

with total fragment length, microsatellite length and microsatellite

sequence given for all variants of successfully sequenced

individuals. The direct PCR sequencing success rate was average

(42%), regardless of previous genotyping success. Of 56 cases

where between two to four sequences per locus per species could

be retrieved, we found 26 cases of intraspecific polymorphism (i.e.

length and/or sequence polymorphism), with a total of 31 new

intraspecific alleles (36 if we include chimpanzee, for which we

have no genotyping data). Here we define a ‘new allele’ as an

allelic variant of an arbitrary ‘ancestral’ allele (Information S8).

Ten out of the 31 new allele variants showed a difference between

total length change and microsatellite length change. These

differences are most likely the result of short indels occurring in

flanking regions. However, we cannot be certain for all cases, due to

the absence of flanking sequence information, and because

genotyping errors cannot be completely ruled out. In the other 21

comparisons (68%), changes in total locus length were consistent

Table 2. Polymorphism at nine cross-species mammalian microsatellite loci.

C2-1218* C2-6868* C2-1915* C4-1514* C6-1112 C9-1918 C14-9692 C15-3531 C17-4243*

Human 268–294 (9/18) 228 (1/20) 166–178 (5/17) 281–283 (2/20) 152–156 (2/19) 300–302 (2/14) 234–237 (3/20) 226–228 (2/17) 311 (1/20)

0.47/0.82 0/0 0.71/0.64 0.30/0.26 0.11/0.19 0.38/0.52 0.05/0.15 0.29/0.26 0/0

Chimpanzee n/a n/a n/a n/a n/a n/a n/a n/a n/a

Mouse 291–301 (10/20) 242–291 (16/17) 216–238 (10/14) 313–317 (4/19) 155–161 (3/18) 311 (1/20) 240–242 (2/19) 297–299 (2/16) 319–325 (5/19)

0.30/0.76 0.56/0.93 0.50/0.91 0.22/0.52 0.50/0.51 0/0 0.26/0.56 0.13/0.12 0.42/0.62

Rat 274–280 (2/20) 236 (1/20) 176 –180 (3/20) 274 (1/20) 158–162 (3/19) n/a n/a 237 (1/20) 326 (1/15)

0.45/0.36 0/0 0.35/0.31 0/0 0.47/0.55 0/0 0/0

Dog 268–278 (9/20) 256–268 (4/18) 180–191 (5/19) 297–299 (2/17) 3 peaks (1/11) n/a 214 (1/20) n/a 309 (1/20)

0.40/0.83 0.28/0.52 0.47/0.78 0.12/0.11 0/0 0/0

Cat 265–276 (8/20) n/a 176–188 (6/19) n/a n/a n/a n/a n/a 312 (1/20)

0.75/0.82 0.63/0.72 0/0

Cow 259–264 (2/18) 231 (1/20) 167–169 (2/20) 281 (1/20) 146 (1/20) 300–305 (2/20) 208 (1/20) 240–242 (2/20) 308 (1/20)

0.06/0.06 0/0 0.15/0.22 0/0 0/0 0.50/0.51 0/0 0.05/0.05 0/0

Sheep 270–280 (8/19) 229–237 (4/14) 163–173 (4/15) 292 (1/20) 146 (1/20) 307–308 (2/20) 208–212 (3/18) n/a 306 (1/20)

0.58/0.83 0.29/0.37 0.56/0.64 0/0 0/0 0/0.10 0.39/0.60 0/0

Dolphin 264–278 (4/19) n/a 160–176 (7/19) 291–295 (2/16) 148–150 (2/19) 313–319 (3/16) 214–215 (2/19) 226 (1/20) 303–304 (2/20)

0.47/0.61 0.74/0.81 0.13/0.12 0.17/0.25 0.50/0.59 0/0.27 0/0 0/0.39

Pilot Whale 265 (1/20) 243 (1/20) 161–174 (6/17) 292 (1/19) 148 (1/20) 313–317 (4/18) 216 (1/20) 223 (1/20) 307 (1/20)

0/0 0/0 0.82/0.79 0/0 0/0 0.39/0.70 0/0 0/0 0/0

Hedgehog 260–272 (5/20) 225–230 (5/20) 268–172 (3/20) 321–325 (2/20) 148–154 (2/20) 345 (1/20) 151–157 (2/20) 213–227 (7/20) 303 (1/20)

0.65/0.70 0/0.10 0.40/0.56 0.45/0.48 0.25/0.30 0/0 0.25/0.30 0.65/0.81 0/0

Shrew 309–329 (11/20) 254–256 (3/20) 221–223 (2/20) 281 (1/20) n/a n/a n/a n/a 309–313 (4/19)

0.80/0.88 0.50/0.45 0/0 0/0 0.26/0.25

Dugong 269–273 (4/20) 225 (1/17) 176 (1/20) 274 (1/19) 138 (1/17) 289 (1/18) n/a 222 (1/17) 294–298 (3/18)

0.45/0.57 0.05/0.05 0/0 0/0 0/0 0/0 0/0 0.50/0.41

Tenrec n/a n/a n/a 281 (1/20) n/a n/a n/a n/a 316–319 (4/15)

0/0 0.33/0.55

Tammar
wallaby

249–291 (9/16) n/a 193–195 (2/16) 281 (1/16) 149 (1/16) n/a n/a 191–293
(14/15)

325–332 (5/10)

0.79/0.83 0.06/0.06 0/0 0/0 0.60/0.94 0.20/0.70

Quoll 241–243 (2/9) 318–342 (6/8) n/a 297 (1/20) 148 (1/20) n/a 203 (1/14) n/a 299 (1/15)

0.11/0.11/0.10 0.50/0.81/0.72 0/0/0 0/0/0 0/0/0 0/0/0

Platypus 245–263 (2/15) 346–382 (7/13) 214–226 (4/15) n/a 145 (1/11) n/a 208 (1/18) n/a 298 (1/15)

0/0.13/0.12 0.85/0.72/0.64 0.13/0.36/0.32 0/0/0 0/0/0 0/0/0

Echidna 248–252 (4/15) 372–376 (4/13) n/a 317 (1/14) 142 (1/12) 278 (1/20) 205–213 (5/14) 194–196 (2/12) 298 (1/17)

0.20/0.57 0/0.65 0/0 0/0 0/0 0.50/0.76 0.09/0.09 0/0

Allelic Range (number of alleles/number of individuals successfully genotyped) Observed Heterozygosity/Expected Heterozygosity.
*indicates sequenced loci.
doi:10.1371/journal.pone.0029582.t002
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with repeat addition or removal in the microsatellite sequence.

Although six cases of size homoplasy were observed (identical size,

different sequence), only two originated from mutations in both

microsatellite and flanking sequences, the other four cases

originating from a point mutation within the microsatellite

sequence. Finally, in all cases, addition/removal of one or more

motifs occurred in the longest pure tract(s) of dinucleotide repeats.

Discussion

Microsatellites are currently one of the most popular types of

genetic markers for molecular ecology, forensics and genome

mapping studies. Their evolutionary dynamics have been

extensively studied [1,3,45], and new analytical approaches are

continually being developed [47,48]. However, their use could be

facilitated, and even extended, if microsatellite markers could be

readily transferred between species. Most attempts to transfer

microsatellites across species are hindered by the accumulation of

point mutations in microsatellite flanking sequences and/or the

decay of microsatellite sequences over time [1,12]. But the recent

finding that scores of microsatellite loci are indeed conserved

across vertebrate genomes [25,26] has offered new hopes of

significantly increasing success rates in developing cross-species

microsatellite markers than have been observed to date [12].

Here we described a novel combination of in silico and wet-lab

approaches to develop a set of microsatellite markers with broad,

potentially universal, utility across the Mammalia (Figure 1). We

demonstrated that an easily adaptable and reproducible protocol

can be used to extract highly conserved microsatellite loci from

multiple genome alignments, design degenerate primers and

implement a set of microsatellite loci across vastly distant species

– in this case 18 mammalian species that shared a common ancestor

no earlier than 160 million years ago [24]. Although there are

anecdotal reports of exceptional conservation in other taxa, e.g.

turtles [49] and fish [50], this extensive transferability exceeds that

of any prior cross-species study in mammals, and thus radically

alters the conventional assumption that cross-species amplification

of microsatellite loci is limited to closely related species [12].

Focusing our analysis on the entire breadth of the Mammalia

(eutherians, marsupials and monotremes) ensured a large evolu-

tionary scope as well as a solid genomic framework where scores of

conserved microsatellites have been identified [26]. Given the

extensive species divergence, it was expected that only a small

fraction, if any, of the subset of widely conserved loci would not

only provide a substrate to develop mammal-wide PCR primers,

but also contain a polymorphic microsatellite sequence in all

genomes. Our investigation shows that contrary to this common

expectation, mammalian genomes contain a significant number of

potential mammal-wide microsatellite markers. First, the propor-

tion of microsatellite loci found to contain potential conserved

primer sites in a first non-stringent in silico scan was fairly high,

with conserved primer sites identified in 7.3% of the random

subset of ,1,000 conserved dinucleotide repeats that we drew

from our total pool of 5,596 highly conserved microsatellite loci.

From those 1,000 conserved dinucleotide repeats, 19 or 1.9% were

suitable to design mammal-wide degenerate primers using our

stringent set of criteria (Table 1), result we view as remarkable

considering the breadth of the Mammalia and the limited number

of sites that we studied. Indeed, our initial subset represented only

a fraction, less than a fifth, of all the microsatellites found that

could be examined to identify cross-species microsatellite markers.

In addition, using a more comprehensive dataset of conserved

mammalian microsatellites [26], we were able to find 4,084

human dinucleotide repeats among 10,267 conserved microsatel-

lites in five non-primate mammals. Thus, by extrapolation at least

80 loci should be suitable for primer design using these selection

criteria, and we anticipate that more should be identified under

less stringent conditions (e.g. conservation in human-mouse-

opossum). Moreover, other types than dinucleotide repeats can

also be used for cross-species transfer of microsatellite markers, e.g.

tetranucleotide markers, which are conserved in equivalent

numbers in mammalian genomes [26]. Furthermore, if there is

success in designing comparative primers useful across the

Mammalia, then many more are expected to be developed from

more specific comparisons, i.e. within subgroups of the Mamma-

lia, especially with further genomic resources being acquired [27].

There was no particular relationship between PCR success and

either G+C-content of PCR priming sites, genomic location, and

number of degeneracy in primer sequences (Information S3). Of

19 designed primer pairs, nine were successfully optimized for

mammal-wide amplification, and five were suitable for genotyping

and sequencing. A number of methodological choices were made

to decrease costs, but they may have reduced success rates in

genotyping and sequencing, e.g. Chelex extraction method

(impure DNA extract), M13-genotyping (primer dimers, inconsis-

tent fluorescent signal), use of degenerate primers (low amplifica-

tion), and direct PCR sequencing (low quality reads). We would

expect a significant increase in success rate using clean extraction

methods (extraction kit, phenol-chloroform protocol), standard

fluorescent genotyping, non-degenerate primers and clone se-

quencing. In addition, we had little or no control on sampling and

DNA quality for most of our samples, which may have had

detrimental consequences on the overall quality of our results. For

example, low polymorphism in rats and pilot whales could be

explained by our samples originating from inbred populations [51]

and pod strandings, respectively [52]. Drawing on these

experiences, guidelines are outlined in the supplementary

materials to help others planning to use conserved microsatellites

to develop comparative primers (Information S9).

Overall, our cross-species primers still yielded good genotyping

results for five of the nine fully optimized loci. Intraspecies

polymorphism was strongly associated with length and purity of

repeat tracts, which emphasized the importance of examining the

sequence structure of microsatellites to select polymorphic genetic

markers. Sequence information demonstrated that most changes

(68%) in total fragment length at the five loci were attributable to

mutations in the microsatellite sequence rather than in the flanking

sequences, suggesting that cross-species primers designed for these

loci are invaluable candidates for being employed as universal

genetic markers across the Mammalia, as it has already been

demonstrated for the under-studied short-beaked echidna [8].

Our findings establish a new paradigm in that they demonstrate

that with the emergence of large numbers of genome sequences for a

given taxonomic group, universal sets of microsatellite markers can

be generated for that group, using a simple protocol. Provided that

such sets are fully characterized and tested for confounding

influences in the the different species of interest (e.g. linkage and

deviations from the Hardy-Weinberg equilibrium), and standardized

for use in different laboratories, this creates the genuine possibility of

developing large panels of microsatellites with cross-species trans-

ferability and known genomic context [16], enabling true inter-study

comparability that have long been sought but never before obtained.
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Information S2 28-way alignment of conserved micro-
satellites. Both flanking sequences of the conserved microsatel-

lite (represented by the black bar) contain a stretch of orthologous

sequences potentially suitable to design cross-species primers

(indicated with orange boxes). Locus C2-1218 at chr2:17,699,950–

17,700,450 (UCSC hg18).

(PDF)

Information S3 Description of 19 primer pairs selected
for PCR optimization.
(PDF)

Information S4 Distribution of human microsatellites
conserved in nine non-primate species. The human data (in

bold) correspond to the total number of human microsatellites

found to be conserved in at least one species. Species-specific

subsets correspond to the number of human microsatellites that

are conserved in at least each one of those species. Numbers in

brackets indicate numbers for the whole genome (excluding Y

chromosome).

(PDF)

Information S5 Electrophoresis of PCR products for C2-
1218 in 17 mammals. Bta: cow, Oar: sheep, Cfa: dog, Mmu:

mouse, Fca: cat, Meu: tammar wallaby, Oan: platypus, Gme: pilot

whale, Dma: quoll, Rno: rat, Ddu: dugong, Sar: shrew, Eeu:

hedgehog, Tac: echidna, Hsa: human, Tad: dolphin, Ete: tenrec.

(negative control: water).
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Information S6 Polymorphic Information Content (PIC)
at nine cross-species microsatellite loci based on at most
20 individuals per species.
(PDF)

Information S7 UCSC 28-way alignment of five cross-
species microsatellite locus showing species of interest
(in order: C2-1218; C2-6868; C2-1915; C4-1514; C17-
4243). (A) Flanking sequences. Underscores represent the

microsatellite sequence; positions are counted upstream and

downstream from the microsatellite. Boxes indicate primer sites,

dashes gaps and dots bases identical to human. (B) Microsatellite

sequence. Array length is shown in brackets. UCSC assemblies:

Human (hg18), chimp (panTro2), mouse (mm8), rat (rn4), cow

(bosTau3), dog (canFam2), cat (felCat3), shrew (sorAra1),

hedgehog (eriEur1), armadillo (dasNov1), elephant (loxAfr1),

tenrec (echTel1), opossum (monDom4), platypus (ornAna1).

(PDF)

Information S8 Allele length, and microsatellite length
and sequence variation in at most four individuals for
five cross-species microsatellite loci. Lallele: allele length

(bp); Lmicro: microsatellite length (bp); an individual (Indiv 1) 1 is

used as a reference to measure length variation (+/2).
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Information S9 Guidelines to facilitate the identifica-
tion, design, optimization and implementation of com-
parative microsatellite primers.

(PDF)
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