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Abstract

Background: Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD)
locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin’s absence in animal
models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and
more recently translational control mechanisms that may underlie its complex expression patterns have begun to be
identified.

Methodology/Principal Findings: Using a variety of bioinformatic, molecular and cell biology techniques, we show that the
muscle isoform utrophin-A is predominantly suppressed at the translational level in C2C12 myoblasts. The extent of
translational inhibition is estimated to be ,99% in C2C12 cells and is mediated by both the 59- and 39-UTRs of the utrophin-
A mRNA. In this study we identify five miRNAs (let-7c, miR-150, miR-196b, miR-296-5p, miR-133b) that mediate the
repression, and confirm repression by the previously identified miR-206. We demonstrate that this translational repression
can be overcome by blocking the actions of miRNAs, resulting in an increased level of utrophin protein in C2C12 cells.

Conclusions/Significance: The present study has identified key inhibitory mechanisms featuring miRNAs that regulate
utrophin expression, and demonstrated that these mechanisms can be targeted to increase endogenous utrophin
expression in cultured muscle cells. We suggest that miRNA-mediated inhibitory mechanisms could be targeted by methods
similar to those described here as a novel strategy to increase utrophin expression as a therapy for DMD.
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Introduction

Duchenne muscular dystrophy (DMD) is an X-linked fatal

neuromuscular disease caused by mutations in the dystrophin gene

[1,2]. Utrophin, a chromosome 6 encoded protein, bears

significant homology and can functionally substitute for dystrophin

when expressed at high levels [3,4,5]. High levels of utrophin

expression in muscle occur during fetal development, when it is

expressed throughout the sarcolemma. However, its expression

declines leading to its spatially restricted expression at neuromus-

cular and myotendinous junctions of the adult myofiber

sarcolemma. Indeed this developmental downregulation has been

suggested as a reason for the delayed onset of muscle weakness in

DMD [5,6]. Direct evidence for the ability of utrophin to

functionally compensate for dystrophin deficiency comes from

experimental studies in animal models of DMD demonstrating

that utrophin over-expression driven by transgenic means, viral

vectors, pharmacological promoter activation or protein trans-

duction can rescue dystrophin-deficient muscle in mice and dogs

[7,8,9,10,11,12,13]. While promising, these strategies are still

experimental and face considerable technical hurdles. A better

understanding of the molecular events regulating utrophin

expression is crucial in order to facilitate the development of

strategies aimed at upregulation of utrophin in muscle fibers of

DMD patients.

Utrophin expression is driven by two different promoters,

namely A and B [14,15], although myofiber expression is

predominantly driven by promoter A. Some of the regulatory

mechanisms playing major roles during transcription via the

utrophin-A promoter have been identified [16,17,18,19] and

numerous studies have focused on this promoter to model its

expression and achieve upregulation [11,12,13,20,21,22,23,24].

However, it is becoming increasingly evident that the regulation of

utrophin expression is more complex than previously appreciated.

For example, alongside ets-mediated utrophin-A promoter activa-

tion at the synapse [16,17], ERF-mediated transcriptional

silencing is thought to regulate its concurrent extra-synaptic

repression in myofibers [25]. Recently it has been shown that the

expression of utrophin is modulated further at the level of

translation. Utrophin-A and -B transcripts differ at their
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59-untranslated regions (59-UTRs) and activation of an internal

ribosome entry site (IRES) present at the utrophin-A 59-UTR

contributes to utrophin-A upregulation during muscle regenera-

tion and glucocorticoid treatment [26,27]. The utrophin 39-

untranslated region (39-UTR), on the other hand, has been shown

to be the target of the miRNA miR-206 [28].

Given the large size of the utrophin 39-UTR (2.4 kb), we

hypothesized that it was likely to be targeted by more than one

miRNA. Therefore, we used bioinformatics to predict miRNAs

that would target the utrophin 39-UTR, and validated the

predictions using quantitative real-time PCR assays to confirm

expression of the miRNAs in muscle, as well as transfections

with exogenous pre-miRNAs to confirm targeting of the

utrophin 39-UTR. We used ribosomal profiling and luciferase

reporter constructs to demonstrate that, in line with substantial

targeting by miRNAs, the utrophin-A mRNA exists in a state of

translational repression. Finally, we demonstrated that by

inhibiting the actions of miRNAs, using miRNA binding site-

blocking oligomers, we could de-repress the utrophin 39-UTR

and upregulate translation of endogenous utrophin protein. We

suggest that inhibition of translation by miRNAs is an

important mechanism regulating utrophin expression and that

it could be targeted as a therapeutic strategy to upregulate

utrophin in the myofiber in DMD.

Results

Bioinformatic predictions of miRNAs targeting the
utrophin 39-UTR

To date, miR-206 is the only miRNA that has been reported to

target utrophin [28]. However, the very large size (2.4 kb) of the

utrophin 39-UTR suggests it could be a target of several regulatory

miRNAs. Therefore, we used the miRanda v1.0b algorithm [29]

to predict miRNAs that target the utrophin 39-UTR, based on

sequence and thermodynamic properties. Five additional miRNAs

were found to be excellent candidates for targeting the mouse

utrophin mRNA, namely, let-7c, miR-150, miR-196b, miR-296-

5p, miR-133b and the previously reported miR-206. Interestingly,

miR-133b and miR-206 are known to be muscle specific. These

miRNAs are also predicted to target human utrophin. The

positions of their predicted target sites in the utrophin 39-UTR are

shown in Fig. 1.

The utrophin-A mRNA is translationally repressed
To validate the prediction that the utrophin-A mRNA is

targeted by multiple miRNAs, we first used ribosomal profiling of

the utrophin-A mRNA in mouse myoblast C2C12 cells to

determine whether it is translationally repressed. As shown in

Fig. 2, the utrophin-A mRNA is found in lighter, monosomal

fractions, indicating that it is associated with one or only a few

ribosomes and is therefore being translated inefficiently. In

contrast, the b-actin mRNA is found in heavier, polysomal

fractions, indicating that it is associated with many ribosomes.

Therefore, in C2C12 cells, the utrophin-A mRNA exists in a state

of translational repression.

The 59- and 39-UTRs of utrophin mediate translational
repression

As both the 39- and 59-UTRs of genes are known to mediate

miRNA-based repression, we made four reporter constructs, based

on the pGL3 vector (Fig. 3A), to determine the contributions of the

59- and 39-UTRs of the utrophin mRNA towards its translational

repression. In 59Luc, the 59-UTR of the utrophin-A mRNA was

cloned upstream of the luciferase coding region. The 39-UTR was

cloned downstream of the luciferase coding region to obtain

Luc39. In 59Luc39, the luciferase coding region is flanked by the

59- and 39-UTRs of the utrophin-A mRNA.

Equimolar amounts of these constructs were transfected into

C2C12 cells and luciferase activity was assayed. The addition of

the 59- or 39-UTR reduced luciferase activity by ,92% or ,80%

respectively, compared to the parent construct pGL3. The

addition of both UTRs decreased luciferase activity by ,99%;

an amount greater than each element alone suggesting co-

operability between these elements (Fig. 3B). RT-PCR confirmed

that there was no difference in mRNA levels produced by the four

constructs (Fig. 3C), demonstrating that the inhibition was at the

level of translation. Similar results were observed when HeLa cells

were transfected with these constructs (Fig. S1), suggesting that this

mechanism is not limited to C2C12 cells.

To determine how the 59- and 39-UTRs contribute to the

inefficient association of the utrophin-A mRNA with ribosomes,

we performed ribosomal profiling on C2C12 cells transfected with

the four reporter constructs described above. Compared to pGL3,

the Luc39 mRNA was shifted towards lighter, less efficiently

translating fractions (Fig. 3; compare A and C). An even greater

shift was observed for 59Luc39 (Fig. 3D); ,80% of the mRNA was

present in fractions 2 and 3, which represent mostly translationally

inactive, non-polysomal ribosomes. This suggests that the 39-UTR

of the utrophin mRNA causes a reduction in its ribosomal

association, and that this effect is exacerbated in the presence of

the 59-UTR.

miRNAs contribute to 39-UTR-mediated repression of
utrophin translation

To validate the bioinformatic predictions and determine

whether miRNAs are responsible for the translational repression

mediated by the utrophin 39-UTR, we first verified whether the six

miRNAs were expressed in cultured C2C12 myoblasts and fast

and slow skeletal muscles of mice. All six miRNAs were expressed

Figure 1. Six miRNAs are predicted to target the utrophin 39-UTR. The miRanda v1.0b algorithm was used to predict miRNAs that target the
utrophin 39-UTR. Six miRNAs (miR-296-5p, miR-206, miR-150, miR-133b, let-7c, and miR-196b) were strong candidates and their predicted target sites
within the utrophin 39-UTR are represented diagrammatically. Note that miR-296-5p has two putative binding sites, as shown.
doi:10.1371/journal.pone.0029376.g001
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in C2C12 cells and expressed at varying levels in muscle (Fig. 4A

and B).

Next, we co-transfected pre-miRNAs (miRNA precursor RNA

stem-loops) for each of the miRNAs of interest or a scrambled pre-

miRNA control, with the 59Luc39 construct, in which the 39- and

59-UTRs of utrophin flank the coding sequence for firefly

luciferase, into cultured HeLa cells. The Renilla luciferase

expression plasmid pRL-TK was used as a control for transfection

efficiency. HeLa cells were selected because they do not express

endogenous miR-206, which might mask the effects (if any) of

miR-206 added exogenously. A luciferase assay was performed

6 hours post-transfection. Compared to the scrambled control, all

the pre-miRNAs tested produced a reduction in luciferase activity,

confirming that all six miRNAs can target the utrophin 39-UTR

and repress translation (Fig. 4C).

miRNA inhibition relieves utrophin 39-UTR-mediated
translational repression

Having demonstrated that six miRNAs target the utrophin 39-

UTR, we asked whether inhibition of these miRNAs could de-

repress the 39-UTR and upregulate translation. Therefore, C2C12

cells were transfected with 59Luc39 together with antisense

inhibitors of the six utrophin-targeting miRNAs. Luciferase

activity was assayed 24 hours post-transfection. As shown in

Fig. 5, inhibitors of let-7c, miR-150, miR-196b and miR-206 were

able to de-repress the utrophin 39-UTR in a dose-dependent

manner and produce increases of up to 4-fold in luciferase

translation.

Next we wished to confirm that endogenous utrophin protein

levels could be upregulated by inhibition of miRNAs. To do this,

we used oligomers consisting of 2-O-methyl modified bases on a

phosphorothioate backbone (2OMePOs). The 2OMePOs were

designed to bind to the utrophin 39UTR and block the let-7 family

target site situated therein (Fig. 1), thus preventing utrophin

translational repression by let-7c or other let-7 family members.

This strategy should, in principle, be relatively specific for

utrophin, rather than affecting other let-7 target genes. We used

the 2OMePS chemistry because these oligomers are suitable for in

vivo delivery and can be synthesized on a larger scale. Additionally,

in our hands 2OMePSs had lower cytotoxicity than the

commercially available miRNA inhibitors. C2C12 cells were

transfected with either a let-7-blocking 2OMePS or an inactivate

control 2OMePS. DMSO (0.025%) was present in both cases due

to co-testing of other substances. Cell lysates were harvested after

72 hours and levels of utrophin protein measured by Western

blotting. As shown in Fig. 6, treatment with the let-7-blocking

2OMePS oligomer increased endogenous protein levels by over 2-

fold, compared to the inactive control 2OMePS oligomer. This

demonstrates that endogenous utrophin protein levels can be

increased by blocking the actions of miRNAs, and validates the

concept that miRNA inhibition could be used to upregulate

utrophin, as a potential therapy for DMD.

Figure 2. The utrophin-A mRNA is translationally repressed.
Ribosomal profiling of utrophin-A and b-actin mRNAs from C2C12 cells
after sucrose density gradient fractionation. (A) Typical ribosomal
profiling trace, showing total RNA abundance across fractions as
measured by absorbance at 254 nm. (B–C) While the utrophin-A mRNA
is found in lighter, monosomal fractions (B), that of b-actin is enriched in
heavier, polysomal fractions (C), showing the lower translation initiation
efficiency of utrophin-A mRNA in C2C12 cells. A254, absorbance at
254 nm.
doi:10.1371/journal.pone.0029376.g002
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Figure 3. The 59- and 39-UTRs of utrophin-A mediate translational repression. (A) Schematic of firefly luciferase reporter constructs, pGL3,
Luc39, 59Luc and 59Luc39. All constructs are derivatives of pGL3 and under control of the CMV promoter. In Luc39, the luciferase coding sequence is
appended with the 39-UTR of utrophin, in 59Luc, the 59-UTR of utrophin-A is inserted just before the start codon of luciferase and in 59Luc39 the
reporter is flanked by the 59- and 39-UTRs of utrophin-A. (B) C2C12 cells were transfected with the four constructs in equimolar amounts, and
luciferase activity measured 6 hours post-transfection. Firefly luciferase activity normalized to Renilla luciferase from the co-transfected endogenous
control pRL-TK is shown. Bars represent mean 6 standard deviation (SD) from six independent experiments. (C) RNA was extracted from parallel
samples and expression of firefly luciferase and b-actin studied by RT-PCR, showing that the transcriptional activity of the four constructs is the same.
(D) C2C12 cells were transfected with pGL3, 39Luc, 59Luc or 59Luc39 in equimolar amounts. Lysates were harvested 24 hours post-transfection and
subjected to ribosomal profiling. The distribution of luciferase transcripts from each construct was determined by real time PCR.
doi:10.1371/journal.pone.0029376.g003
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Discussion

In this study, we used a variety of bioinformatic, molecular and

cell biological methods to demonstrate the role of miRNAs in the

post-transcriptional control of utrophin expression. We show that

at least six miRNAs target the utrophin 39-UTR. We also

demonstrate that inhibition of utrophin-targeting miRNAs can de-

repress the utrophin 39-UTR, leading to an upregulation of

utrophin protein expression. We suggest that these mechanisms

could be targeted to upregulate utrophin in DMD.

Previous work has shown that the utrophin 59-UTR inhibits

cap-dependent translation in muscle, probably due to its predicted

complex secondary structure, but that an IRES located in the 59-

UTR is activated during muscle regeneration and in proliferating

C2C12 myoblasts [26]. In our study, we confirm the inhibitory

effect of the utrophin 59-UTR in C2C12 cells. Interestingly, we

find that the 59- and 39-UTRs can act synergistically, such that

each potentiates the inhibition caused by the other. Our ribosomal

profiling experiments using reporter constructs shed light on the

mechanisms of inhibition by the 59- and 39-UTRs, suggesting that

they cause an inhibition of translational initiation from the

utrophin-A mRNA, thus limiting ribosome occupancy.

Having shown the importance of the 39-UTR in repressing

utrophin translation, and its interaction with the 59-UTR, we

demonstrated that this repression is mediated, at least in part, by

miRNAs. We identified five new miRNAs (let-7c, miR-150, miR-

196b, miR-296-5p and miR-133b) that target the utrophin 39-

UTR and confirmed the previously reported targeting by miR-206

[28]. Importantly from a therapeutic point of view, these six

miRNAs are also predicted to target utrophin in humans.

We tested whether antisense inhibition of these miRNAs could

upregulate utrophin expression, and achieved this for four of the

six miRNAs tested. It is not yet clear why inhibition of the other

two miRNAs did not have the same effect. However, in addition to

issues related to stability/chemistry of the inhibitors, some of the

targeted miRNAs are only present at low levels in C2C12 cells,

and therefore decreasing their expression would be predicted to

have little effect on reporter construct expression.

Of the miRNAs studied, let-7c stood out as the best initial target

as it is highly expressed in fast and slow skeletal muscles, and its

antisense inhibition in C2C12 cells caused a 4-fold translational

upregulation of the luciferase reporter. For this reason, we focused

on let-7c for further experiments, and showed that blocking the

binding of let-7 family miRNAs to the utrophin 39-UTR, using a

2OMePO oligomer, could upregulate endogenous utrophin

protein by over 2-fold, in C2C12 cells. The difference in the

degree of response between the two experiments could be due to

different time points examined (the utrophin gene is much larger

than luciferase so more time was allowed to see a change in protein

levels) or different amounts of transfection reagent used.

Importantly, our results demonstrate that inhibition of miRNAs

can de-repress the utrophin 39-UTR and upregulate translation of

utrophin protein, making it a viable therapeutic strategy for DMD.

For experiments investigating endogenous utrophin protein, we

used 2OMePO oligomers designed to bind the utrophin 39UTR and

block the actions of let-7 family miRNAs, in place of commercially

produced antisense miRNA inhibitors. The success of these

experiments is greatly encouraging, given that 2OMePO oligomers

can be synthesized on a relatively large scale are suitable for use in

vivo. Indeed, this chemistry has been used in clinical trials of exon-

skipping therapeutics in patients with DMD [30,31]. Furthermore,

targeting the miRNA binding site in the utrophin 39-UTR is likely to

be more specific than targeting the miRNA itself, given that any one

miRNA typically targets a number of different mRNAs.

Figure 4. Predicted miRNAs are expressed in C2C12 cells and
skeletal muscle and can target the utrophin 39-UTR. Expression
levels of miRNAs in C2C12 cells (A) and TA and soleus muscles (B) were
quantified using TaqMan miRNA assays. All six miRNAs are expressed in
C2C12 cells. miR-150 was not detected (n.d.) in TA, while miR-296-5p
was n.d. in TA or soleus. Bars represent mean 6 SD. (C) HeLa cells,
which do not express miR-206, were transfected with 59Luc39 and pRL-
TK with different pre-miRNAs precursors or a scrambled negative
control. Cells were harvested 6 hours post-transfection and a luciferase
assay performed. Firefly luciferase activities were normalized to pRL-TK
derived Renilla luciferase activity and expressed as percentage
normalized luciferase activity of the negative control transfected cells.
Normalized luciferase activity decreases in every pre-miRNA transfected
set. Bars represent mean 6 SD from six independent experiments.
doi:10.1371/journal.pone.0029376.g004
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Although our results demonstrate a crucial role of miRNAs in

39-UTR-mediated inhibition of IRES initiation they do not

exclude the possibility of other mechanisms being in operation.

For example, it has recently been found that an AU-rich element

in the 39-UTR modulates utrophin mRNA stability [32].

In conclusion, we have shown that the utrophin-A mRNA is

subject to a significant degree of translational repression, mediated

by its 59- and 39-UTRs, and that the actions of miRNAs contribute

significantly to this repression. We identify five novel miRNAs that

target the utrophin 39-UTR and demonstrate that inhibition of

miRNA targeting can de-repress the utrophin 39-UTR, leading to

an upregulation in utrophin protein translation. Therefore, we

believe that utrophin upregulation by miRNA inhibition repre-

sents a novel therapeutic strategy for DMD.

Figure 5. miRNA inhibition can de-repress the utrophin 39-UTR and upregulate translation. C2C12 cells were transfected with 59Luc39,
pRL-TK and different antisense miRNA inhibitors or a scrambled control inhibitor, at a range of concentrations. Luciferase assays were performed
24 hours post-transfection. Firefly/Renilla ratios in the presence of miRNA inhibitors were normalized to ratios in the presence of a scrambled
inhibitor. Inhibitors of let-7, miR-150, miR-196b and miR-206 increased normalized luciferase activity, whereas inhibitors of miR-133b and miR-296-5p
did not produce any significant upregulation. Bars represent mean 6 standard error from three independent experiments. * Significantly different
from scrambled inhibitor by two-way ANOVA followed by Bonferroni posttests, p,0.05.
doi:10.1371/journal.pone.0029376.g005
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Materials and Methods

miRNA prediction
miRNAs targeting the utrophin 39-UTR were predicted using

the miRanda v1.0b algorithm, with a cut-off for predictions of a

score greater than 100 and minimum free energy of -14 kcal/mol.

Constructs
The mouse utrophin-A 59-UTR was amplified with primers

59CCATGGGATCCACGGCTCCGAGG39 and 59CCATGGC-

TTGAATGAGTTTCAG TATAATCCAAAG39 and cloned up-

stream of luciferase at the NcoI site of pGL3 to construct 59Luc.

Cloning of the 59-UTR at the NcoI site converted the poor Kozak

consensus of aagATGG for native utrophin-A into a good Kozak

consensus of gccATGG. pGL3 also contains a good Kozak

sequence, accATGG. A ScaI-BamHI digested fragment of Riken

clone 9430078L05 (NCBI Accession # AK035043) containing the

mouse utrophin 39-UTR was cloned at the XbaI site of pGL3 and

59Luc by blunt end ligation to construct Luc39 and 59Luc39,

respectively. The final constructs contain the full 2.4 kb mouse

utrophin 39-UTR preceded by the final 200 bases of utrophin

coding sequence.

Cell culture
The mouse muscle C2C12 and human HeLa cell lines (both

from ATCC) were cultured in DMEM with 10% FBS, glutamine,

penicillin and streptomycin.

Transfection
All transfections were done with Lipofectamine 2000 (Invitro-

gen) according to the manufacturer’s protocol. For 2OMePS

transfections, the ratio was reduced to 1:1 ml Lipofectamine

2000:mg oligomer.

Ribosomal profiling
C2C12 cells (70% confluent) were transfected with constructs in

100 mm dishes. Media was changed after 6 hours. Cycloheximide

(final concentration 100 mg/ml) was added 24 post-transfection

and incubated for 15 minutes at 37uC. Cells were washed twice

with ice cold PBS, lysed in 300 ml ice cold lysis buffer (110 mM

potassium acetate, 2 mM magnesium acetate, 10 mM HEPES

[pH 7.5], 50 mM potassium chloride, 10 mM magnesium chlo-

ride, 2 mM DTT, 1% NP-40, 1% deoxycholate, complete-mini

protease inhibitors (Roche), 500 U/ml RNasin, and 100 mg/ml

cycloheximide), scraped into a tube, homogenized by passing 8

times through a 23 gauge needle at 4uC and centrifuged

(10 minutes, 14000 rpm). Supernatants were layered onto 11 ml

of a 15–50% linear sucrose gradient and centrifuged (36000 rpm,

2 hours). Gradients were fractionated by upward displacement

with 60% sucrose and absorbance monitored continuously at

254 nm. RNA was isolated from each fraction with Trizol

(Invitrogen) and treated with DNaseTURBO (Ambion) followed

by treatment with DNase-free (Ambion). RNA was reverse

transcribed with random hexamers using the SuperScript First

Strand Synthesis System (Invitrogen), according to the manufac-

turer’s instructions. Utrophin-A mRNA copy number was

quantified from 10 ml cDNA with 0.05 nM each of primers

59ATCCATTTGGTAAAGGTTTTCTTCTG39 and 59ACGA-

ATTCAGTGAC ATCATTAAGTCC39 and Tamra-labeled 59A-

TCATTGTGTTCATCAGATC39 MGB probe (0.25 mM) in

TaqMan mix (Applied Biosystems). A standard curve was gener-

ated from dilutions of a clone containing a unique region of the

utrophin-A cDNA, amplified with primers 59GCGTGCAGTG-

GACCATTTTTCAGATTTA39 and 59GCGTGCA GATCGA-

GCGTTTATCCATTTG39. b-actin was quantified using pre-

mixed reagents (Ambion). A standard curve was generated from

dilutions of a b-actin cDNA clone amplified with primers

59TTCTTTGCAGCTCCTTCGTTG39 and 59TCAAGTCAG

TGTACAGGCCAGC39. Luciferase transcript levels in transfect-

ed cells were determined by SYBR Green qPCR using 5 ml cDNA

with 10 pmol primers 59AAAGTTGCGCGGAGGAGTT39 and

59CCCTTCTTGGCCTTTATGAGG39 (firefly luciferase) or

59ATCGGACCCAGGATT CTTTTC39 and 59CCATTTCAT-

CAGGTGCATCT39 (Renilla luciferase) in SYBR Green PCR

mix (Applied Biosystems). A standard curve was generated using

dilutions of pGL3 (firefly luciferase) or pRL-TK (Renilla).

Luciferase reporter assay
C2C12 cells were plated in 24 well plates, 40,000 cells per well,

1 day before transfection. 400 ng pGL3 (1600 ng for 6-well plates)

or equimolar amounts of other constructs were transfected, with

50 ng pRL-TK (Promega), per well. Reporter activity was

Figure 6. 2OMePS let7-blocker upregulates endogenous utro-
phin protein. C2C12 cells were transfected with 300 nM control or
let7-blocking 2OMePS oligomers. (Note DMSO (0.025%) was also
present in both cases). Endogenous utrophin protein was assayed by
Western blotting after 72 hours. A. Representative Western blot. B.
Quantification of utrophin band density normalized to tubulin band
density. Bars represent mean 6 standard error from 3 independent
experiments. The let7-blocker increased endogenous utrophin protein
by 2.2-fold, compared to the control 2OMePS. * Significantly different
from control 2OMePS by paired T test, p,0.05.
doi:10.1371/journal.pone.0029376.g006
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measured by Dual Luciferase Assay (Promega) 6 or 24 hours after

transfection.

RT-PCR for luciferase and b-actin
RNA was isolated using an RNeasy kit (Qiagen) and reverse-

transcribed with random hexamers using the SuperScript First

Strand Synthesis System (Invitrogen), according to the manufac-

turer’s instructions. PCR amplification was done using primers

59AAAGTTGCGCGG AGGAGTT39 and 59CCCTTCTTGG-

CCTTTATGAGG39 for luciferase or 59CGTGCGTGACAT-

CAAAGAGAAGC39 and 59CCCAAGAAGGAAGGCTGGAA

AAG39 for b-actin.

Pre-miRNAs and miRNA inhibitors
Pre-miRNAs or miRNA antisense inhibitors (Ambion) were

transfected into C2C12 cells with 680 ng 59Luc39 and 50 ng pRL-

TK per well in 24-well plates. Pre-miRNAs for hsa-let-7c

(PM10436), hsa-miR-133b (PM10029), hsa-miR-150 (PM10070),

hsa-miR-196b (PM12946), hsa-miR-206 (PM10409) and hsa-miR-

295-5p (PM10609) were used, with a scrambled pre-miRNA (pre-

miRNA negative control #1). Inhibitors of hsa-let-7c (AM10436),

hsa-miR-133b (AM10029), hsa-miR-150 (AM10070), hsa-miR-

196b (AM12946), hsa-miR-206 (AM10409) and hsa-miR-295-5p

(AM10609) were used, all targeting both human and mouse

miRNAs, or scrambled inhibitor anti-miR negative control #1.

The 2OMePS oligomer designed to block the let-7 target site in

the utrophin 39-UTR had the sequence CUGAGGUAGAAAG-

GUGAUCAUGGCUC while the inactive control 2OMePS had

the sequence GUGAGCACUUCUUUCCUUCUUUUUU.

miRNA isolation, reverse-transcription and TaqMan
quantitative real-time PCR analysis

An RNeasy Plus Kit (Qiagen) and provided supplementary

protocol and a miRVana kit (Ambion) were used to prepare total

RNA, containing miRNA, from skeletal muscles (tibialis anterior

(TA) and soleus) of adult Black10 mice and C2C12 cells,

respectively. RNA quality was estimated with a NanoDrop ND-

1000 Spectrometer (Thermo Scientific). 10 ng (skeletal muscles) or

320 ng (C2C12 cells) total RNA was converted to cDNA using

TaqMan miRNA Assay primers and TaqMan miRNA Reverse

Transcription Kit (both Applied Biosystems).

Targeted sequences:

let-7c UGAGGUAGUAGGUUGUAUGGUU

miR-133b UUGGUCCCCUUCAACCAGCUA

miR-150 UCUCCCAACCCUUGUACCAGUG

miR-196b UAGGUAGUUUCCUGUUGUUGG

miR-206 UGGAAUGUAAGGAAGUGUGUGG

miR-296-5p AGGGCCCCCCCUCAAUCCUGU

Quantitative PCR (qPCR) was performed on a ABI PRISM

7900HT Real-Time PCR system (Applied Biosystems), and data

analyzed with SDS.2.3 software. Expression levels of miRNAs

were normalized to the endogenous control RNU6 in skeletal

muscle, and the endogenous control sno202 in C2C12 cells (both

assays from Ambion).

Western blotting
Cell lysates were prepared by scraping with TNEC lysis buffer

(1.5 mM Tris-HCl pH 8, 2.15 mM NaCl, 3.1% Igepal CA630,

4.2 mM EDTA with Complete protease inhibitors (Roche)),

incubating on ice for 20 minutes then centrifuging at 13 000 rpm

in a benchtop centrifuge at 4uC and removing and retaining

supernatants. Protein concentration was assayed using a DC

protein assay (Bio-Rad). 60–65 mg protein were combined with

LDS sample buffer and NuPAGE reducing reagent (both

Invitrogen) and heated to 99uC in for 5 minutes, then separated

on 3–8% Tris-Acetate gels (Invitrogen) with TA running buffer

for 2 hours 15 minutes at 80 V. Proteins were transferred to

PVDF membranes for overnight at 35 V, 4uC in ice-cooled

transfer buffer (25 mM Tris pH 8.3, 192 mM glycine, 20%

methanol, 0.05% sodium dodecyl sulphate). Membranes were

blocked for 1 hour at room temperature in 5% non fat milk in

TBS (50 mM Tris pH 7.5, 150 mM NaCl), then probed for

utrophin (upper half of membrane) with mouse monoclonal anti-

utrophin antibody mancho 3 clone 8A4 (developed by Glenn E.

Morris and obtained from the Developmental Studies Hybrid-

oma Bank developed under the auspices of the NICHD and

maintained by The University of Iowa Department of Biology)

diluted 1:50 in 5% non fat milk in TBST (TBS with 0.05%

Tween 20), or tubulin (lower half of membrane) with anti-alpha-

tubulin antibody clone DM1A (Sigma) diluted 1:5000 in 5% non

fat milk in TBS, for 1 hour at room temperature. Membranes

were washed in 3 changes of TBST for 10 minutes each, then

incubated with HRP-conjugated goat-anti-mouse IgG (Jackson

ImmunoResearch), diluted 1:4000 in 5% non fat milk in TBS (for

utrophin) or TBS (for utrophin), for 1 hour at room temperature.

TBST washes were repeated, then bands were visualized using

SuperSignal West Pico Chemiluminescent Substrate (Thermo

Scientific) and images obtained using an LAS-3000 Imager

(Fujifilm). For presentation clarity, images were then inverted to

give dark bands on a light background. Band densities were

quantified using ImageJ (http://rsbweb.nih.gov/ij/index.html).

Supporting Information

Figure S1 Utrophin translation is repressed by UTRs in
HeLa cells. HeLa cells were transfected with pGL3, Luc39.

59Luc and 59Luc39 in equimolar amounts along with pRL-TK,

and luciferase activity was measured 6 hours post-transfection.

Normalized luciferase activity from the constructs was plotted as

percentage of pGL3 activity. Bars represent mean values 6 SD

from six independent experiments.

(TIF)
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